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Abstract: We propose a simple multiple outlier identification method for parametric location-scale and
shape-scale models when the number of possible outliers is not specified. The method is based on a
result giving asymptotic properties of extreme z-scores. Robust estimators of model parameters are used
defining z-scores. An extensive simulation study was done for comparing of the proposed method with
existing methods. For the normal family, the method is compared with the well known Davies-Gather,
Rosner’s, Hawking’s and Bolshev’s multiple outlier identification methods. The choice of an upper limit
for the number of possible outliers in case of Rosner’s test application is discussed. For other families,
the proposed method is compared with a method generalizing Gather-Davies method. In most situations,
the new method has the highest outlier identification power in terms of masking and swamping values.
We also created R package outliersTests for proposed test.

Keywords: location-scale models; outliers identification; unknown number of outliers; outlier region;
robust estimators

1. Introduction

The problem of multiple outliers identification received attention of many authors. The majority of
outlier identification methods define rules for the rejection of the most extreme observations. The bulk of
publications are concentrated on the normal distribution (see [1–6], see surveys in [7,8]. For non-normal
case, the most of the literature pertains to the exponential and gamma distributions, see [9–17]. Outliers
identification is important analyzing data collected in wide range of areas: pollution [18], IoT [19],
medicine [20], fraud [21], smart city applications [22], and many more.

Constructing outlier identification methods, most authors suppose that the number s of observations
suspected to be outliers is specified. These methods have a serious drawback: only two possible conclusions
are done: exactly s observations are admitted as outliers or it is concluded that outliers are absent.
More natural is to consider methods which do not specify the number of suspected observations or at
least specify the upper limit s for it. Such methods are not very numerous and they concern normal or
exponential samples. These are [1,5,23] methods for normal samples, [15,16,24] methods for exponential
samples. The only method which does not specify the upper limit s is the [2] method for normal samples.

We give a competitive and simple method for outlier identification in samples from location-scale
and shape-scale families of probability distributions. The upper limit s is not specified, as in the the case
of Davies-Gather method. The method is based on a theorem giving asymptotic properties of extreme
z-scores. Robust estimators of model parameters are used defining z-scores.
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The following investigation showed that the proposed outlier identification method has superior
performance as compared to existing methods. The proposed method widens considerably the scope of
models applied in statistical analysis of real data. Differently from the normal probability distribution
family many two-parameter families such as Weibull, logistic and loglogistic, extreme values, Cauchy,
Laplace and other families can be applied for outlier identification. So it may be useful for models which
cannot be symmetrized by simple transformations such as log-transform or others.

An advantage of the new method is that complicated computing is not needed because search of
test statistic’s critical values by simulation is not needed for each sample size. It allowed to create an R
package outliersTests which can be used for outlier search in real datasets. Another advantage is a very
good potential for generalizations of the proposed method to regression, time series and other models.
To have a competitor, we present not only the new method but also generalize the Davies-Gather method
for non-normal data.

In Section 2 we present a short overview of the notion of the outlier region given by [2]. In Section 3
we give asymptotic properties of extreme z-scores based on equivariant estimators of model parameters,
and introduce a new outlier identification method for parametric models based on the asymptotic result
and robust estimators. In Section 4 we consider rather evident generalizations of Davies-Gather tests for
normal data to location-scale families. In Section 5 we give a short overview of known multiple outlier
identification methods for normal samples which do not specify an exact number of suspected outliers.
In Section 6 we compare performance of the new and existing methods.

2. Outliers and Outlier Regions

Suppose that data are independent random variables X1, . . . , Xn. Denote by Fi(x) the c.d.f. of Xi.
Let F0 = {F(x, θ), θ ∈ Θ ⊂ Rm} be a parametric family of absolutely continuous cumulative

distribution functions with continuous unimodal densities f on the support supp(F) of the c.d.f. F.
Suppose that if the data are not contaminated with unusual observations, then the following null

hypothesis H0 is true: there exist θ ∈ Θ such that

F1(x) = . . . = Fn(x) = F(x, θ). (1)

There are two different definitions of an outlier. In the first case the outlier is an observation which
falls into some outlier region out(X). The outlier region is a set such that the probability for at least one
observation from a sample to fall into it is small if the hypothesis H0 is true. In such a case the probability
that a specified observation Xi falls into out(X) is very small. If an observation Xi has distribution different
from that under H0 then this probability may be considerably higher.

In the second case, the value xi of Xi is an outlier if the probability distribution of Xi is different from
that under H0, formally Fi 6= F(x, θ). In this case, outliers are often called contaminants.

Therefore, in the first case, there exists a very small probability to have an outlier under H0. If the
hypothesis H0 holds, then contaminants are absent and with very small probability some outliers (in the
first sense) are possible. If contaminants are present, then the hypothesis H0 is not true. Nevertheless,
contaminants are not necessary outliers (in the first sense ) because it is possible that they do not fall into
the outlier region. So the two notions are different. Both definitions give approximately the same outliers
if the alternative distribution is concentrated in the outlier region. Namely such contaminants can be
called outliers in the sense that outliers are anomalous extreme observations. In such a case it is possible to
compare outlier and contaminant search methods.

In this paper, we consider location-scale and shape-scale families. Location-scale families have the
form Fls = {F0((x− µ)/σ), µ ∈ R, σ > 0} with the completely specified baseline c.d.f F0 and p.d.f. f0.
Shape-scale families have the form Fls = {G0(((x/θ)ν), θ, ν > 0} with completely specified baseline c.d.f
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G0 and p.d.f. g0. By logarithmic transformation the shape-scale families are transformed to location-scale
family, so we concentrate on location-scale families. Methods for such families are easily modified to
methods for shape-scale families.

The right-sided α-outlier region for a location-scale family is

outr(αn, F) = {x ∈ R : x > µ + σF−1
0 (1− α)}

and the left-sided α-outlier region is

outl(αn, F) = {x ∈ R : x < µ + σF−1
0 (α)}.

The two-sided α-outlier region has the form

out(α, F) = {x ∈ R/[µ + σF−1
0 (α/2), µ + σF−1

0 (1− α/2)]}. (2)

If f0 is symmetric, then the two-sided outlier region is simpler:

out(α, F) = {x ∈ R : |x− µ| > σF−1
0 (1− α/2)}.

The value of α is chosen depending on the size n of a sample: α = αn. The choice is based on
assumption that under H0 for some ᾱ close to zero

P{∩n
i=1{Xi /∈ out(αn, F)}} = (P{Xi /∈ out(αn, F)})n = 1− ᾱ. (3)

The equality (3) means that under H0 the probability that none of Xi falls into αn-outlier region is
1− ᾱ. It implies that

αn = 1− (1− ᾱ)1/n. (4)

The sequence αn decreases from ᾱ to 0 as n goes from 1 to ∞.
The first definition of an outlier is as follows: for a sample size n a realization xi of Xi is called outlier

if xi ∈ out(αn, F); xi is called right outlier if xi ∈ outr(αn, F).
The number of outliers Dn under H0 has the binomial distribution B(n, αn) and the expected number

of outliers in the sample under H0 is EDn = nαn. Please note that EDn → − ln(1− ᾱ) ≈ ᾱ as n → ∞.
For example, if ᾱ = 0.05, then ln(1− ᾱ) ≈ 0.05129 and for n ≥ 10 the expected number of outliers is
approximately 0.051, i.e., it practically does not depend on n. So under H0 the expected number of outliers
0.051 is negligible with respect to the sample size n.

3. New Method

3.1. Preliminary Results

Suppose that a c.d.f. F ∈ Fls belongs also to the domain of attraction Gγ, γ ≥ 0 (see [25]).
If F ∈ G0 ∩ Fls , then there exist normalizing constants an > 0 and bn ∈ R such that limn→∞ Fn

0 (anx +

bn) = e−e−x
. Similarly, if F ∈ Gγ ∩ Fls, γ > 0, then limn→∞ Fn

0 (anx + bn) = e−(−x)−1/γ
, x < 0,

limn→∞ Fn(anx + bn) = 1, x ≥ 0.
One of possible choices of the sequences {bn} and {an} is

bn = F−1
0 (1− 1

n
), an = 1/(n f0(bn)). (5)
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In the particular case of the normal distribution equivalent form an = 1/bn can be used. Expressions
of bn and an for some most used distributions are given in Table 1.

Table 1. Expressions of bn and an.

Distribution F0(x) bn an

Normal Φ(x) Φ−1(1− 1/n) 1/bn
Type I extreme value 1− e−ex

ln ln n e−bn

Type II extreme value e−e−x
ln(− ln(1− 1/n)) ebn /(n− 1)

Logistic 1
1+e−x ln(n− 1) n/(n− 1)

Laplace 1
2 + 1

2 sign(x)(1− e−|x|) ln(n/2) 1
Cauchy 1

2 + 1
π arctan(x) cot(π

n )
π
n / sin2(π

n )

Condition A.

(a) µ̂ and σ̂ are consistent estimators of µ and σ;
(b) the limit distribution of (

√
n(µ̂− µ),

√
n(σ̂− σ)) is non-degenerate;

(c)

lim
x→∞

x f0(x)√
1− F0(x)

= 0.

Condition A (c) is satisfied for many location-scale models including the normal, type I extreme value,
type II extreme value, logistic, Laplace (F ∈ G0), Cauchy (F ∈ G1).

Set Yi = (Xi − µ)/σ, Ŷi = (Xi − µ̂)/σ̂. The random variables Ŷi are called z-scores. Denote by
Y(1) ≤ Y(2) ≤ . . . ≤ Y(n) and Ŷ(1) ≤ . . . ≤ Ŷ(n) the respective order statistics

The following theorem is useful for right outliers detection test construction.

Theorem 1. If F ∈ G0 ∩ Fls and Conditions A hold, then for fixed s

((Ŷ(n) − bn)/an, (Ŷ(n−1) − bn)/an, . . . , (Ŷ(n−s+1) − bn)/an)
d→

L0 = (− ln E1,− ln(E1 + E2), . . . ,− ln(E1 + . . . + Es))

as n→ ∞, where E1, . . . , Es are i.i.d. standard exponential random variables.
If F ∈ Gγ ∩ Fls, γ > 0 and Conditions A hold, then the limit random vector is

Lγ = (E−1
1 − 1, (E1 + E2)

−1 − 1, . . . , (E1 + . . . + Es)
−1 − 1).

Proof of Theorem 1. Please note that

Ŷ(n−i+1) − bn

an
=

Y(n−i+1) − bn

an

σ

σ̂
+

(µ− µ̂)

σ̂an
+

bn

an

σ− σ̂

σ̂

The s-dimensional random vector such that its ith component is the first term of the right side
converges in distribution to the random vector given in the formulation of the theorem. It follows from
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Theorem 2.1.1 of [25] and Condition A (a). So it is sufficient to show that the second and the third terms
converge to zero in probability. The second term is

−
√

n f0(F−1
0 (1− 1

n
))

√
n(µ̂− µ)

σ̂
,

the third term is

−
√

nF−1
0 (1− 1

n
) f0(F−1

0 (1− 1
n
))

√
n(σ̂− σ)

σ̂
.

By Condition A (c)

lim
n→∞

√
nF−1

0 (1− 1
n
) f0(F−1

0 (1− 1
n
))) = lim

x→∞

x f0(x)√
1− F0(x)

= 0.

It also implies limn→∞
√

n f0(F−1
0 (1− 1

n )) = 0 because limn→∞ F−1
0 (1− 1

n ) = ∞. Proof completed.

Remark 1. Please note that 2(E1 + . . .+ Ei) ∼ χ2(2i). It implies that if F ∈ G0 ∩Fls, then for fixed i, i = 1, . . . , s,

P{(Ŷ(n−i+1) − bn)/an ≤ x} → 1− Fχ2
2i
(2e−x) as n→ ∞. (6)

Similarly, if F ∈ Gγ ∩ Fls, γ > 0, then for fixed i, i = 1, . . . , s,

P{(Ŷ(n−i+1) − bn)/an ≤ x} → 1− Fχ2
2i
(

2
1 + x

) as n→ ∞. (7)

The following theorem is useful for construction of outlier detection tests in two-sided case when
f0 is symmetric. For any sequence ζ1, . . . , ζn denote by |ζ|(1) ≤ . . . ≤ |ζ|(n) the ordered absolute values
|ζ1|, . . . , |ζn|.

Theorem 2. Suppose that the function f0 is symmetric. If F ∈ Gγ ∩ Fls, γ ≥ 0 and Conditions A hold, then for
fixed s

((|Ŷ|(n) − b2n)/a2n, (|Ŷ|(n−1) − b2n)/a2n, . . . , (|Ŷ|(n−s+1) − b2n)/a2n)
d→ Lγ

as n→ ∞.

Proof of Theorem 2. For any i = 1, . . . , s the following equality holds:

|Ŷ|(n−i+1) − b2n

a2n
=
|Ŷ|(n−i+1) − |Y|(n−i+1)

a2n
+
|Y|(n−i+1) − b2n

a2n
. (8)

The c.d.f. of the random variables |Yi| is 2F0(x)− 1, so if F0 ∈ Gγ, γ ≥ 0 then 2F0 − 1 ∈ Gγ, and for
the sequence |Yn| the normalizing sequences are a2n, b2n. So the s-dimensional random vector such that its
ith component is the second term of the right side converges in distribution to the random vector given in
the formulation of the theorem. It follows from Theorem 2.1.1 of [25]. So it is sufficient to show that the
first term converges in probability to zero.

Please note that |Ŷi| ≤ |Yi|+ |Ŷi −Yi|, and

|Ŷi −Yi| =
1
σ̂
|µ− µ̂ + (σ− σ̂)Yi| ≤

|µ̂− µ|
σ̂

+
|
√

n(σ̂− σ)|
σ̂

1√
n
|Y|(n).
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So |Ŷ|(n−j+1) ≤ |Y|(n−j+1) + |µ̂−µ|
σ̂ + |

√
n(σ̂−σ)|

σ̂
1√
n |Y|(n). Analogously, the inequality

Yi| ≤ ||Ŷi|+ |Ŷi −Yi| implies that |Y|(n−j+1) ≤ |Ŷ|(n−j+1) +
|µ̂−µ|

σ̂ + |
√

n(σ̂−σ)|
σ̂

1√
n |Y|(n).

Theorem 2.1.1 in [25] applied to the random variables |Yi| implies that there exist a random variable
V1 with the c.d.f. G(x) = e−e−x

(γ = 0) or G(x) = e−(−x)−1/γ
, x < 0, G(x) = 1, x ≥ 0 (γ > 0), such that

1√
n
|Y|(n) = (b2n + a2n(V1 + oP(1)))/

√
n. (9)

|
|Ŷ|(n−i+1) − |Y|(n−i+1)

a2n
| ≤ |

√
n(µ̂− µ)|
σ̂
√

na2n
+
|
√

n(σ̂− σ)|
σ̂

(
b2n√
na2n

+
V1 + op(1)√

n
).

The convergence bn → ∞ and Condition A (c) imply:

lim
n→∞

b2n√
na2n

= lim
n→∞

√
nF−1

0 (1− 1
2n

) f0F−1
0 (1− 1

2n
)) =

1√
2

lim
x→∞

x f0(x)√
1− F0(x)

= 0, lim
n→∞

1√
na2n

= 0.

These results and Conditions A (a), (b) imply that the first term at the right of (8) converges in
probability to zero. Proof completed.

Remark 2. Theorem 2 implies that if F ∈ G0 ∩ Fls, n→ ∞, then for fixed i, i = 1, . . . , s,

P{(|Ŷ|(n−i+1) − b2n)/a2n ≤ x} → 1− Fχ2
2i
(2e−x), (10)

and if F ∈ Gγ ∩ Fls, γ > 0, then

P{(|Ŷ|(n−i+1) − b2n)/a2n ≤ x} → 1− Fχ2
2i
(2/(1 + x)). (11)

Suppose now that the function f0 is not symmetric. Set Y∗i = −(Xi − µ)/σ. The c.d.f. and p.d.f. of Y∗i
are 1− F0(−x) and f0(−x), respectively. Set

b∗n = −F−1
0 (1/n), a∗n = 1/(n f0(−b∗n)). (12)

For example, if type I extreme value distribution is considered, then

bn = ln ln n, an =
1

ln n
, b∗n = − ln(− ln(1− 1

n
)), a∗n = − 1

(n− 1) ln(1− 1
n )

.

For the type II extreme value distribution an, bn, a∗n, b∗n have the same expressions as a∗n, b∗n, an, bn for
the Type I extreme value distribution, respectively.

Remark 3. Similarly as in Theorem 1 we have that if s is fixed and F ∈ G0 ∩ Fls, then for fixed i, i = 1, . . . , s,

P{(Y(i) + b∗n)/(−a∗n) ≤ x} = P{(Ŷ∗(n−i+1) − b∗n)/a∗n ≤ x} → 1− Fχ2
2i
(2e−x), (13)

and if F ∈ Gγ ∩ Fls, γ > 0, then for fixed i, i = 1, . . . , s,

P{(Y(i) + b∗n)/(−a∗n) ≤ x} = P{(Ŷ∗(n−i+1) − b∗n)/a∗n ≤ x} → 1− Fχ2
2i
(2/(1 + x)). (14)
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3.2. Robust Estimators for Location-Shape Distributions

The choice of the estimators µ̂ and σ̂ is important when outlier detection problem is considered. The
ML estimators from the complete sample are not stable when outliers exist.

In the case of location-scale families highly efficient robust estimators of the location and scale
parameters µ and σ are (see [26])

µ̂ = MED− σ̂F−1
0 (0.5), σ̂ = Qn = d W([0.25n(n−1)/2]), (15)

where MED is the empirical median, Wij = |Xi − Xj|, 1 ≤ i < j ≤ n are C2
n = n(n− 1)/2 absolute

values of the differences Xi − Xj and W(l) is the lth order statistic from Wij.
The constant d has the form d = 1/K−1

0 (5/8), where K−1
0 (x) is the inverse of the c.d.f. of Y1 − Y2,

Yi = (Xi − µ)/σ ∼ F0(x).
Expressions of K−1

0 (x) and values d for some well-known location-scale families are given in Table 2.

Table 2. Values of d for various probability distributions.

Distribution K0(x) d
Normal Φ(x/

√
2) 2.2219

Type I extr.val. 1/(1 + e−x) 1.9576
Type II extr.val. 1/(1 + e−x) 1.9576
Logistic 1− (x−1)ex+1

(ex−1)2 1.3079

Laplace 1− 1
2 (1 +

x
2 )e
−x 1.9306

Cauchy 1
2 + 1

π arctan(x/2) 1.2071

The above considered estimators are equivariant under H0, i.e. for any e ∈ R, f > 0, the following
equalities hold:

µ̂((X1 − e)/ f , . . . , (Xn − e)/ f ) = (µ̂(X1, . . . , Xn)− e)/ f ,

σ̂((X1 − e)/ f , . . . , (Xn − e)/ f ) = σ̂(X1, . . . , Xn)/ f .

Equivariant estimators have the following property: the distribution of (µ̂− µ)/σ, σ̂/σ and (µ̂− µ)/σ̂

does not depend on the values of the parameters µ and σ.

3.3. Right Outliers Identification Method for Location-Scale Families

Suppose that F ∈ Gγ ∩ Fls, γ ≥ 0. Let an, bn be defined by (5). Set

U+
(n−i+1)(n) = 1− Fχ2

2i
(2e−(Ŷ(n−i+1)−bn)/an), γ = 0,

U+
(n−i+1)(n) = 1− Fχ2

2i
(2/(1 + (Ŷ(n−i+1) − bn)/an), γ > 0,

U+(n, s) = max
1≤i≤s

U+
(n−i+1)(n). (16)

Theorem 3. The distribution of the statistic U+(n, s) is parameter-free for any fixed n.

Proof of Theorem 3. The result follows from the equality

Ŷ(n−i+1) − bn

an
=

Y(n−i+1) − bn

an

σ

σ̂
+

bn

an
(

σ

σ̂
− 1) +

1
an

µ− µ̂

σ̂
,
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equivariance of the estimators µ̂, σ̂ and the fact that the distribution of the random vector (Y1, . . . , Yn)T

does not depend on the values of the parameters µ and σ.

Denote by u+
α (n, s) the α critical value of the statistic U+(n, s). Please note that it is exact,

not asymptotic α critical value: P{U+(n, s) ≥ u+
α (n, s)} = α under H0.

Theorem 1 implies that the limit distribution (as n → ∞) of the random variable
U+(n, s) coincides with the distribution of the random variable V+(s) = max1≤i≤s V+

i , where
V+

i = 1− Fχ2
2i
(2(E1 + . . . + Ei)), E1, . . . , Es are i.i.d. standard exponential random variables. The random

variables V+
1 , . . . , V+

s are dependent identically distributed and the distribution of each V+
i is uniform:

V+
i ∼ U(0, 1).

Denote by v+α (s) the α critical values of the random variable V+(s). They are easily found by
simulation many times generating s i.i.d. standard exponential random variables and computing values of
the random variables V+(s).

Our simulations showed that the below proposed outlier identification methods based on exact and
approximate critical values of the statistic U+(n, s) give practically the same results, so for samples of size
n ≥ 20 we recommend to approximate the α-critical level of the statistic U+(n, s) by the critical values
v+α (s) which depend only on s. We shall see that for the purpose of outlier identification only the critical
values v+α (5) are needed. We found that the critical values v+α (5) are: v+0.1(5) = 0.9677, v+0.05(5) = 0.9853,
v+0.01(5) = 0.9975.

Our simulations showed that the performance of the below proposed outlier identification method
based on exact and approximate critical values of the statistic U+(n, 5) is similar for samples of size n ≥ 20.

We write shortly BP-method for the below considered method.
BP method for right outliers. Begin outlier search using observations corresponding to the largest values

of Ŷi. We recommend begin with five largest. So take s = 5 and compute the values of the statistics

U+(n, 5) = max
1≤i≤5

U+
(n−i+1)(n).

If U+(n, 5) ≤ v+α (5), then it is concluded that outliers are absent and no further investigation is done.
Under H0 the probability of such event is approximately 1− α.

If U+(n, 5) > v+α (5), then it is concluded that outliers exist.
Please note that (see the classification scheme below) that if U+(n, 5) > v+α (5), then minimum one

observation is declared as an outlier. So the probability to declare absence of outliers does not depend on
the following classification scheme.

If it is concluded that outliers exist then search of outliers is done using the following steps.
Step 1. Set d1 = max{i ∈ {1, . . . , 5} : U+

(n−i+1)(n) > v+α (5)}. Please note that the maximum d1 > 0

exists because U+(n, 5) > v+α (5).
If d1 < 5, then classification is finished at this step: d1 observations are declared as right

outliers because if the value of X(n−d1)
is declared as an outlier, then it is natural to declare values

of X(n), . . . , X(n−d1+1) as outliers, too.
If d1 = 5, then it is possible that the number of outliers is higher than 5. Then the observation

corresponding to i = 1 (i.e., corresponding to X(n)) is declared as an outlier and we proceed to the step 2.
Step 2. The above written procedure is repeated taking U+(n− 1, 5) = max1≤i≤5 U+

(n−i)(n− 1) instead

of U+(n, 5); here
U+
(n−i)(n− 1) = 1− Fχ2

2i
(2e−(Ŷ(n−i)−bn−1)/an−1), i = 1, . . . , 5,

Set d2 = max{i ∈ {1, . . . , 5} : U+
(n−i)(n− 1) > v+α (5)}. If d2 < 5, the classification is finished and

d2 + 1 observations are declared as outliers.
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If d2 = 5, then it is possible that the number of outliers is higher than 6. Then the observation
corresponding to the largest Ŷ(n−1) is declared as an outlier, in total 2 observations (i.e., the observations
corresponding to i = 1, 2 (i.e., corresponding to X(n) and X(n−1)) are declared as outliers and we proceed
to the Step 3, and so on. Classification finishes at the lth step when dl < 5. So we declare (l − 1) outliers in
the previous steps and dl outliers in the last one. The total number of observations declared as outliers is
l − 1 + dl . These observations are values of X(n), . . . , X(n−dl−l+2).

3.4. Left Outliers Identification Method for Location-Scale Families

Let a∗n, b∗n be the normalizing constants defined by (12). If F ∈ G0 ∩ Fls, i = 1, . . . , s, then set

U−
(i)(n) = 1− Fχ2

2i
(2e(Ŷ(i)+b∗n)/a∗n), U−(n, s) = max

1≤i≤s
U−
(i)(n).

If F ∈ Gγ ∩ Fls, γ > 0, then replace e(Ŷ(i)+b∗n)/a∗n by 1/(1 + (Ŷ(i) + b∗n)/a∗n). Denote by u−α (n, s) the α

critical value of the statistic U−(n, s).
Theorem 1 and Remark 3 imply that the limit distribution (as n → ∞) of the random variable

U−(n, s) coincides with the distribution of the random variable V+(s). So the critical values u−α (n, s) are
approximated by the critical values v−α (s) = v+α (s).

The left outliers search method coincides with the right outliers search method replacing + to − in all
formulas.

3.5. Outlier Detection Tests for Location-Scale Families: Two-Sided Alternative, Symmetric Distributions

Let an, bn be defined by (5). If F ∈ G0 ∩ Fls, i = 1, . . . , s, then set

U(n−i+1)(n) = 1− Fχ2
2i
(2e−(|Ŷ|(n−i+1)−b2n)/a2n), U(n, s) = max

1≤i≤s
U(n−i+1)(n).

If F ∈ Gγ ∩ Fls, γ > 0, then replace e(Ŷ(i)+b∗n)/a∗n by 1/(1 + (Ŷ(i) + b∗n)/a∗n). Denote by uα(n, s) the α

critical value of the statistic U(n, s).
Theorem 1 and Remark 2 imply that the limit distribution (as n → ∞) of the random variable

U(n, s) coincides with the distribution of the random variable V+(s). So the critical values uα(n, s) are
approximated by the critical values vα(s) = v+α (s).

The outliers search method coincides with the right outliers search method skipping upper index + in
all formulas.

3.6. Outlier Detection Tests for Location-Scale Families: Two-Sided Alternative, Non-Symmetric Distributions

Suppose now that the function f0 is not symmetric. Let an, bn, a∗n, b∗n be defined by (12).
Begin outlier search using observations corresponding to the largest and the smallest values of Ŷi. We

recommend begin with five smallest and five largest. So compute the values of the statistics U−(n, 5) and
U+(n, 5). If U−(n, 5) ≤ vα/2(5) and U+(n, 5) ≤ vα/2(5), then it is concluded that outliers are absent and
no further investigation is done.

If U−(n, 5) > vα/2(5) or U−(n, 5) > vα/2(5), then it is concluded that outliers exist. If U−(n, 5) >
vα/2(5), then left outliers are searched as in Section 3.3. If U+(n, 5) > vα/2(5), then right outliers are
searched as in Section 3.2. The only difference is that α is replaced by α/2 in all formulas.
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3.7. Outlier Identification Method for Shape-Scale Families

If shape-scale families of the form {F(t; θ, ν) = G0((t/θ)ν), θ, ν > 0}with specified G0 are considered
then the above given tests for location-scale families could be used because if X1, . . . , Xn is a sample from
shape scale family then Z1, . . . , Zn, Zi = ln Xi, is a sample from location-scale family {F0((x− µ)/σ, µ ∈
R, σ > 0}) with µ = ln θ, σ = 1/ν, F0(x) = G0(ex).

3.8. Illustrative Example

To illustrate simplicity of the BP-method, let us consider an illustrative example of its application
(sample size n = 20, r = 7 outliers). The sample of size n = 20 from standard normal distribution
was generated. The 1st-3rd and 17th-20th observations were replaced by outliers. The observations xi,
the absolute values |Ŷi| of the z-scores Ŷi, and the ranks (i) of |Ŷi| are presented in Table 3.

Table 3. Illustrative sample (n = 20, r = 7).

i xi |Ŷi| (i) i xi |Ŷi| (i)

1 6.10 3.18 16 11 −0.69 0.28 9
2 10 5.17 18 12 −0 0.07 5
3 6.20 3.23 17 13 0.05 0.10 6
4 −0.08 0.03 2 14 −0.20 0.03 1
5 0.63 0.39 11 15 −0.25 0.06 4
6 −0.54 0.21 7 16 −0.64 0.25 8
7 1.37 0.77 13 17 −6.30 3.14 15
8 0.46 0.30 10 18 −5.50 2.73 14
9 −0.22 0.04 3 19 −12.10 6.10 19
10 0.94 0.55 12 20 −20 10.13 20

In Table 4 we present steps of the classification procedure by the BP method. First, we compute
(see line 1 of Table 4) value of the statistic U(20, 5) = max1≤i≤5 U(20−i+1)(20) = 1. Since U(20, 5) = 1 >

0.9853 = v0.05(5), we reject the null hypothesis, conclude that outliers exist and begin the search of outliers.
Step 1. The inequality U(16)(20) = 1.0000 > 0.9853 = v0.05(5) (note that U(16)(20) corresponds to the

fifth largest observation in absolute value) implies that d1 = 5. So it is possible that the number of outliers
might be greater than 5. We reject the largest in absolute value 20th observation as an outlier and continue
the search of outliers.

Step 2. The inequality U(15)(19) = 1.0000 > 0.9853 = v0.05(5) (note that U(15)(19) corresponds to the
fifth largest observation in absolute value from the remaining 19 observations) implies that d2 = 5. So it is
possible that the number of outliers might be greater than 6. We declare the second largest in absolute
value observation as an outlier. So two observations (19th and 20th) are declared as outliers. We continue
the search of outliers.

Step 3. The inequality U(14)(18) = 0.999997 > 0.9853 = v0.05(5) implies that d3 = 5. We declare the
third largest in absolute value observation as an outlier. So three observations (2nd, 19th and 20th) are
declared as outliers. We continue the search of outliers.

Step 4. The inequalities U(13)(17) = 0.084290 < 0.9853 = v0.05(5) and U(14)(17) = 0.999940 >

0.9853 = v0.05(5) imply that d4 = 4. So four additional observations (the fourth, fifth, sixth and seventh
largest in absolute value observations), namely the 3d, 1st, 17th, and 7th are declared as outliers, The outlier
search is finished. In all, 7 observations were declared as outliers: 1–3,17–20, as was expected. Please note
that since the outlier search procedure was done after rejection of the null hypothesis, the significance level
did not change.
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Table 4. Illustrative example of BP test observations classification.

U(20)(20) U(19)(20) U(18)(20) U(17)(20) U(16)(20) U(20, 5)
1.000000 1.000000 1.000000 0.999998 1.000000 1.000000

U(19)(19) U(18)(19) U(17)(19) U(16)(19) U(15)(19) U(19, 5)
0.999685 0.999998 0.999916 0.999998 1.000000 1.000000

U(18)(18) U(17)(18) U(16)(18) U(15)(18) U(14)(18) U(18, 5)
0.998046 0.996970 0.999893 0.999997 0.999997 0.999997

U(17)(17) U(16)(17) U(15)(17) U(14)(17) U(13)(17) U(17, 5)
0.924219 0.996446 0.999871 0.999940 0.084290 0.999940

3.9. Practical Example

Let’s consider the stent fatigue testing dataset from reliability control [27]. The dataset contains 100
observations. Let us consider the Weibull, lollogistic and lognormal models. These are the most applied
models for analysis of reliability data. For preliminary choice of suitable model we compare the values of
various goodness-of-fit statistics and information criteria (see Table 5). The Weibull model is obviously the
most suited because values of all five statistics are smallest for this model.

Table 5. Values of goodness-of-fit statistics and information criteria (initial sample).

Goodness-of-Fit Statistics Weibull Logistic Log-Normal

Kolmogorov-Smirnov statistic 0.05 0.09 0.07
Cramer-von Mises statistic 0.03 0.23 0.127
Anderson-Darling statistic 0.21 1.36 1.08

Goodness-of-fit criteria

Akaike’s Information Criterion 1056.515 1074.783 1073.13
Bayesian Information Criterion 1061.725 1079.993 1078.34

Using the function WEDF.test from the R package EWGoF we applied the following goodness-of-fit
tests for Weibull distribution : Anderson-Darling (p-value = 0.86), Kolmogorov-Smirnov (p-value = 0.82),
Cramer-von-Mises (p-value = 0.795), Watson (p-value = 0.795). So all tests do not contradict to the
Weibull model.

The logarithms X1, . . . , X100 of observations have type I extreme value distribution. Minimal and
maximal values are X(1) = 1.609 and X(100 = 5.670. Let us consider the situation, where fatigue data
contain two outliers X3 = 6.5 and X5 = 6.5. All goodness-of-fit tests applied to the data with outliers
reject the Weibull model: Anderson-Darling (p-value < 10−15), Kolmogorov-Smirnov (p-value 0.005),
Cramer-von-Mises (p-value < 10−15), Watson (p-value < 10−15).

Let us apply the BP method for outlier identification. Values of the statistics Ui are:
U(100)(100) = 0.92, U(99)(100) = 0.997, U(98)(100) = 0.96, U(97)(100) = 0.92, U(96)(100) = 0.96. Since
U(100, 5) = 0.997 > 0.9853, we reject the null hypothesis.

Step 1. Since d1 = max{i∈{1,...,5}} : U(101−i) > 0.9853} = 2 < 5. the search procedure is finished and
the observations X(99) and X(100), namely X3 and X5, are declared as outliers. We see that our method
did not allow masking other equal observations X3 = X5 = 6.5. It is a very important advantage of the
BP method.

After outliers removal, we repeated goodness-of-fit procedure. All tests did not reject the Weibull
model: Anderson-Darling (p-value = 0.88), Kolmogorov-Smirnov (p-value = 0.8), Cramer-von-Mises
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(p-value = 0.93), Watson (p-value = 0.895). Once more, we compared values of goodness-of-fit statistics
and information criteria for above considered models using data without removed outliers, see Table 6.

Table 6. Values of goodness-of-fit statistics and information criteria (sample without removed outliers).

Goodness-of-Fit Statistics Weibull Logistic Log-Normal

Kolmogorov-Smirnov statistic 0.048 0.09 0.07
Cramer-von Mises statistic 0.027 0.21 0.11
Anderson-Darling statistic 0.18 1.25 1.01

Goodness-of-fit criteria

Akaike’s Information Criterion 1037.09 1054.76 1053.49
Bayesian Information Criterion 1042.26 1059.93 1058.66

The Weibull distribution gives clearly the best fit.
Values of ML estimators from the initial non-contaminated data and from the final cleared from

outliers data are similar: shape practically did not change: 1.83 → 1.83, scale changed slightly:
100.8→ 101.4.

We created R package outliersTests ( https://github.com/linas-p/outliersTests) to be able to use the
proposed BP test in practice within R package.

4. Generalization of Davies-Gather Outlier Identification Method

Let us consider location-scale families. Following the idea of Davies-Gather [2] define an empirical
analogue of the right outlier region as a random region

ORr(αn) = {x : x > µ̂ + σ̂gn.α}, (17)

where gn.α is found using the condition

P{Xi∈̄ORr(αn), i = 1, . . . , n|H0} = 1− α, (18)

and µ̂, σ̂ are robust equivariant estimators of the parameters µ, σ.
Set

Ŷ(n) = (X(n) − µ̂)/σ̂.

The distribution of Ŷ(n) is parameter-free under H0.
The Equation (18) is equivalent to the equation equation

P{Ŷ(n) ≤ gn,α}|H0} = 1− α.

So gn,α is the upper α critical value of the random variable Ŷ(n). It is easily computed by simulation.

Generalized Davies-Gather method for right outliers identification: if Ŷ(n) ≤ gn,α, then it is concluded that right
outliers are absent. The probability of such event is α. If Ŷ(n) > gn,α, then it is concluded that right outliers
exist. The value xi of the random variable Xi is admitted as an outlier if xi ∈ ORr(αn), i.e., if xi > µ̂ + σ̂gn,α.
Otherwise it is admitted as a non-outlier.

An empirical analogue of the left outlier region as a random region

ORl(αn) = {x : x < µ̂ + σ̂hn.1−α}, (19)

https://github.com/linas-p/outliersTests
https://github.com/linas-p/outliersTests
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where hn.1−α is found using the condition

P{Xi∈̄ORl(αn), i = 1, . . . , n|H0} = 1− α, (20)

Set
Ŷ(1) = (X(1) − µ̂)/σ̂.

The distribution of Ŷ(1) is parameter-free under H0.
The Equation (20) is equivalent to the equation equation

P{Ŷ(1) ≥ hn,1−α|H0} = 1− α.

So hn,α is the upper 1− α critical value of the random variable Ŷ(1). It is easily computed by simulation.
Generalized Davies-Gather method for left outliers identification: if Ŷ(1) ≥ hn,1−α, then it is concluded that

left outliers are absent. The probability of such event is α. If Ŷ(1) < hn,α, then it is concluded that left
outliers exist. The value xi of the random variable Xi is admitted as an outlier if xi ∈ ORl(αn), i.e., if
xi < µ̂ + σ̂hn,1−α. Otherwise it is admitted as a non-outlier.

Let us consider two-sided case.
If the distribution of Xi is symmetric, then the empirical analogue of the outlier region is the

random region
OR(αn) = {x : |x− µ̂| > σ̂gn.α/2}. (21)

In this case
1− α = P{Xi ∈ OR(αn), i = 1, . . . , n|H0} = P{|Ŷ|(n) ≤ gn.α/2}.

Generalized Davies-Gather method for left and right outliers identification (symmetric distributions): if
|Ŷ|(n) ≤ gn.α/2, then it is concluded that outliers are absent. The probability of such event is α. If
|Ŷ|(n) > gn.α/2, then it is concluded that outliers exist. The value xi of the random variable Xi is admitted
as a left outlier if xi < µ̂− σ̂gn,α/2, it is admitted as a right outlier if xi > µ̂ + σ̂gn,α/2. Otherwise it is
admitted as a non-outlier.

If distribution of Xi is non-symmetric, then the empirical analogue of the outlier region is defined
as follows:

OR(αn) = {x ∈ R/[µ̂ + σ̂gn,1−α/2, µ̂ + σ̂gn,α/2)]},

In this case
1− α = P{Xi∈[µ̂ + σ̂hn,1−α/2, µ̂ + σ̂gn,α/2], i = 1, . . . , n|H0} =

P{hn,1−α/2 ≤ Ŷ(1) ≤ Ŷ(n) ≤ gn,α/2)|H0}.

Generalized Davies-Gather method for left and right outliers identification (non-symmetric distributions):
if Ŷ(1) ≥ hn,1−α/2 and Ŷ(n) ≤ gn,α/2, then it is concluded that outliers are absent. The probability of such
event is α. If Ŷ(1) < hn,1−α/2 or Ŷ(n) > gn,α/2, then it is concluded that outliers exist. The value xi of the
random variable Xi is admitted as a left outlier if xi < µ̂ + σ̂hn,1−α/2, it is admitted as a right outlier if
xi > µ̂ + σ̂gn,α/2. Otherwise it is admitted as a non-outlier.
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5. Short Survey of Multiple Outlier Identification Methods for Normal Data

5.1. Rosner’s Method

Let us formulate Rosner’s method in the form mostly used in practice. Suppose that the number of
outliers does not exceed s and the two-sided alternative is considered. Set (see [5,28])

R1 = max
16j6n

|Ỹj| = max
16j6n

|Xj − X̄|/SX , S2
X =

n

∑
j=1

(X(j) − X̄)2/(n− 1).

|Ỹj| = |(Xj − X̄)/SX | may be interpreted as a distance between Xj and X̄. Remove the observation Xj1
which is most distant from X̄. This maximal distance is R1. The value of Xj1 is a possible candidate
for contaminant.

Recompute the statistic using n− 1 remaining observations and denote by R2 the obtained statistic.
Remove the observation Xj2 which is most distant from the new empirical mean. The value of Xj2 is also
possible candidate for contaminant. Repeat the procedure until the statistics R1, · · · , Rs are computed. So
we obtain all possible candidates for contaminants. They are values of Xj1 , . . . , Xjs

Fix α and find λin such that

P{R1 > λin|H0} = . . . = P{Rs > λin|H0}, P{∪s
i=1{Ri > λin}|H0} = α.

If n > 25, then the approximations

λin ≈ t α
2(n−i−1)

(n− i + 1)

√√√√ n− i
n− i− 1 + t2

α
2(n−i−1)

(n− i + 1)

√
1− 1

n− i + 1
,

are recommended (see [5]); here tp(ν) is the p critical value of the Student distribution with ν degrees
of freedom.

Rosner’s method for left and right outliers identification: if Ri 6 λin for all i = 1, · · · , s, then it is concluded
that outliers are absent. If there exists i0 ∈ {1, . . . , s} such that Ri0 > λi0n, i.e., the event ∪s

i=1{Ri > λin}
occurs, then it is concluded that outliers exist. In this case, classification of observations to outliers and
non-outliers is done in the following way: if Rs > λsn, then it is concluded that there are s outliers and
they are values of Xj1 , . . . , Xjs . If Rj 6 λjn for j = s, s− 1, . . . , i + 1, and Ri > λin, then it is concluded that
there are i outliers and they are values of Xj1 , . . . , Xji .

If right outliers are searched, then define R+
1 = max16i6n Ỹi, and repeat the above procedure

taking approximations

λ+
in ≈ t α

n−i−1
(n− i + 1)

√√√√ n− i
n− i− 1 + t2

α
n−i−1

(n− i + 1)

√
1− 1

n− i + 1
.

Denote by Rs the Rosner’s test with a fixed upper limit s. Our simulation results confirm that the
true significance level is different from the level α suggested by the approximation when n is not large.
Nevertheless, it is approaching α as n increases, see Figure 1. The true significance value of the BP test,
which uses asymptotic values of the test statistic are also presented in Figure 1.
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Figure 1. The true values of the significance level of Rosner’s and BP tests in function of n for different
values of s (α = 0.05 is used in approximations).

5.2. Bolshev’s Method

Suppose that the number of contaminants does not exceed s. For i = 1, · · · , n set

Ŷi = (Xi − X̄)/s, τ+
i = n · (1− Tn−2(Ŷi)), τi = n · (1− Tn−2(|Ŷi|)),

where X̄ and s are the empirical mean and standard deviation, Tn−2(x) is the c.d.f. of Thompson’s
distribution with n− 2 degrees of freedom.

Let us consider search for right outliers. Please note that the largest s observations X(n−s+1), . . . , X(n)
define the smallest s order statistics τ+

(1) ≤ . . . ≤ τ+
(n). Possible candidates for outliers are namely the

values of X(n−s+1), . . . , X(n).
Set τ+ = min16i6s τ+

(i)/i.

Bolshev’s method for right outliers search. If τ+ ≥ τ+
1−α(n, s), then it is concluded that outliers are

absent; here τ+
1−α(n, s) is the 1− α critical value of the test statistic under H0. If τ+ < τ+

1−α(n, s), then it is
concluded that outliers exist. In such a case outliers are selected in the following way: if τ+

i /i < τ+
1−α(n, s)

then the value of the order statistic X(n−i+1) is admitted as an outlier, i = 1, . . . , s.
In the case of left and right outliers search Bolshev’s method uses τ(i) instead of τ+

(i), defining the
statistic τ = min16i6s τ(i)/i.

Bolshev’s method for left and right outliers search. If τ ≥ τ1−α(n, s), then it is concluded that outliers
are absent; here τ1−α(n, s) is the 1− α critical value of the statistic τ under H0. If τ < τ1−α(n, s), then it
is concluded that outliers exist. In such a case they are selected in the following way: if τi/i < τ1−α(n, s)
then the observation corresponding to τi is admitted as an outlier, i = 1, . . . , s.

5.3. Hawking’s Method

Suppose that the number of contaminants does not exceed s. Let us consider the search for right
outliers. For k = 1, . . . , s set

b+k =
1√

k(n− k)

k

∑
i=1

Ỹ(n−i+1) =
1√

k(n− k)

k

∑
i=1

(X(n−i+1) − X̄)/SX .
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b+k proportional to the sum of k largest Ỹ(n−i+1). Set B+ = max16k6s b+k .
Hawking’s method. If B+ ≤ B+

α (n, s) then it is concluded that outliers are absent; here B+
α (n, s) is the α

critical value of the statistic under H0. If B+ > B+
α (n, s), then it is concluded that outliers exist. In such

a case outliers are selected in the following way: if b+i > B+
α (n, s), then the value of the order statistic

X(n−i+1) is admitted as an outlier, i = 1, . . . , s.

6. Comparative Analysis of Outlier Identification Methods by Simulation

In the case of location-scale classes probability distribution of all considered test statistics does not
depend on µ and σ, so we generated samples of various sizes n with n− r observations with the c.d.f. F0

and r observations with various alternative distributions concentrated in the outlier region. We shall call
such observations “contaminant outliers”, shortly c-outliers. As was mentioned, outliers which are not
c-outliers, i.e., outliers from regular observations with the c.d.f. F0, are very rare.

We repeated simulations M = 100,000 times and using various methods we classified observations to
outliers and non-outliers and computed the mean number DOcO of correctly identified c-outliers, the mean
number DON of c-outliers which were not identified, the mean number DNO of non c-outliers admitted as
outliers, and the mean number DNN of non c-outliers admitted as non-outliers.

An outlier identification method is ideal if each outlier is detected and each non-outlier is declared as
a non-outlier. In practice it is impossible to do with the probability one. Two errors are possible: (a) an
outlier is not declared as such (masking effect); (b) a non-outlier is declared as an outlier (swamping effect).
We shall write shortly “masking value” for the mean number of non-detected c-outliers and “swamping
value” for the mean number of “normal” observations declared as outliers in the simulated samples.

If swamping is small for two tests then a test with smaller masking effect should be preferred because
in this case the distribution of the data remaining after excluding of suspected outliers should be closer to
the distribution of non-outlier data.

From the other side, if swamping for Method 1 is considerably bigger than swamping of Method 2
and masking is smaller for Method 1, then it does not mean that Method 1 is better because this method
rejects many extreme non-outliers from the tails of the regular distribution F0 and the sample remaining
after classification may be not treated as a sample from this regular distribution even if all c-outliers
are eliminated.

For various families of distributions, sample sizes n, and alternatives we compared Davies-Gather
(DG) and new (BP) methods performance. In the case of normal distribution we also compared them with
Rosner’s, Bolshev’s and Hawking’s methods.

We used two different classes of alternatives: in the first case c-outliers are spread widely in the outlier
region around the mean, in the second case c-outliers are concentrated in a very short interval laying
in the outlier region. More precisely, if right outliers were searched, then we simulated r observations
concentrated in in the right outlier region outr(αn, F0) = {x : x > xαn} using the following alternative
families of distribution:

(1) Two parameter exponential distribution E(θ, xαn) with the scale parameter θ. If θ is small, then
outliers are concentrated near the border of the outlier region. If θ is large then outliers are widely spread
in the outlier region. If θ increases, then the mean of outlier distribution increases. Please note that even
if θ is very near 0 and the true number of outliers r is large, these outliers may corrupt strongly the data
making tails of histogram two heavy.

(2) Truncated normal distribution T N (xαn , µ, ρ) with the location and scale parameters µ, ρ (µ > xαn).
If ρ is small then this distribution is concentrated in a small interval around µ. If µ increases, then the
mean of outlier distribution increases.
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For lack of place we present a small part of our investigations. Please note that the results are very
similar for all sample sizes n ≥ 20. Multiple outlier problem is not very relevant for smaller sample sizes.

6.1. Investigation of Outlier Identification Methods for Normal Data

We use notation B, H, R, DG, and BP for the Bolshev’s, Hawking’s, Rosner’s, Davies-Gather’s, and
the new methods, respectively. If DG method is based on maximum likelihood estimators, then we write
DGml method, if it is based on robust estimators, we write DHrob method.

For comparison of above considered methods we fixed the significance level α = 0.05. We remind
that the significance level α is the probability to reject minimum one observation as an outlier under the
hypothesis H0 which means that all observations are realizations of i.i.d. with the same normal distribution.
The only test, namely R method uses approximate critical values of the test statistic, so the significance
values for this test is only approximately 0.05 and depends on s and n. In Figure 1 the true significance
level value for s = 5, 15 and [0.4n] in function of n are given.

The B, H, and R tests methods have a drawback that the upper bound for the possible number of
outliers s must be fixed. The BP and DG tests have an advantage that they do not require it.

Our investigations showed that H,B and DGml methods have other serious drawbacks. So firstly let
us look closer at these methods.

If the true number of c-outliers r exceeds s, then the B and H methods cannot find them even if they
are very far from the limits of the outlier region. Nevertheless, suppose that r does not exceed s and
look at the performance of the H method. Set n = 100, s = 5, and suppose that c-outliers are generated
by right-truncated normal distribution T N (xαn , µ, ρ) with fixed ρ and increasing µ. Note that the true
number of c-outliers is supposed to be unknown but do not exceed s = 5. In Figure 2 the mean numbers of
rejected non-c-outliers DNO are given in function of the parameter µ (the value of the parameter ρ = 0.12 is
fixed) for fixed values of r see Figure 2. In Table 7 the values of DNO plus the values of the mean numbers
of truly rejected c-outliers are given. Table 7 shows that if r = 1, then if µ is sufficiently large, the c-outlier
is found but the number of rejected non-c-outliers DNO increases to 4, so swamping is very large. Similarly,
if r = 2, then DNO increases to 3, so swamping is large. Beginning from r = 3 not all c-outliers are found
even for large µ. Swamping is smallest if the true value r coincides with s but even in this case one c-outlier
is not found even for large µ. Taking into account that the true number r of c-outliers is not known in
real data, the performance of the H methos is very poor. Results are similar for other values of n, s, and
distributions of c-outliers. As a rule, H mehod finds rather well the c-outliers but swamping is very large
because this method has a tendency to reject a number near s of observations for remote alternatives.
which is good if r = s but is bad if r is different from s.

Table 7. Hawkin’s method: the values of DNO + DOO in function of µ and r (n = 100, s = 5).

r \ µ 0.1 1 6.3 10
1 0.31 + 0.00 0.66 + 0.00 3.93 + 1.00 3.99 + 1.00
2 0.87 + 0.00 2.15 + 0.06 3.00 + 1.21 3.00 + 2.00
3 1.33 + 0.08 1.99 + 0.84 2.00 + 2.00 2.00 + 2.00
4 0.89 + 0.58 1.00 + 1.42 1.00 + 3.00 1.00 + 3.00
5 0.01 + 1.15 0.00 + 2.03 0.00 + 3.02 0.00 + 3.96

The B and DGml tests have a drawback that they use maximum likelihood estimators which are not
robust and estimate parameters badly in presence of outliers. Once more, set n = 100, s = 5, and suppose
that c-outliers are generated by two-parameters exponential distribution T E(xαn , θ) with increasing θ.
Swamping values are negligible in, so only masking values( mean numbers of non-rejected c-outliers DON)
are important. In Figure 3 the masking values in function of the parameter θ are given for fixed values of r.
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Both methods perform very similarly. The masking values are large for every value of r > 1. If r
increases, then masking values increase, too. For example, if r = 5, then almost 3 c-outliers from 5 are not
rejected on average even for large values of θ.

Similar results hold taking other values of n, s and various distributions of c-outliers.
The above analysis shows that the B, H, DGml methods have serious drawbacks, so we exclude these

methods from further consideration.
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Figure 2. Hawkin’s method: the values of DNO + DOO in function of µ and r (n = 100, s = 5).
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Let us consider the remaining three methods: R, DG, and BP. For small n the true significance level of
Rosner’s test differ considerably from the suggested, so we present comparisons of tests performance for
n = 50, 100, 1000 (see Tables 8 and 9). Truncated exponential distribution was used for outliers simulation.
Remoteness of the mean of outliers from the border of the outlier region is characterized by the parameter θ.

Table 8. The masking values DON (n = 50 and n = 100).

n = 50 n = 100

r Method\θ 0.1 0.4 1 4 10 r 0.1 0.4 1 4 10

2 Rosner5 1.36 0.95 0.51 0.15 0.06 2 1.19 0.71 0.33 0.09 0.04
Rosner15 1.36 0.95 0.51 0.15 0.06 1.19 0.71 0.33 0.09 0.04
Rosner[0.4n] 1.36 0.95 0.51 0.15 0.06 1.19 0.71 0.33 0.09 0.04
DGrrob 1.56 1.17 0.71 0.24 0.10 1.31 0.84 0.44 0.13 0.06
BP 0.92 0.66 0.37 0.10 0.04 0.50 0.32 0.15 0.04 0.02

5 Rosner5 3.79 3.31 2.11 0.48 0.16 5 3.52 2.57 1.27 0.27 0.10
Rosner15 3.66 3.21 2.04 0.46 0.16 3.43 2.52 1.24 0.26 0.10
Rosner[0.4n] 3.66 3.21 2.04 0.46 0.16 3.43 2.52 1.24 0.26 0.10
DGrob 4.70 4.10 2.90 1.09 0.48 4.23 3.01 1.81 0.57 0.25
BP 2.00 1.68 1.18 0.40 0.15 0.78 0.60 0.43 0.15 0.07

8 Rosner5 8.00 7.97 7.54 3.70 3.06 10 10.0 9.90 8.21 5.10 5.00
Rosner15 5.70 5.48 4.52 1.00 0.29 6.88 6.54 4.36 0.69 0.22
Rosner[0.4n] 5.70 5.48 4.52 1.00 0.29 6.88 6.54 4.36 0.69 0.22
DGrob 7.90 7.49 6.10 2.67 1.24 9.74 8.38 5.78 2.12 0.92
BP 4.27 3.84 3.25 1.47 0.57 2.21 1.90 1.73 0.74 0.30

Table 9. The masking values DON (n = 1000).

r Method\θ 0.1 0.4 1 4 1000

5 Rosner5 2.15 0.69 0.29 0.07 0.00
Rosner15 2.12 0.66 0.27 0.07 0.00
Rosner[0.4n] 2.12 0.66 0.27 0.07 0.00
DGrob 1.99 0.78 0.35 0.09 0.00
BP 0.25 0.23 0.22 0.11 0.00

20 Rosner5 19.0 15.8 15.0 15.0 15.0
Rosner15 19.2 10.9 5.52 5.00 5.00
Rosner[0.4n] 12.7 6.94 1.76 0.30 0.00
DGrob 14.8 6.97 3.32 1.93 0.00
BP 0.29 0.26 0.23 0.18 0.00

100 Rosner5 100 99.9 96.7 95.0 95.0
Rosner15 100 99.92 96.4 85.0 85.0
Rosner[0.4n] 55.8 56.8 50.4 4.43 0.01
DGrob 100 89.9 61.6 22.2 0.1
BP 4.72 4.00 3.95 3.58 0.04

Swamping values DNO (the mean numbers of non-c-outliers declared as outliers) are very small for
all tests. For example, even if n = 1000, the R and DG methods reject on average as outliers only 0.05 from
n− r = 995, 980, 900 non-c-outliers. For the BP method this number is 0.25, 0.19, 0.05 from 995, 980, and
900 non-c-outliers, respectively. So only masking values DON (the mean numbers of c-outliers declared as
non-outliers) are important for outlier identification methods comparison.

Necessity to guess the upper limit s for a possible number of outliers is considered as a drawback
of the Rosner’s method. Indeed, if the true number of outliers r is greater than the chosen upper limit s,
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then r− s outliers are not identified with the probability one. In addition, even if r ≤ s, it is not clear how
important is closeness of r to s. So first we investigated the problem of the upper limit choice.

Here we present masking values DON of the Rosner’s tests for s = 5, 15 and [0.4n]. Similar results are
obtained for other values of s.

Our investigations show that it is sufficient to fix s = [0.4n], which is clearly larger than it can be
expected in real data. Indeed, Tables 8 and 9 show that for r > s Rosner5 and Rosner15 do not find r− s
outliers even if they are very remote, as it should be. Nevertheless, we see that even if the true number
of outliers r is much smaller than [0.4n], for any considered n, r ≤ s = 5, 15 the masking values of the
Rosner[0.4n] test are approximately the same (even a little smaller) as the masking values of the tests Rosner5

and Rosner15, for r > s they are clearly smaller.
Hence, s = [0.4n] should be recommended for Rosner’s test application, and performance of

Rosner[0.4], Davies-Gather robust (DGrob) and the proposed BP methods should be compared.
All three methods find all c-outliers if they are sufficiently remote. For n = 50 the BP method gives

uniformly smallest masking values and the DG method gives uniformly largest masking values for any
considered r in all diapason of alternatives. For n = 100 and r = 2, 5 the result is the same. For n = 100
and r = 10 (it means that even for very small θ the data is seriously corrupted) the BP method is also
the best except that for the most remote alternatives the Rosner[0.4n] method slightly outperforms the BP
method. For n = 1000 and the most of alternatives the BP method strongly outperforms other methods,
except the most remote alternatives.

The DG and Rosner’s methods have very large masking if many outliers are concentrated near the
outlier region border. In this case data is seriously corrupted; however, these methods do not see outliers.

Conclusion: in most considered situations the BP method is the best outlier identification method.
The second is Rosner’s method with s = [0.4], and the third is the Davies-Gather method based on robust
estimation. Other methods have poor performance.

6.2. Investigation of Outlier Identification Methods for Other Location-Scale Models

We investigated performance of the new method for location-scale families different from normal.
We compare the BP method with the generalized Davies-Gather method for logistic, Laplace (symmetric,
F ∈ G0 ∩ Fls), extreme values (non-symmetric F ∈ G0 ∩ Fls), and Cauchy (symmetric, F ∈ G1 ∩ Fls)
families. C-outliers were generating using truncated exponential distribution concentrated in two-sided
outlier region. Swamping values being small, masking value, see Table 10 and differences between the
true number of c-outliers and the number of rejected observations, see Figures 4 and 5, were compared.
The BP and DGrob methods find very well the most remote outliers; meanwhile, the BP method identifies
much better closer outliers. The DGrob method identifies badly multiple outliers concentrated near the
border of the outlier region, whereas the BP method does well. The DGML is not appropriate for multiple
outlier search.
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Figure 4. The difference between number outliers and rejected observations given that sample size n = 100
and r = 10 outliers.
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Figure 5. The difference between number outliers and rejected observations given that sample size n = 100
and r = 10 outliers.
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Table 10. Masking values for logistic, Laplace, extreme value II and Cauchy distribution, when n = 100,
r = 5.

Logistic Laplace

Method\θ 0.1 1 6.3 10 0.1 1 6.3 10

DGML 5 4.89 3.64 3.42 5 4.96 3.98 3.78
DGrob 4.21 2.69 0.76 0.51 4.27 2.98 0.87 0.59
BP 1.3 1.13 0.78 0.64 1.31 1.21 0.8 0.66

Extreme Value II Cauchy

Method\θ 0.1 1 6.3 10 1 100 1000 105

DGML 4.96 4.19 3 2.9 5 5 5 5
DGrob 4.29 2.25 0.59 0.4 3.81 2.89 0.8 0.01
BP 1.25 0.56 0.14 0.11 0.38 0.4 0.39 0.13

7. Conclusions

We compared by simulation outlier identification results of the new method and methods given in
previous studies. Even in the case of the normal model, which is investigated by many authors, the new
method shows excellent identification power. In many situations, it has superior performance as compared
to existing methods.

The obtained results widened considerably the spectre of most used non-regression models needing
outlier identification methods. Many two-parameter models such as Weibull, logistic and loglogistic,
extreme values, Cauchy, Laplace, and others can be investigated applying the new method.

The advantage of the proposed outlier identification method is that it has very good potential for
generalizations. The authors are at the completion stage of research on outlier identification methods for
accelerated failure time regression models and generalized linear models, gamma regression model in
particular. Outlier identification methods for time series is another direction of the future work. Possible
direction is investigation of Gaussian mixture regression models (see [29]).

Limitation of the new method is that it cannot be applied for analysis of discreet models. Taking into
consideration that the method is based on asymptotic results, we recommend not applying it to samples of
very small size n ≤ 15.

The R package outliersTests was created for the practical usage of proposed test.
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