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Abstract: This paper is concerned with controllability of nonlinear fractional dynamical systems with
a Mittag–Leffler kernel. First, the solution of fractional dynamical systems with a Mittag–Leffler kernel
is given by Laplace transform. In addition, one necessary and sufficient condition for controllability of
linear fractional dynamical systems with Mittag–Leffler kernel is established. On this basis, we obtain
one sufficient condition to guarantee controllability of nonlinear fractional dynamical systems with a
Mittag–Leffler kernel by fixed point theorem. Finally, an example is given to illustrate the applicability
of our results.
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1. Introduction

Fractional calculus is a very popular topic that has a history of more than 300 years. In recent
decades, fractional calculus and its applications have grown rapidly. It turns out that fractional calculus
is a useful tool for studying many phenomena in physics, engineering, chemistry, economics, and other
fields. Moreover, different types of fractional differential equations are beginning to be studied by more
and more scholars and have become very popular topics. For more details, please refer to [1–10] etc.

Recently, many authors have attempted to find new fractional operators with different
kernels in order to better describe these phenomena. Up to now, except for the classical
Riemann–Liouville fractional calculus and the Caputo fractional calculus, there are various novel
fractional operators, such as the Hadamard fractional calculus [11], the conformable fractional
calculus [12], the Caputo–Fabrizio fractional calculus [13], the Yang–Srivastava–Machado fractional
derivative [14]. In 2016, based on the Caputo–Fabrizio fractional calculus, Atangana and Baleanu [15]
introduced new definition of fractional derivatives called AB fractional derivatives by replacing the
kernel exp(− α

1−α (t− s)) with Eα(− α
1−α (t− s)α) and derived the fractional integral associate to AB

fractional derivatives by inverse Laplace transform and convolution theorem. More details about
AB fractional calculus are given in Section 2. It is worth noting that Riemann–Liouville, Caputo,
Yang–Srivastava–Machado and AB fractional derivatives are nonlocal operators, which are useful to
discuss some complex dynamics in physical phenomena. However, unlike the Riemann–Liouville and
Caputo fractional derivatives, the AB fractional derivatives have non-singular kernels which can model
practical physical phenomena well such as the heat transfer model [15], the diffusion equation [16],
electromagnetic waves in dielectric media [17], chaos [18], circuit model [19], etc. In addition, there are
plenty of basic properties of AB fractional calculus have been studied, such as integration by parts [20],
mean value theorem and Taylor’s theorem [21], semigroup property, product rule and chain rule [22].
All kinds of problems about different types of fractional dynamical systems in the sense of AB fractional
derivative are also studied by several researchers [23–26].
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Controllability means that the dynamical system can be transformed from any initial state to
any final state through a set of controls, which is one of the most basic and important concepts in
control theory. Therefore, many scholars have done a lot of work and research on control theory and
its application. In [27], controllability of linear systems was established perfectly. In [28,29], the paper
established a set of sufficient conditions for the controllability of nonlinear fractional dynamical system
of order 0 < α < 1 and 1 < α < 2 in finite-dimensional by using the Mittag–Leffler matrix function
and Schauder fixed point theorem. In [30], the paper studied the controllability of linear and nonlinear
fractional damped dynamical systems by using the Mittag–Leffler matrix function and the iterative
technique. In [31–34], the controllability of various fractional evolution equations were discussed based
on operator semigroup theory and fixed point theorem. However, all the above papers are about the
traditional Caputo fractional derivatives. There are few papers investigating the controllability results
in the sense of AB fractional derivatives. Inspired by the above-mentioned works, this paper will
deal with the controllability of linear and nonlinear fractional dynamical systems in the sense of AB
fractional derivatives by using the Mittag–Leffler matrix function and Schauder fixed point theorem.

In this paper, we will concern with the following linear fractional dynamical systems in the sense
of AB fractional derivatives{

ABCDα
t x(t) = Ax(t) + Bu(t), t ∈ I := [0, b],

x(0) = x0,
(1)

and nonlinear fractional dynamical systems{
ABCDα

t x(t) = Ax(t) + Bu(t) + f (t, x(t), u(t)), t ∈ I,
x(0) = x0,

(2)

where 0 < α < 1, x(·) ∈ Rn, u(·) ∈ Rm, A ∈ Rn×n and B ∈ Rn×m are constant matrices,
f : I × Rn × Rm → Rn is continuous function. Through out this paper, Rn is the n-dimensional
Euclidean space, Rn×m is the set of all n× m real-value matrices. A∗ is the transpose of matrix A,
A−1 is the inverse of matrix A.

This article is organized as follows. In Section 2, we will introduce some basic definitions
and useful lemmas and important properties of AB fractional calculus and Mittag–Leffler function.
In Section 3, we solve the solution representation of fractional dynamical systems with a Mittag–Leffler
kernel. In Section 4, we first consider controllability of linear fractional dynamical systems with a
Mittag–Leffler kernel and give one necessary and sufficient condition of controllability for linear
such systems. Furthermore, we establish one sufficient condition to ensure that nonlinear fractional
dynamical systems with a Mittag–Leffler kernel are controllable. In Section 5, an example is given to
illustrate the applicability of our results.

2. Preliminaries

In this section, we present the definition of AB fractional derivatives and integral. In addition,
some lemmas and properties of AB fractional calculus and the Mittag–Leffler function are introduced.

Definition 1 ([8]). Let 0 < α < 1, f ∈ L1(0, b), b > 0. Then the AB fractional integral of order α is defined by

AB Iα
t f (t) =

1− α

M(α)
f (t) +

α

M(α)
(Iα

t f )(t),

where (Iα
t f )(t) = 1

Γ(α)

∫ t
0 (t− s)α−1 f (s)ds is the classical Riemann-Liouville fractional integral, M(α) denotes

a real-valued normalization function satisfying M(α) > 0, M(0) = M(1) = 1.



Mathematics 2020, 8, 2139 3 of 10

Definition 2 ([8]). Let 0 < α < 1, f ∈ L1(0, b), b > 0. Then the ABR fractional derivative of order α is
defined by

ABRDα
t f (t) =

M(α)

1− α

d
dt

∫ t

0
Eα(−

α

1− α
(t− s)α) f (s)ds,

where Eα is one parameter Mittag–Leffler function denoted by

Eα(t) =
∞

∑
n=0

tn

Γ(αn + 1)
.

Definition 3 ([8]). Let 0 < α < 1, f ∈ L1(0, b), b > 0. Then the ABC fractional derivative of order α is
defined by

ABCDα
t f (t) =

M(α)

1− α

∫ t

0
Eα(−

α

1− α
(t− s)α) f

′
(s)ds.

Lemma 1 ([8]). For 0 < α < 1, the Laplace transform of AB fractional derivative is

L{ABCDα
t f (t); s} = M(α)

1− α
· sαF(s)− sα−1 f (0)

sα + α
1−α

,

where F(s) = L{ f (t); s}.

In addition, the Mittag–Leffler function which plays an important role in AB fractional derivative
will appear frequently in this paper. The generalized Mittag–Leffler functions(two parameters) is

defined by Eα,β(t) =
∞
∑

n=0

tn

Γ(αn+β)
, α, β > 0, t ∈ R. For 0 < α < 1, the functions Eα and Eα,α are

nonnegative and for t = 0, we have Eα(0) = 1, Eα,α(0) = 1
Γ(α) . The Laplace transform of the

Mittag–Leffler function is given as

L{Eα(−λtα); s} = sα−1

sα + λ
.

L{tβ−1Eα,β(−λtα); s} = sα−β

sα + λ
.

Lemma 2 ([35]). Assume that continuous function f : K × Rn → Rm satisfies lim|v|→∞
| f (w,v)|
|v| = 0

uniformly in w ∈ K, where K is a bounded subset of Rp, then for every pair of constants c and d, there exists a
positive constant r such that if |v| ≤ r, then c| f (w, v)|+ d ≤ r, for all w ∈ K.

3. Solution Representation

In this section, we give the solution representation of fractional dynamical systems with
Mittag–Leffler kernel. Consider the following system:{

ABCDα
t x(t) = Ax(t) + f (t), t ∈ I,

x(0) = x0,
(3)

where 0 < α < 1, x(·) ∈ Rn, A ∈ Rn×n, f : I → Rn is continuous function.
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Theorem 1. Assume that matrix M(α)I− (1− α)A is nonsingular and denote Aα = [M(α)I− (1− α)A]−1.
Then the solution of system (3) is

x(t) =M(α)AαEα(αAAαtα)x0 + (1− α)Aα f (t)

+ αM(α)A2
α

∫ t

0
(t− τ)α−1Eα,α(αAAα(t− τ)α) f (τ)dτ. (4)

Proof. Denote X(s) = L{x(t); s} and F(s) = L{ f (t); s}. Taking Laplace transform of system (3),
we have

M(α)

1− α
· sαX(s)− sα−1x0

sα + α
1−α

= AX(s) + F(s).

The above equation can be rewritten as

[(M(α)I − (1− α)A)sα − αA]X(s) = M(α)sα−1x0 + [(1− α)sα + α]F(s).

This is equivalent to

[sα A−1
α − αA]X(s) = M(α)sα−1x0 + [(1− α)sα + α]F(s).

Then

(sα I − αAAα)A−1
α X(s) = M(α)sα−1x0 + [(1− α)sα + α]F(s).

It follows that

X(s) =M(α)Aαsα−1(sα I − αAAα)
−1x0 + (1− α)Aαsα(sα I − αAAα)

−1F(s)

+ αAα(sα I − αAAα)
−1F(s). (5)

For the second term of Equation (5), we have

sα(sα I − αAAα)
−1 = (sα I − αAAα + αAAα)(sα I − αAAα)

−1

= I + αAAα(sα I − αAAα)
−1.

Thus, Equation (5) can be rewritten as

X(s) =M(α)Aαsα−1(sα I − αAAα)
−1x0 + (1− α)AαF(s)

+ (1− α)αAA2
α(s

α I − αAAα)
−1F(s) + αAα(sα I − αAAα)

−1F(s)

=M(α)Aαsα−1(sα I − αAAα)
−1x0 + (1− α)AαF(s)

+ [(1− α)αA + αA−1
α ]A2

α(s
α I − αAAα)

−1F(s) (6)

=M(α)Aαsα−1(sα I − αAAα)
−1x0 + (1− α)AαF(s)

+ αM(α)A2
α(s

α I − αAAα)
−1F(s).

Using inverse Laplace transform and Convolution theorem of Equation (6), we get

x(t) =M(α)AαL−1{sα−1(sα I − αAAα)
−1; t}x0 + (1− α)AαL−1{F(s); t}

+ αM(α)A2
αL−1{(sα I − αAAα)

−1; t} ∗ L−1{F(s); t}.
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Due to the fact that

L−1{sα−1(sα I − αAAα)
−1; t} = Eα(αAAαtα),

L−1{(sα I − αAAα)
−1; t} = tα−1Eα,α(αAAαtα),

then

x(t) =M(α)AαEα(αAAαtα)x0 + (1− α)Aα f (t)

+ αM(α)A2
α

∫ t

0
(t− τ)α−1Eα,α(αAAα(t− τ)α) f (τ)dτ.

The proof is complete.

4. Controllability for Linear and Nonlinear Systems

In this section, we discuss the controllability of linear and nonlinear fractional dynamical
systems in the sense of AB fractional derivative. Firstly, we give the definition of controllability
of system (1) and (2).

Definition 4. System (1) (or (2)) is said to be controllable on I if for every x0, x1 there exists a control u(t)
such that the solution x(t) of such a system satisfies the conditions x(0) = x0 and x(b) = x1.

According to Equation (4), the solution representation of system (1) can be expressed as

x(t) =M(α)AαEα(αAAαtα)x0 + (1− α)AαBu(t)

+ αM(α)A2
α

∫ t

0
(t− τ)α−1Eα,α(αAAα(t− τ)α)Bu(τ)dτ. (7)

Then, we will give one controllability criteria of of system (1).

Theorem 2. Assume that M(α)I − (1 − α)A is nonsingular and denote Aα = [M(α)I − (1 − α)A]−1.
Define the Gramian matrix

W =
∫ b

0
(b− τ)α−1Eα,α(αAAα(b− τ)α)BB∗E∗α,α(αAAα(b− τ)α)dτ.

Then system (1) is controllable on I, if and only if the matrix W1 := 1−α
Γ(α)BB∗ + αM(α)AαW

is nonsingular.

Proof. Firstly, we prove the sufficiency. Since matrices Aα and W1 are nonsingular, then for any vectors
x0, x1 ∈ Rn, we can take the control input function u(t) as

u(t) = B∗E∗α,α(αAAα(b− t)α)W−1
1 A−1

α y1, (8)

where

y1 = x1 −M(α)AαEα(αAAαbα)x0.
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Through Equation (7), we can get the value of x(t) at final time t = b as

x(b) =M(α)AαEα(αAAαbα)x0 + (1− α)AαBu(b)

+ αM(α)A2
α

∫ b

0
(b− τ)α−1Eα,α(αAAα(b− τ)α)Bu(τ)dτ

=M(α)AαEα(αAAαbα)x0 +
1− α

Γ(α)
AαBB∗W−1

1 A−1
α y1 + αM(α)A2

α×∫ b

0
(b− τ)α−1Eα,α(αAAα(b− τ)α)BB∗E∗α,α(αAAα(b− τ)α)W−1

1 A−1
α y1dτ

=M(α)AαEα(αAα Abα)x0 +
1− α

Γ(α)
AαBB∗W−1

1 A−1
α y1 + αM(α)A2

αWW−1
1 A−1

α y1

=M(α)AαEα(αAα Abα)x0 + Aα(
1− α

Γ(α)
BB∗ + αM(α)AαW)W−1

1 A−1
α y1

=M(α)AαEα(αAα Abα)x0 + y1

=x1.

Hence, system (1) is controllable on I.
For necessity, we prove by contradiction. Suppose that system (1) is controllable. If W1 is singular,

then there exists a vector z∗ 6= 0 such that z∗W1z = 0, i.e.,

1− α

Γ(α)
z∗BB∗z + αM(α)Aα

∫ b

0
(b− τ)α−1z∗Eα,α(αAAα(b− τ)α)B×

B∗E∗α,α(αAAα(b− τ)α)zdτ = 0.

It follows that

z∗B = 0, z∗Eα,α(αAAα(b− τ)α)B = 0.

Let x0 = (M(α)AαEα(αAAαbα))−1z. By the assumption that system (1) is controllable, there exists
an input u such that it steers x0 to the origin in the interval I. It follows that

0 = x(b) =M(α)AαEα(αAAαbα)x0 + (1− α)AαBu(b)

+ αM(α)A2
α

∫ b

0
(b− τ)α−1Eα,α(αAAα(b− τ)α)Bu(τ)dτ.

This implies that

0 = z + (1− α)AαBu(b) + αM(α)A2
α

∫ b

0
(b− τ)α−1Eα,α(αAAα(b− τ)α)Bu(τ)dτ. (9)

Multiplying by z∗ both sides of Equation (9), it yields z∗z = 0. This is in contradiction with z 6= 0.
Thus, the matrix W1 is invertible. The proof is completed.

Now, we consider controllability of nonlinear fractional dynamical systems with the Mittag–Leffler
kernel. For the corresponding nonlinear system (2), according to Equation (4), we know that if x(t) is
the solution of system (2), then x(t) satisfies the following equation:

x(t) =M(α)AαEα(αAAαtα)x0 + (1− α)AαBu(t) + (1− α)Aα f (t, x(t), u(t))

+ αM(α)A2
α

∫ t

0
(t− τ)α−1Eα,α(αAAα(t− τ)α)Bu(τ)dτ (10)

+ αM(α)A2
α

∫ t

0
(t− τ)α−1Eα,α(αAAα(t− τ)α) f (τ, x(τ), u(τ))dτ.
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Let G be the Banach space of all continuous functions (x, u) : I × I → Rn × Rm with the norm
‖(x, u)‖ = ‖x‖+ ‖u‖, where ‖x‖ = sup{|x(t)| : t ∈ I} and ‖u‖ = sup{|u(t)| : t ∈ I}. For brevity,
we denote

a1 = sup
t∈I
‖Eα(αAAαtα)x0‖, a2 = sup

t∈I
‖E∗α,α(αAAα(b− t)α)‖,

b1 = (1− α)‖Aα‖+ bα M(α)‖A2
α‖a2, b2 = a2‖B∗‖‖W−1‖‖A−1

α ‖b1,

d1 = a2‖B∗‖‖W−1‖‖A−1
α ‖(|x1|+ M(α)‖Aα‖a1), d2 = 4M(α)‖Aα‖a1,

a = max{b1‖B‖, 1}, d3 = 4ad1, c1 = 4ab2, c2 = 4b1,

c = max{c1, c2}, d = max{d2, d3}, sup ‖ f ‖ = sup{| f (s, z(s), v(s))| : s ∈ I}.

Then, one sufficient condition of controllability for nonlinear system (2) will be given below.

Theorem 3. Assume that linear system (1) is controllable on I and the continuous function f satisfies the
following condition:

lim
‖(x,u)‖→∞

‖ f (t, x, u)‖
‖(x, u)‖ = 0 (11)

uniformly in I. Then system (2) is controllable on I.

Proof. Define the operator T : G → G by T(x, u) = (z, v), where

z(t) =M(α)AαEα(αAAαtα)x0 + (1− α)AαBu(t) + (1− α)Aα f (t, x(t), u(t))

+ αM(α)A2
α

∫ t

0
(t− τ)α−1Eα,α(αAAα(t− τ)α)Bu(τ)dτ (12)

+ αM(α)A2
α

∫ t

0
(t− τ)α−1Eα,α(αAAα(t− τ)α) f (τ, x(τ), u(τ))dτ

and

v(t) =B∗E∗α,α(αAAα(b− t)α)W−1
1 A−1

α [x1 −M(α)AαEα(αAAαbα)x0 − (1− α)Aα f (b, x(b), v(b))

− αM(α)A2
α

∫ b

0
(b− τ)α−1Eα,α(αAAα(b− τ)α) f (τ, x(τ), u(τ))dτ]. (13)

According to Theorem 2, we know that if the operator T exists, a fixed point such that
(x, u) = (z, v), then there exists u(t) such that x(b) = x1, i.e., system (2) is controllable.
Thus, the controllable problem is translated into proving that T have a fixed point.

Indeed, by Equations (12) and (13), we have

‖v(t)‖ ≤a2‖B∗‖‖W−1‖‖A−1
α ‖(|x1|+ M(α)‖Aα‖a1 + b1 sup ‖ f ‖)

=d1 + b2 sup ‖ f ‖

=
d3

4a
+

c1

4a
sup ‖ f ‖ (14)

≤ 1
4a

(d + c sup ‖ f ‖)
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and

‖z(t)‖ ≤d2

4
+ b1‖B‖|v(t)|+ b1 sup ‖ f ‖

≤d2

4
+

b1‖B‖
4a

(d + c sup | f |) + c2

4
sup ‖ f ‖ (15)

≤d
2
+

c
2

sup ‖ f ‖.

According to Lemma 2, we know that for the above given positive constants c and d, there exists
a positive constant r such that, if ‖(x, u)‖ ≤ r, then c‖ f (t, x, u)‖ + d ≤ r, for all t ∈ I. Define the
subspace of G as Gr = {(x, u) ∈ G : ‖x‖ ≤ r

2 , ‖u‖ ≤ r
2}. Obviously, ‖x‖+ ‖u‖ ≤ r. It follows that

c‖ f (t, x, u)‖+ d ≤ r for all t ∈ I. By Equations (14) and (15), we deduce that ‖v‖ ≤ r
4a ≤

r
2 , ‖z‖ ≤ r

2 .
Thus, we obtain that T maps G(r) into itself. In addition, since f is continuous and f is uniformly
bounded for all t ∈ I, it follows that T is continuous and uniformly bounded on I. It is easy to prove
that T is equicontinuous. Thus, by the famous Ascoli’s theorem, we know that T is compact. Due to
Gr being closed, bounded and convex, one can come to the conclusion that that T has a fixed point
(x, u) ∈ Gr such that T(x, u) = (x, u) = (z, v) by Schauder fixed point theorem. Therefore, system (2)
is controllable on I. The proof is completed.

5. Illustrated Examples

In this section, an example is given to illustrate the applicability of Theorem 2 and Theorem 3.

Example 1. Consider the following linear fractional dynamical system with a Mittag–Leffler kernel{
ABCDα

t x(t) = Ax(t) + Bu(t), t ∈ [0, 1],
x(0) = x0,

(16)

with α = 1
2 , M(α) = 1, A =

(
0 1
0 0

)
, B =

(
2
1

)
. By simple calculation we get

Aα =

(
1 − 1

2
0 1

)

and

W1 =

( 1
4π + 35

16
√

π
+ 1

24
1

4π + 9
8
√

π
1

2π + 9
8
√

π
1

2π + 1
2
√

π

)
.

It is obvious that Aα and W1 are nonsingular, which satisfies the condition of Theorem 2. Thus, the linear
system of (16) is controllable on [0, 1].

Now, consider the following nonlinear fractional dynamical system with a Mittag–Leffler kernel{
ABCDα

t x(t) = Ax(t) + Bu(t) + t sin x(t) + cos u(t), t ∈ [0, 1],
x(0) = x0,

(17)

with α = 1
2 , M(α) = 1, A =

(
0 1
0 0

)
, B =

(
2
1

)
. Let f (t, x(t), u(t)) = t sin x(t) + cos u(t) which satisfies

the hypothesis of Equation (11) in Theorem 3 obviously. Thus, the nonlinear system (17) is controllable on [0, 1].

6. Conclusions

This paper deals with the controllability of linear and nonlinear fractional dynamical systems
with a Mittag–Leffler kernel. Firstly, the solution representation of fractional dynamical systems
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with a Mittag–Leffler kernel is given by the Laplace transform method. Secondly, one necessary and
sufficient condition for controllability of linear fractional dynamical systems with Mittag–Leffler kernel
are established. Thirdly, one sufficient condition to guarantee controllability of nonlinear fractional
dynamical systems with a Mittag–Leffler kernel by Schauder fixed point theorem. Finally, we provide
an example to illustrate the effectiveness of our results. In addition, since the interesting non-singular
kernel of this new fractional derivative, there is much work to be done on this type of fractional
calculus that is worth discussing in the future, such as trying to use some other fixed point theorem
to solve the controllability problem of solutions for dynamical systems and considering fractional
dynamical systems with a Mittag–Leffler kernel and delay.
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