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Abstract: Let σ = {σi : i ∈ I} be a partition of the set P of all prime numbers and let G be a finite
group. We say that G is σ-primary if all the prime factors of |G| belong to the same member of σ. G is
said to be σ-soluble if every chief factor of G is σ-primary, and G is σ-nilpotent if it is a direct product of
σ-primary groups. It is known that G has a largest normal σ-nilpotent subgroup which is denoted by
Fσ(G). Let n be a non-negative integer. The n-term of the σ-Fitting series of G is defined inductively
by F0(G) = 1, and Fn+1(G)/Fn(G) = Fσ(G/Fn(G)). If G is σ-soluble, there exists a smallest n such
that Fn(G) = G. This number n is called the σ-nilpotent length of G and it is denoted by lσ(G). If F
is a subgroup-closed saturated formation, we define the σ-F-length nσ(G,F) of G as the σ-nilpotent
length of the F-residual GF of G. The main result of the paper shows that if A is a maximal subgroup
of G and G is a σ-soluble, then nσ(A,F) = nσ(G,F)− i for some i ∈ {0, 1, 2}.
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1. Introduction

All groups considered in this paper are finite.
Skiba [1] (see also [2]) generalised the concepts of solubility and nilpotency by introducing

σ-solubility and σ-nilpotency, in which σ is a partition of P, the set of all primes. Hence P =
⋃

i∈Iσi,
with σi ∩ σj = ∅ for all i 6= j.

In the sequel, σ will be a partition of the set of all primes P.
A group G is called σ-primary if all the prime factors of |G| belong to the same member of σ.

Definition 1. A group G is said to be σ-soluble if every chief factor of G is σ-primary. G is said to be
σ-nilpotent if it is a direct product of σ-primary groups.

We note in the special case that σ is the partition of P containing exactly one prime each, the class
of σ-soluble groups is just the class of all soluble groups and the class of σ-nilpotent groups is just the
class of all nilpotent groups.

Many normal and arithmetical properties of soluble groups and nilpotent groups still hold for
σ-soluble and σ-nilpotent groups (see [2]) and, in fact, the class Nσ of all σ-nilpotent groups behaves
in σ-soluble groups as nilpotent groups in soluble groups. In addition, every σ-soluble group has a
conjugacy class of Hall σi-subgroups and a conjugacy class of Hall σ′i -subgroups, for every σi ∈ σ.

Recall that a class of groups F is said to be a formation if F is closed under taking epimorphic
images and every group G has a smallest normal subgroup with quotient in F. This subgroup is called
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the F-residual of G and it is denoted by GF. A formation F is called subgroup-closed if XF is contained in
GF for all subgroups X of every group G; F is saturated if it is closed under taking Frattini extensions.

A class of groups F is said to be a Fitting class if F is closed under taking normal subgroups and
every group G has a largest normal subgroup in F. This subgroup is called the F-radical of G.

The following theorem which was proved in [1] (Corollary 2.4 and Lemma 2.5) turns out to be
crucial in our study.

Theorem 1. Nσ is a subgroup-closed saturated Fitting formation.

The Nσ-radical of a group G is called the σ-Fitting subgroup of G and it is denoted by Fσ(G).
Clearly, Fσ(G) is the product of all normal σ-nilpotent subgroups of G. If σ is the partition of P
containing exactly one prime each, then Fσ(G) is just the Fitting subgroup of G.

If G is σ-soluble, then every minimal normal subgroup N of G is σ-primary so that N is σ-nilpotent
and it is contained in Fσ(G). In particular, Fσ(G) 6= 1 if G 6= 1.

Let n be a non-negative integer. The n-term of the σ-Fitting series of G is defined inductively by
F0(G) = 1, and Fn+1(G)/Fn(G) = Fσ(G/Fn(G)). If G is σ-soluble, there exists a smallest n such that
Fn(G) = G. This number n is called the σ-nilpotent length of G and it is denoted by lσ(G) (see [3,4]).
The nilpotent length l(G) of a group G is just the σ-nilpotent length of G for σ the partition of P
containing exactly one prime each.

The σ-nilpotent length is quite useful in the structural study of σ-soluble groups (see [3,4]),
and allows us to extend some known results.

The central concept of this paper is the following:

Definition 2. Let F be a saturated formation. The σ-F-length nσ(G,F) of a group G is defined as the
σ-nilpotent length of the F-residual GF of G.

Applying [5] (Chapter IV, Theorem (3.13) and Proposition (3.14)) (see also [3] (Lemma 4.1)),
we have the following useful result.

Proposition 1. The class of all σ-soluble groups of σ-length at most l is a subgroup-closed saturated formation.

It is clear that the F-length nF(G) of a group G studied in [6] is just the σ-F-length of G for σ the
partition of P containing exactly one prime each, and the σ-nilpotent length of G is just the σ-F-length
of G for F = {1}.

Ballester-Bolinches and Pérez-Ramos [6] (Theorem 1), extending a result by Doerk [7] (Satz 1),
proved the following theorem:

Theorem 2. Let F be a subgroup-closed saturated formation and M be a maximal subgroup of a soluble group G.
Then nF(M) = nF(G)− i for some i ∈ {0, 1, 2}.

Our main result shows that Ballester-Bolinches and Pérez-Ramos’ theorem still holds for the
σ-F-length of maximal subgroups of σ-soluble groups.

Theorem A. Let F be a saturated formation. If A is a maximal subgroup of a σ-soluble group G,
then nσ(A,F) = nσ(G,F)− i for some i ∈ {0, 1, 2}.

2. Proof of Theorem A

Proof. Suppose that the result is false. Let G be a counterexample of the smallest possible order.
Then G has a maximal subgroup A such that nσ(A,F) 6= nσ(G,F)) − i for every i ∈ {0, 1, 2}.
Since AF is contained in GF because F is subgroup-closed, we have that GF 6= 1. Moreover,
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nσ(A,F) ≤ nσ(G,F) = n and n ≥ 1. We proceed in several steps, the first of which depends heavily
on the fact that the F-residual is epimorphism-invariant.

Step 1. If N is a normal σ-nilpotent subgroup of G, then N is contained in A, nσ(A,F) = nσ(A/N,F)
and nσ(G/N,F) = n− 1.

Let N be a normal σ-nilpotent subgroup of G. Applying [7] (Chapter II, Lemma (2.4)), we have
that GFN/N = (G/N)F. Consequently, either nσ(G/N,F) = n or nσ(G/N,F) = n− 1.

Assume that N is not contained in A. Then G = AN and so G/N ∼= A/A∩N. Observe that either
nσ(A/A ∩ N,F) = nσ(G/N,F) = n or nσ(A/A ∩ N,F) = nσ(G/N,F) = n− 1. Therefore n− 1 ≤
nσ(A,F) ≤ n. Consequently, either nσ(A,F) = n or nσ(A,F) = n− 1, contrary to assumption.

Therefore, N is contained in A. The minimal choice of G implies that nσ(A/N,F) = nσ(G/N,F)− i
for some i ∈ {0, 1, 2}, and so either nσ(A/N,F) = n− i or nσ(A/N,F) = n− i − 1. Suppose that
nσ(A,F) 6= nσ(A/N,F). Then nσ(A,F) = nσ(A/N,F) + 1. Hence either nσ(A,F) = n − i + 1 or
nσ(A,F) = n − i. In the first case, i > 0 because n ≥ nσ(A,F). Hence nσ(A,F) = n − j for some
j ∈ {0, 1, 2}, which contradicts our supposition. Consequently, nσ(A,F) = nσ(A/N,F).

Suppose that nσ(G/N,F) = n. The minimality of G yields nσ(A/N,F) = n − i for some
i ∈ {0, 1, 2}. Therefore nσ(A,F) = nσ(G,F)− i for some i ∈ {0, 1, 2}. This is a contradiction since we
are assuming that G is a counterexample. Consequently, nσ(G/N,F) = n− 1.

Step 2. Soc(G) is a minimal normal subgroup of G which is not contained in Φ(G), the Frattini subgroup of G.
Assume that N and L are two distinct minimal normal subgroups of G. Then, by Step 1,

nσ(G/L,F) = n− 1. Since the class of all σ-soluble groups of σ-F-length at most n− 1 is a saturated
formation by Proposition 1 and N ∩ L = 1, it follows that nσ(G,F) = n− 1. This contradiction proves
that N = Soc(G) is the unique minimal normal subgroup of G.

Assume that N is contained in Φ(G). Since nσ(G/N,F) = n− 1 and the class of all σ-soluble
groups of σ-F-length at most n − 1 is a saturated formation by Proposition 1, we have that
nσ(G,F) = n− 1, a contradiction. Therefore N is not contained in Φ(G) as desired.

According to Step 2, we have that N = Soc(G) is a minimal normal subgroup of G which is not
contained in Φ(G). Hence G has a core-free maximal subgroup, M say. Then G = NM and, by [5]
(Chapter A, (15.2)), either N is abelian and CG(N) = N or N is non-abelian and CG(N) = 1. Since G is
σ-soluble, it follows that N is σ-primary. Thus, N is a σi-group for some σi ∈ σ.

Step 3. Let H be a subgroup of G such that N ⊆ H. Then Fσ(H) = Oσi (H).
Since N is contained in Fσ(H), it follows that every Hall σ′i -subgroup of Fσ(H) centralises N.

Since CH(N) = N or CH(N) = 1, we conclude that Fσ(H) is a σi-group, i.e., Fσ(H) = Oσi (H).
Step 4. We have a contradiction.
Let X = Fσ(G), and T/X = Fσ(G/X). Suppose that T is not contained in A. Then G = AT,

G/T ∼= A/A∩ T, and nσ(G/T,F) = nσ(A/A∩ T,F). By Step 1, nσ(G/X,F) = n− 1. Hence nσ(G/T,F) ∈
{n−2, n−1}. Now, X ⊆ A and nσ(A,F) = nσ(A/X,F)by Step 1. Consequently, nσ(A/A∩T,F) ∈ {nσ(A,F)−
1,nσ(A,F)}. This means that nσ(A,F) = n− j for some j ∈ {0,1,2}. This contradiction yields T ⊆ A.

By Step 3, we have that X = Oσi (G). Assume that E/X and F/X are the Hall σi-subgroup and the
Hall σ′i -subgroup of T/X respectively. Then T/X = E/X× F/X and E and F are normal subgroups
of G. Since X and E/X are σi-groups, it follows that E is a σi-group and hence E ⊆ X. In particular,
T/X is a σ′i -group.

On the other hand, Fσ(A) = Oσi (A) by Step 3. Consequently Fσ(A)/X ⊆ CA(T/X). Applying [1]
(Corollary 11), we conclude that CA(T/X) ⊆ T/X. Therefore X = Fσ(A).

By Step 1, nσ(A,F) = nσ(A/X,F). Now nσ(A/X,F) = lσ(AFX/X). Since AF/AF ∩ X =

AF/Fσ(AF), it follows that nσ(A/X,F) = nσ(A,F)− 1 which yields the desired contradiction.

3. Applications

As it was said in the introduction, the F-length nF(G) of a group G which is defined in [6] is just
the σ-F-length of G for σ the partition of P containing exactly one prime each, and the σ-nilpotent
length of G is just the σ-F-length of G for F = {1}.
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Therefore the following results are direct consequences of our Theorem A.

Corollary 1. If A is a maximal subgroup of a σ-soluble group G, then lσ(A) = lσ(G)− i for some i ∈ {0, 1, 2}.

Corollary 2 ([6] (Theorem 1)). If A is a maximal subgroup of a soluble group G and F is a saturated formation,
then nF(A) = nF(G)− i for some i ∈ {0, 1, 2}.

Corollary 3 ([7] (Satz 1)). If A is a maximal subgroup of a soluble group G, then l(A) = l(G)− i for some i ∈ {0,1,2}.

4. An Example

In [6], some examples showing that each case of Corollary 2 is possible for the partition σ of P
containing exactly one prime each. We give an example of slight different nature.

Example 1. Assume that σ = {{2, 3, 5, 7}, {211}, {2, 3, 5, 7, 211}′}. Let X be a cyclic group of order 7 and
let Y be an irreducible and faithful X-module over the finite field of 211 elements. Applying [5] (Chapter B,
Theorem (9.8)), Y is a cyclic group of order 211. Let L = [Y]X be the corresponding semidirect product.
Consider now G = A5 o L the regular wreath product of A5, the alternating group of degree 5, with L.
Then Fσ(G) = A∗5 , the base group of G. Then lσ(G) = 3. Let A1 = A∗5 X. Then A1 is a maximal subgroup of
G and lσ(A1) = 1. Let A2 = A∗5Y. Then A2 is a maximal subgroup of G and lσ(A2) = 2.
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