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Abstract: Epilepsy is a brain disorder that affects about 50 million persons around the world and
is characterized by generating recurrent seizures, which can put patients in permanent because of
falls, drowning, burns, and prolonged seizures that they can suffer. Hence, it is of vital importance to
propose a methodology with the capability of predicting a seizure with several minutes before the onset,
allowing that the patients take their precautions against injuries. In this regard, a methodology based on
the wavelet packet transform (WPT), statistical time features (STFs), and a decision tree classifier (DTC)
for predicting an epileptic seizure using electrocardiogram (ECG) signals is presented. Seventeen
STFs were analyzed to measure changes in the properties of ECG signals and find characteristics
capable of differentiating between healthy and 15 min prior to seizure signals. The effectiveness
of the proposed methodology for predicting an epileptic event is demonstrated using a database
of seven patients with 10 epileptic seizures, which was provided by the Massachusetts Institute of
Technology–Beth Israel Hospital (MIT–BIH). The results show that the proposed methodology is
capable of predicting an epileptic seizure 15 min before with an accuracy of 100%. Our results suggest
that the use of STFs at frequency bands related to heart activity to find parameters for the prediction
of epileptic seizures is suitable.

Keywords: seizure prediction; ECG signals; wavelet transform; statistical time features

1. Introduction

Epilepsy is a brain disorder that affects about 50 million persons around the world and is
characterized by generating recurrent seizures [1]. In particular, the brain contains billions of nerve
cells or neurons that help people to control their way of (1) thinking, (2) moving, and (3) feeling by
means of electrical signals that send messages from one nerve cell to others [2]. In this regard, the brain
is characterized by allowing the neurons to send electrical signals at a rate that is under 100 times per
second, but during an epileptic seizure or ictal state, the neurons become hyperexcitable, which causes
a period of abnormal and asynchronous excitation in a neuronal population, generating muscular
contractions that are uncontrollable [3,4]. This reaction can lead to the patients suffering physical
problems (i.e., fractures and bruising related to seizures) and psychological conditions (i.e., anxiety
and depression), negatively affecting their life quality [5,6]. In addition, they present a permanent
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risk of death because of falls, drowning, burns, and prolonged seizures [6]. Hence, it is imperative
to investigate and propose new methods or methodologies capable of predicting a seizure (pre-ictal
state) minutes before onset, allowing the patients to find a safe place or take their precautions against
injuries as well as receive timely medical treatment.

In the last decade, several researchers worldwide have presented diverse methods or
methodologies based on electroencephalogram (EEG) signals for predicting an epileptic seizure [7–16];
however, despite obtaining promising results by using EEG signals, diverse studies presented in recent
years indicate that the autonomic nervous system can produce alterations also in the electrocardiogram
(ECG) signals [17–20], becoming a promising information source that can be used for predicting
an epileptic seizure [21–25]. For example, Popov et al. [21] integrated 112 features (i.e., histogram
characteristics, spectral analysis, polynomial approximation coefficients, among others) with a support
vector machine (SVM) for predicting an epileptic seizure using the heart rate variability (HRV) of an
ECG signal. The obtained results show that the proposal presents the sensitivity and specificity of 72.5%
for predicting an epileptic crisis 20 min prior to its occurrence but using time windows or intervals of
10 min for their analysis. The authors conclude that it is important to continue investigating other
methods as well as other time windows in order to increase the accuracy in predicting an epileptic
seizure. Pavei et al. [22] integrated 47 nonlinear indices (i.e., the mean and deviation standard of
RR intervals (R denotes to a peak of the QRS complex of the ECG signal or wave and RR indicates
the interval between successive Rs), the power spectral density of low- and high-frequency range
of signals, among others) with a SVM for predicting an epileptic seizure using the HRV of ECG
signals. The obtained results show an accuracy of 95.6% for predicting an epileptic seizure 5 min
before the onset. Varon et al. [23] investigated a nonlinear measurement called phase rectified signal
averaging in combination with a kernel spectral clustering for predicting an epileptic seizure using
ECG signals. The authors reported that an accuracy of 86.21% was obtained by using their proposal for
predicting an epileptic seizure 30 s before the onset. Billeci et al. [24] integrated 19 features (i.e., mean
and deviation standard of RR intervals, power spectral density of low- and high-frequency range of
signals, fractal dimension analysis, among other) with a SVM for predicting an epileptic seizure using
the ECG signal. The obtained results show an accuracy of 74.6% for predicting an epileptic seizure
10 min before the onset. Giannakakis et al. [25] integrated 18 diverse nonlinear methods: time-domain
(envelope, the mean and standard deviation of RR intervals, the mean heart rate, among others) and
frequency-domain (power in a low and high frequency band, frequency of the high and low frequency
band peak, among others) with an SVM for predicting an epileptic seizure by using the HRV of ECG
signals. The authors reported an accuracy of 77.1% for predicting an epileptic seizure 21.8 s before
the onset.

The aforementioned works have reported promising results for seizure prediction by analyzing
ECG signals, however, they exhibit some important limitations, such as: (1) insufficient time for
locating a safe place in order to avoid an injury and receive an appropriate medical procedure, (2) high
computational cost which restricts a seizure prediction in real time, and (3) low accuracy. Therefore, it is
imperative to propose and apply new methodologies based on enhanced signal processing techniques
with low complexity in order to increase the accuracy for predicting an epileptic seizure, allowing
patients the possibility of locating a safe place or taking their medicaments for preventing injuries that
can put their life at risk.

In this paper, a new methodology based on the adroit integration of wavelet packet transform
(WPT), statistical time features (STFs), and a decision tree-based classifier (DTC) is presented with the
aim of predicting an epileptic seizure 15 min before its onset. The efficiency of the proposed method is
evaluated by means of the ECG signals measured experimentally from seven patients with seizures.
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2. Materials and Methods

2.1. Data Set Used

With the aim of validating the potential of the proposal for predicting an epileptic seizure,
the open access database called “Post-Ictal Heart Rate Oscillations in Partial Epilepsy” (PIHROPE)
(https://physionet.org/content/szdb/1.0.0/) provided by the Beth Israel Hospital was used. It comprises
the ECG signals of 7 patients (2 men and 5 women) within an age range of 31–48 years, where a total of
10 epileptic seizures were registered during their monitoring. It should be noted that a team of experts
in cardiology confirmed that the patients enrolled in the study did not present the clinical evidence
of heart disease and they present partial seizures with or without a secondary generalization from
frontal or temporal foci. Table 1 presents the seizure onset time registered for each patient, where it is
possible to observe that two patients suffered more than one epileptic crisis (i.e., patients No. 2 and
No. 6) during their monitoring [26].

Table 1. Seizure onset time registered for each patient.

Patient Seizure Onset Time (Hours:Minutes:Seconds)

1 00:14:36

2
01:02:43

02:55:51

3 01:24:34

4 02:34:27

5 00:20:10

6
00:24:07

00:51:25

7 02:04:45

2.2. Preparation of the ECG Signals

Electrocardiogram signals examined in this work were monitored during 3 h on average by using
a sampling frequency of 200 Hz [26]. However, they are down-sampled or resampled to 128 Hz since
this sampling frequency value is useful to diagnose heart diseases as well as allow for reducing the
quantity of information or samples to be processed [27–30]. This process is performed by convolving
the measured ECG signals with a low-pass finite impulse response filter. From the 3 h monitored
for each patient, only the first 15 min of the ECG signal prior to the seizure onset was extracted and
evaluated in this investigation. It should be noted that this time window allows exploring and offering
an earlier epileptic seizure prediction than the one provided by other works presented in the literature.
The time window (15 min) investigated in this work is divided into 1 min intervals; that is, the first
1 min interval before the epileptic crisis onset, the second 1 min interval before the epileptic crisis onset,
etc. On the other hand, a normal or healthy group (HG) was obtained by extracting 1 min intervals
from ECG signals 1 h prior to or after the seizure since in this time the patients presented a normal
cardiac rhythm [22]. It is important to mention that the time windows or intervals of 1 min were
selected because they allowed identifying reliable features in the ECG signals for predicting a sudden
cardiac death as well as a seizure [22,28,29,31]. For this reason, the 1 min interval is also explored in
this work for predicting a seizure until 15 min before the onset.

Figure 1 illustrates the first 1 min interval of the ECG signal prior to the epileptic seizure and two
1 min intervals of the ECG signal recorded 1 h before the seizure occurred, respectively. From this
figure, it is not possible to visually identify significant differences or changes between both ECG signal
groups prior to the seizure onset. Therefore, it is of imperative importance to propose a method or

https://physionet.org/content/szdb/1.0.0/
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methodology with the capability of identifying the hidden differences between both groups in order to
predict an epileptic seizure with good accuracy.Mathematics 2020, 8, x FOR PEER REVIEW 4 of 18 
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Figure 1. (a) Electrocardiogram (ECG) signal one minute before and after of seizure onset and (b) ECG
signal taken from the normal or healthy group (signal obtained 1 h prior to the seizure onset).

2.3. Wavelet Packet Transform

Wavelet packet transform has demonstrated to be a reliable tool to analyze physiological signals
such as ECG [29], EEG [32], electromyography (EMG) [33], among others. It is characterized by
performing an analysis more detailed than the discrete wavelet transform (DWT), since in WPT both
the low and high frequency components (approximation and detail coefficients, respectively) are
decomposed to form a new decomposition level (see Figure 2). In this sense, the WPT is a useful method
to provide a time-frequency analysis of the signals [34,35]. In order to estimate the decomposition
level, the following equation is employed [36]:

Wn
j,k(t) = 2 j/2Wn

(
2 jt− k

)
(1)

where j and k are the scaling (frequency localization) and the translation (time localization) parameters,
respectively, and n is the oscillation parameter. The approximation and detail coefficients are obtained
as follows [35]:

W2n(t) =
√

2
∞∑

k=−∞

h(k)Wn(2t− k) (2)

W2n+1(t) =
√

2
∞∑

k=−∞

g(k)Wn(2t− k) (3)

where h(k) and g(k) are the low-pass and high-pass filter coefficients associated, respectively, t is the
variable time, and Wn represents the Mother Wavelet used (i.e., Daubechies, biorthogonal, Morlet,
among others). In this work, the Mother Wavelet Daubechies 44 (Db-44) is employed as it delivers
reliable results for analyzing or processing physiological signals [36].

From the previous work [29], it has been found that a 5-level decomposition scheme (32 nodes)
using WPT is reliable to decompose ECG signals because it allows isolating transient events due to
the reduced bandwidth (i.e., 2 Hz with a sampling frequency of 128 Hz) associated to each node. In
addition, other benefits that can provide this decomposition level are: (1) a reduction in the noise of
the signal obtained in the frequency bands or nodes, and (2) the mix down of other frequencies. In this
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way, the behavior of the ECG signals obtained at each node can be analyzed by STFs to obtain features
that can allow the prediction of an epileptic episode. Hence, since an epileptic seizure problem can
generate transients [17], this decomposition level value will also be evaluated in this work.
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2.4. Statistical Time Features

Statistical time features have proven to be efficient tools for detecting significant changes in the
signals associated to neurodegenerative [37] and cardiac [38] diseases, as well as sleep disorders [39],
among others. In general, STFs are capable of measuring changes in the properties of non-stationary time
signals such as their range of values, dispersion, asymmetry, and convergence, among others [40,41].
It should be noted that a signal transformation is not performed to estimate the features; hence, it is
evident that the techniques’ computational cost is low [42]. The equations of the 17 STFs used in this
work are described as follows [43–45]:

Root Mean Square = RMS =

1
n

n∑
j=1

x j
2


1
2

(4)

Shape Factor Root Mean Square = SFrms =
RMS

1
n
∑n

j=1

∣∣∣x j
∣∣∣ (5)

Square Mean Root = SMR =

1
n

n∑
j=1

x j
1
2


2

(6)

Shape Factor Square Mean Root = SFsmr =
SRM

1
n
∑n

j=1

∣∣∣x j
∣∣∣ (7)

Crest Factor = CF =

∣∣∣∣∣x j max

RMS

∣∣∣∣∣ (8)

Impulse Factor = IF =
x j max

1
n
∑n

j=1

∣∣∣x j
∣∣∣ (9)

Latitude Factor = LF =

∣∣∣∣∣x j max

SRM

∣∣∣∣∣ (10)
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Range = R = x j max − x j min (11)

Mean = M =
1
n

n∑
j=1

x j (12)

Variance = Var =
1
n

n∑
j=1

(
x j −M

)2
(13)

Standar Deviation = STD = (Var)
1
2 (14)

Skewness = Sk =
1

n(RMS)3

n∑
j=1

(
x j −M

)3
(15)

Kustosis = k =
1

n(RMS)4

n∑
j=1

(
x j −M

)4
(16)

5th Moment = 5Mo =
1

n(RMS)5

n∑
j=1

(
x j −M

)5
(17)

6th Moment = 6Mo =
1

n(RMS)6

n∑
j=1

(
x j −M

)6
(18)

Median = Me =

 x( n+1
2 ), if n is odd number

1
2

(
x( n

2 )
+ x( n

2 +1)

)
, if n is even number

(19)

Mode = Md = Li + c
d−

d− + d+
(20)

where xj is the j-th time-series sample that goes from j = 1,2,3 . . . n, n is the number of samples, Li is the
lower limit of the modal class, c is the width of the modal class, d− and d+ are the absolute differences
of the modal interval and the classes of the neighboring intervals, respectively. It should be noted that
the property that each of the STFs measures is different and might not capture relevant information
that can help to perform the early detection of an epileptic seizure. For this reason, it is necessary to
employ a statistical method that can measure the relevance of the obtained features for each node
estimated by using WPT.

2.5. Kruskal–Wallis Method

Kruskal–Wallis method is a non-parametric method used to evaluate the statistical independence
of distribution-free signals [46]. It has been employed as a part of the development of physiological
processing strategies; in particular for the respiration estimation using ECG [47], and drowsiness levels
using EEG [48], among others. In general, the Kruskal–Wallis method (KWM) evaluates the medians
of the feature groups through a null hypothesis that consists in assuming that all medians of the data
sets are equal [49]. If the probability value (p-value) is smaller than a range between 0.05 and 0.01 [49],
the null hypothesis is rejected, indicating that the features to differentiate between a selected data
set and the remaining data sets can be safely used. On the contrary, if the p-value is greater than the
aforementioned range [49], the null hypothesis is accepted; this means that the feature groups have
similar information and cannot be used to determine the differences between the groups (seizure and
healthy). Therefore, the p-value is used to determine the most discriminating STFs to predict a seizure.

2.6. Decision Tree Classifier

The decision tree classifier is a simple but effective classifier that offers an easy and flexible
implementation because it can be implemented by using a set of if–else rules with a low computational
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time [50,51]. Moreover, it can reach a good accuracy [52], assuming that the feature sets do not heavily
overlap [53]. In recent years, DTC has been used for the classification of physiological signals for the
detection and diagnosis of medical diseases [54–56]. Figure 3 shows a graphical illustration of a DTC.
The procedure used to develop a DTC is [57]:

1. Rule splitting node selection;
2. Set of the terminal nodes;
3. Assignment of the corresponding class label to the terminal nodes.
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Figure 3. Decision tree overview.

The decision in each stage of the tree depends on the previous branching operations. The tree
structure (see Figure 3) starts with the root node, then performs the test that follows the edge, and then
repeats the test until it reaches the end (leaf) node [52]. Once it reaches the leaf node, the tree predicts
the outcome associate, that is, class label [55]. This procedure can be resumed as [58]:

1. Design a logical test for each feature that will be used as an input to the DTC;
2. For each logical test, use a subset of the training data to verify that the outcome to the corresponding

terminal node assigns the expected label;
3. Repeat this procedure for all the terminal nodes.

Considering the aforementioned benefits and the easy implementation, a DTC can be an
appropriate option to perform the seizure prediction using the selected STFs, where it should
be pointed out that a quick-adjust can be performed [59] if required to ensure the best possible result.

3. Methodology

Figure 4 graphically presents the steps required to execute the proposed methodology for
predicting an epileptic seizure. In Step 1, the first 15 min of an ECG signal prior to seizure are extracted
and divided into 1 min intervals. In addition, 1 min intervals of ECG signals 1 h prior to or after
the seizure are extracted and used as HG. Then, in Step 2, each 1 min interval of the ECG signals
is decomposed by means of WPT in diverse frequency bands (FBs) or nodes according to the level
selected (e.g., if the ECG signals are decomposed until the eighth level, 256 nodes or frequency bands
are obtained because each level, L, generates 2L frequency bands). WPT allows obtaining a more
detailed analysis of ECG signals unlike the discrete wavelet transform (DWT) as DWT only decomposes
low frequencies. In Step 3, each node or frequency band obtained by WPT is analyzed using the
seventeen STFs to find the features of the decomposed ECG signals with the capability of predicting
an epileptic seizure. In Step 4, the STF values estimated for each node are evaluated through KWM,
a nonparametric analysis of variance, for determining the most suitable STFs for predicting an epileptic
seizure. Finally, in Step 5, the selected STF values in the previous step are used as inputs for designing
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a DTC for predicting an epileptic seizure automatically. In the following sections the mathematical
concepts used in this work are detailed.
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4. Results

Using the steps of the proposed methodology, the HG and the seizure group signals, divided into 1
min intervals, are decomposed by employing the WPT. It should be noted that the decomposition levels
were varied from 1 to 8, revealing as a results that the fifth level is suitable for analyzing the ECG signals
because a higher decomposition level did not improve the classifier accuracy in a relevant manner,
whereas a lower decomposition level resulted in a wider bandwidth, increasing the possibilities of
having a mixture of frequencies that might result in the lower accuracy of the classifier.

Figures 5 and 6 show the estimated 32 FBs at the fifth level for the HG signal and the first 1 min
interval prior to the seizure occurrence, respectively. Since there are no visual differences between the
HG and a patient with epilepsy one minute prior to a seizure’s occurrence, each FB is analyzed with the
17 STFs to identify the features in the decomposed signals that allow the early prediction of a seizure.Mathematics 2020, 8, x FOR PEER REVIEW 9 of 18 
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Figure 5. Frequency bands (FBs) 1–16 obtained using WPT from the fifth-level decomposition from an
ECG signal of (a) the normal group and (b) one minute prior to a seizure.

Once the STFs were calculated for all FBs and the fifteen 1 min intervals, they were evaluated
by means of KWM in order to determine which FB and STF were the most capable of predicting an
epileptic seizure. In this regard, the FB-9 and FB-13 for the CF property, and the FB-12 for the IF index
present the lowest p-values, indicating that they can be reliable for predicting a seizure. Figure 7 depicts
the boxplot graph for the aforementioned properties, where it is seen that no evident overlaps are
observed between the HG group and the ECG signal prior to the seizure from the first 1 min interval to
the fifteenth 1 min interval.
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Table 2 presents the p-values obtained for the most discriminative STF indices from the first 1 min
interval to fifteenth 1 min interval prior to the epileptic seizure. On the other hand, Figure 8 shows the
obtained results analyzing directly, without the WPT, the fifteen 1 min intervals prior to the seizure and
the 1 min intervals of HG with the STFs, where it is possible to observe that the STFs are not capable of
detecting any difference between both signals, as the values obtained heavily overlap between them,
limiting their use for predicting an epileptic seizure. Hence, these results allow affirming that the
integration of WPT with STFs are useful for early predicting the disease.

Table 2. p-values obtained using the KWM method.

1 min Interval
p-Value

CF (FB-9) CF(FB-13) IF (FB-12)

1 2.08 × 10−4 3.75 × 10−4 2.08 × 10−4

2 2.80 × 10−4 2.08 × 10−4 2.08 × 10−4

3 2.08 × 10−4 6.60 × 10−4 1.54 × 10−4

4 1.54 × 10−4 3.75 × 10−4 2.08 × 10−4

5 3.75 × 10−4 3.75 × 10−4 2.08 × 10−4

6 2.08 × 10−4 6.60 × 10−4 1.58 × 10−4

7 2.08 × 10−4 4.99 × 10−4 2.08 × 10−4

8 2.08 × 10−4 6.60 × 10−4 2.08 × 10−4

9 3.75 × 10−4 4.99 × 10−4 1.54 × 10−4

10 2.08 × 10−4 6.60 × 10−4 1.58 × 10−4

11 2.80 × 10−4 2.80 × 10−4 2.08 × 10−4

12 2.80 × 10−4 6.60 × 10−4 1.54 × 10−4

13 2.80 × 10−4 8.68 × 10−4 1.58 × 10−4

14 2.80 × 10−4 6.60 × 10−4 2.08 × 10−4

15 2.80 × 10−4 4.99 × 10−4 1.54 × 10−4
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Figure 7. Boxplot diagram of the STF values distribution for CF in FB 9, CF in FB 13, and IF in FB
12, for the ECG signals of the control group, denoted the healthy group (HG) and a focal seizure in
1 min intervals, starting from 1 min to fifteen minutes prior to a seizure. On each box, the vertical
lines represent the minimum and maximum value of the data set, respectively, the horizontal red
line indicates the data median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively.
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Figure 8. Data distribution resulting from the Kruskal–Wallis method (KWM) for the healthy group,
denoted by letters HG, and focal seizure in 1 min intervals, starting from 1 min to fifteen minutes prior
to a seizure. (a) RMS, (b) LF, (c) K, (d) SFsmr, (e) R, (f) 5MO, (g) SMR, (h) M, (i) 6MO, (j) SFrms, (k) Var,
(l) Me, (m) CF, (n) STD, (o) Md, (p) IF, and (q) Sk.

Finally, the most useful STFs selected by means of KWM, i.e., CF(FB-9), CF(FB-13), and IF(FB-12),
were employed to design a DTC based on if–else rules in order to predict a seizure automatically.
It is important to mention that the proposal could distinguish both groups with high accuracy by
integrating anyone of the selected STFs with the DTC since their values were not overlapped; however,
in order to give more robustness to the proposed methodology in the case of evaluating new ECG
signals or a database, the three selected STFs, the most discriminant ones, were used at the same time
with the DTC. In this regard, three threshold values were determined (one per each STF) by performing
a visual inspection for designing a DTC based on if–then–else rules for distinguishing between both
groups, whose values are denoted in Figure 7 by a red dashed horizontal line. From this figure, for the
CF(FB-9) values > 3.199, CF(FB-13) > 2.684, and IF(FB-12) values > 3.267 are considered as seizure zone
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and CF(FB-9) values ≤ 3.199, CF(FB-13) ≤ 2.684, and IF(FB-12) values ≤ 3.267 are considered as the
normal heart rate. It should be noted that the DTC does not require a training stage.

Table 3 presents the proposed methodology accuracy, minute by minute, during the fifteen minutes
before the seizure. From this table, it was seen that an accuracy of 100% was reached for discriminating
between the normal subjects and the ones that can experience an epileptic seizure, fifteen minutes prior
to the event. In addition, a specificity and sensitivity of 100% was reached. Hence, it can be affirmed
that this time detection window allows providing an appropriate time to take the remedial actions that
can mitigate the consequences of the seizure, either locating a safe place where the person is less likely
to suffer physical damage or taking medication that can diminish the seizure effects.

Table 3. Proposed methodology accuracy.

Minute Accuracy (%) Minute Accuracy (%) Minute Accuracy (%)

1 100 6 100 11 100
2 100 7 100 12 100
3 100 8 100 13 100
4 100 9 100 14 100
5 100 10 100 15 100

5. Discussion

It should be noticed that 100% accuracy is obtained, which is a reasonable improvement over
the presented results of similar works [21–25]; moreover, the proposal achieves a 15 min interval
for the seizure prediction, being a good time window for allowing to take remedial actions to avoid
severe damage to patient integrity. As noted by Vargas-Lopez et al. [28], it is desirable to achieve a
methodology capable of obtaining a 100% accuracy as this will indicate that theoretically, any patient
prone to suffer an episode can have a timely alert; in this sense, the proposal achieves this desired
scenario. It should be noted that the proposed methodology uses a low-complex classifier, the DTC,
which compared with a SVM employed in similar works [21–25], which requires a lower amount of
computational resources, the desired feature, without compromising its accuracy. This allows us to
affirm that the used indices can capture the subtle changes that the ECG signal suffers prior to an
epileptic episode without using high-load computational burden classifiers nor several features for
detecting the changes in the signal used for detecting the epileptic episode.

Table 4 presents a qualitative comparison between the proposal and other recent methodologies
that have employed ECG signals, as well as a brief description of the methodologies used, the achieved
prediction time, accuracy, and the reported specificity and sensitivity, respectively. From this table,
it can be observed that most of the previous works reported in the literature requires a high quantity
of features to measure the changes between the HG and seizure signals, reaching an accuracy from
74.6 to 95.6%. This fact can be considered as indicative of the employed indices that do not capture
the subtle changes that the ECG signal suffers; in consequence, the used methodologies increase their
computational burden as well as the classifier algorithm complexity, as it has to handle a considerable
amount of information [21,22,24,25,60]. On the other hand, when only one feature is used as input to
the classifier [23], both the accuracy and the detection time are greatly diminished. Another interesting
fact the recent methodologies share is the processing of the ECG signal to either obtain the heart rate
variability (HRV) or the R–R interval time (RRI). This fact further increases the computational cost
of their methodologies, limiting the proposals real-time operation. On the contrary, the proposal
directly processes the raw ECG signal, comprising the computational cost employed. In addition,
from this table, it was also seen that STFs are a suitable and effective tool to detect the ECG changes
that the autonomic nervous system can produce in an epileptic event. In addition, this work identified
several frequency bands (16–18 Hz, 22–24 Hz, and 24–26 Hz, respectively) that can be used to detect
the aforementioned changes. The bandwidths are in concordance with the values indicted in the
state-of-the-art, which depicts that most of the ECG’s spectral power is located below 30 Hz [61]. Hence,
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this indicates that there is a relation between epileptic seizures and the activation of the sympathetic
system, which confirms the findings reported by [17].

Table 4. Qualitative comparison between the proposal and recent methodologies.

Work Signal Methodology Prediction Time (Accuracy %)

Popov et al. [21] HRV

• The authors removed the samples that have a variation of more than
25% from the interpolated mean of immediately preceding and
following RR.

• 112 features are used (i.e., histogram characteristics, spectral analysis,
polynomial approximation coefficients, among others).

• SVM is employed as classifier.

20 min (76.2%)

Pavei et al. [22] HRV

• HRV is filtered in order to eliminate artifacts and ectopic heartbeats.
• A cubic spline interpolation correction method was used to fill the

removed data.
• Forty-seven nonlinear indices are used (i.e., cardiovagal index, cardio

sympathetic index and deviation standard of RR, power spectral density
of low- and high-frequency, among others).

• SVM is employed as classifier.

5 min (95.6%)

Varon et al. [23] RRI

• Pan–Tompkins algorithm is used for obtaining the RR-interval time
series (RRI) of ECG signals.

• The phase rectified signal algorithm is extracted as a feature.
• Kernel spectral clustering is employed as classifier.

30 s (86.1%)

Billeci et al. [24] RRI

• A finite-state algorithm and an adaptive optimal filter in a predictive
form is used to determine the RRI of the ECG signal.

• Nineteen features are used (i.e., mean and deviation standard of RR
intervals, power spectral density of low- and high-frequency range of
signals, fractal dimension analysis, among other).

• SVM is employed as classifier.

10 min (74.6%)

Giannakakis et al. [25] HRV

• The authors calculated the RR intervals and then excluded ectopic
heartbeats (a heartbeat is determined as ectopic if there is a percentage
change of 40% over the averaged previous).

• Eighteen diverse nonlinear methods used time-domain (i.e., heart rate,
standard deviation of heart rate, among others) and frequency-domain
(power in low and high frequency band, frequency of the high and low
frequency band peak, among others).

• SVM is employed as classifier.

21.8 s (77.1%)

This work ECG
• WPT in fifth level
• CF and IF are used as features
• DT is employed as classifier

15 min (100%)

The proposal can be considered as a suitable alternative to detect patients that can suffer a seizure
in a reliable and accurate way. However, it is necessary to continue exploring the proposed method
with (1) a larger database in order to corroborate that the activation of the sympathetic system when
the patient is prone to suffer a seizure can allow to detect the seizure as noted by [18]; in this sense,
the viability of the proposal can be ensured, allowing to modify or calibrate according to new results,
and (2) select a larger prediction time window (e.g., 40 min prior to the seizure onset), as this time
window can allow the patient to locate a safe place where the seizure-associated movements do not
compromise a risk to the patient’s integrity and their surroundings; moreover, it will allow the patient
to arrive at a hospital so proper remedial actions can be carried out, ensuring a quicker recovery.

6. Conclusions

Epilepsy is a disease that produces an imbalance in the electrical activity of the brain neurons,
which results in abnormal electrical activity (seizures) in the people that suffers this condition. Since
the seizure can generate life-threatening scenarios, an early diagnosis of epileptic events will allow
locating a safe place for the patients, preventing falls, drowning, and burns, as well as enabling them
to receive adequate medical treatment. The results show an accuracy of 100%, sensitivity of 100% and
a specificity of 100% in a window of 15 min prior to the seizure using the 150 seizure signal segments,
15 1 min intervals for the 10 epileptic conditions suffered by seven patients and 10 HG signal segments,
outperforming the previous works reported in the literature. It should be noted that a large database is
required to confirm whether the selected FBs and STFs can be used, so the proposal accuracy, specificity,
and sensitivity are not degraded. Particularly, it is necessary to obtain data from young, teenagers,
and senior patients to verify if the selected frequency bands still contain the information that, using
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the STFs, can determine if a patient can present a seizure or not. By confirming this information, the
necessary calibration steps can be executed, if necessary, to ensure the best possible results.
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in children with epilepsy be used to predict seizures? Seizure 2014, 23, 357–362. [CrossRef] [PubMed]

18. Lotufo, P.A.; Valiengo, L.; Benseñor, I.M.; Brunoni, A.R. A systematic review and meta-analysis of heart rate
variability in epilepsy and antiepileptic drugs. Epilepsia 2012, 53, 272–282. [CrossRef] [PubMed]

19. Lamberts, R.J.; Thijs, R.D.; Laffan, A.; Langan, Y.; Sander, J.W. Sudden unexpected death in epilepsy:
People with nocturnal seizures may be at highest risk. Epilepsia 2012, 53, 253–257. [CrossRef] [PubMed]

20. Jansen, K.; Lagae, L. Cardiac changes in epilepsy. Seizure 2010, 19, 455–460. [CrossRef] [PubMed]
21. Popov, A.; Panichev, O.; Karplyuk, Y.; Smirnov, Y.; Zaunseder, S.; Kharytonov, V. Heart beat-to-beat intervals

classification for epileptic seizure prediction. In Proceedings of the Signal Process: Symposium (SPSympo
2017), Jachranka, Poland, 12–14 September 2017; pp. 2–5.

22. Pavei, J.; Heinzen, R.G.; Novakova, B.; Walz, R.; Serra, A.J.; Reuber, M.; Marques, J.L. Early seizure detection
based on cardiac autonomic regulation dynamics. Front. Physiol. 2017, 8, 1–12. [CrossRef]

23. Varon, C.; Caicedo, A.; Jansen, K.; Lagae, L.; Van Huffel, S. Detection of epileptic seizures from single
lead ECG by means of phase rectified signal averaging. In Proceedings of the 36th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2014), Chicago, IL, USA,
26–30 August 2014; pp. 3789–3790.

24. Billeci, L.; Marino, D.; Insana, L.; Vatti, G.; Varanini, M. Patient-specific seizure prediction based on heart rate
variability and recurrence quantification analysis. PLoS ONE 2018, 13, e0204339. [CrossRef]

25. Giannakakis, G.; Tsiknakis, M.; Vorgia, P. Focal epileptic seizures anticipation based on patterns of heart rate
variability parameters. Comput. Methods Progr. Biomed. 2019, 178, 123–133. [CrossRef]

26. MIT/BIH-PIHROPE. Available online: https://physionet.org/content/szdb/1.0.0/ (accessed on 1 February 2020).
27. Cao, F.; Budhota, A.; Chen, H.; Rajput, K.S. Feature matching-based ECG generative network for arrhythmia

event augmentation. In Proceedings of the IEEE Engineering in Medicine & Biology Society (EMBC),
Montreal, QC, Canada, 20–24 July 2020; pp. 296–299.

28. Vargas-Lopez, O.; Amezquita-Sanchez, J.P.; De-Santiago-Perez, J.J.; Rivera-Guillen, J.R.;
Valtierra-Rodriguez, M.; Toledano-Ayala, M.; Perez-Ramirez, C.A. A new methodology based on
EMD and nonlinear measurements for sudden cardiac death detection. Sensors 2020, 20, 9. [CrossRef]

29. Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M.; Adeli, H.; Perez-Ramirez, C.A. A Novel Wavelet
Transform-Homogeneity Model for Sudden Cardiac Death Prediction Using ECG Signals. J. Med. Syst. 2018,
42, 1–15. [CrossRef]

30. Nahak, S.; Saha, G. A fusion based classification of normal, arrhythmia and congestive heart failure
in ECG. In Proceedings of the National Conference on Communications (NCC), Kharagpur, India,
21–23 February 2020; pp. 1–6.

31. Fujita, H.; Acharya, U.R.; Sudarshan, V.K.; Ghista, D.N.; Sree, S.V.; Eugene, L.W.J.; Koh, J.E. Sudden cardiac
death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Appl. Soft Comput. J.
2016, 43, 510–519. [CrossRef]

32. Chinara, S. Automatic classification methods for detecting drowsiness using wavelet packet transform
extracted time-domain features from single-channel EEG signal. J. Neurosci. Methods 2020, 347, 108927.

33. Wali, M.K. FFBPNN-based high drowsiness classification using EMG and WPT. Biomed. Eng. Appl. Basis
Commun. 2020, 32, 1–9. [CrossRef]

34. Walczak, B.; Massart, D.L. Noise suppression and spinal compression using the wavelet packet transform.
Chemom. Intell. Lab. Syst. 1997, 36, 81–94. [CrossRef]

35. Shestakov, O. Wavelet Thresholding risk estimate for the model with random samples and correlated noise.
Mathematics 2020, 8, 377. [CrossRef]

36. Rafiee, J.; Rafiee, M.A.; Prause, N.; Schoen, M.P. Wavelet basis functions in biomedical signal processing.
Expert Syst. Appl. 2011, 38, 6190–6201. [CrossRef]

37. Xia, Y.; Gao, Q.; Ye, Q. Classification of gait rhythm signals between patients with neuro-degenerative
diseases and normal subjects: Experiments with statistical features and different classification models.
Biomed. Signal Process. Control 2015, 18, 254–262. [CrossRef]

http://dx.doi.org/10.1016/j.seizure.2014.01.025
http://www.ncbi.nlm.nih.gov/pubmed/24630807
http://dx.doi.org/10.1111/j.1528-1167.2011.03361.x
http://www.ncbi.nlm.nih.gov/pubmed/22221253
http://dx.doi.org/10.1111/j.1528-1167.2011.03360.x
http://www.ncbi.nlm.nih.gov/pubmed/22192074
http://dx.doi.org/10.1016/j.seizure.2010.07.008
http://www.ncbi.nlm.nih.gov/pubmed/20688543
http://dx.doi.org/10.3389/fphys.2017.00765
http://dx.doi.org/10.1371/journal.pone.0204339
http://dx.doi.org/10.1016/j.cmpb.2019.05.032
https://physionet.org/content/szdb/1.0.0/
http://dx.doi.org/10.3390/s20010009
http://dx.doi.org/10.1007/s10916-018-1031-5
http://dx.doi.org/10.1016/j.asoc.2016.02.049
http://dx.doi.org/10.4015/S1016237220500234
http://dx.doi.org/10.1016/S0169-7439(96)00077-9
http://dx.doi.org/10.3390/math8030377
http://dx.doi.org/10.1016/j.eswa.2010.11.050
http://dx.doi.org/10.1016/j.bspc.2015.02.002


Mathematics 2020, 8, 2125 16 of 17

38. Ghorbani Afkhami, R.; Azarnia, G.; Tinati, M.A. Cardiac arrhythmia classification using statistical and
mixture modeling features of ECG signals. Pattern Recognit. Lett. 2016, 70, 45–51. [CrossRef]

39. Hassan, A.R.; Bhuiyan, M.I. Automatic sleep scoring using statistical features in the EMD domain and
ensemble methods. Biocybern. Biomed. Eng. 2016, 36, 248–255. [CrossRef]

40. Wang, X.; Zheng, Y.; Zhao, Z.; Wang, J. Bearing fault diagnosis based on statistical locally linear embedding.
Sensors 2015, 15, 16225–16247. [CrossRef]

41. Caesarendra, W.; Tjahjowidodo, T. A Review of feature extraction methods in vibration-based condition
monitoring and its application for degradation trend estimation of low-speed slew bearing. Machines 2017, 5,
21. [CrossRef]

42. Yanez-Borjas, J.J.; Valtierra-Rodriguez, M.; Camarena-Martinez, D.; Amezquita-Sanchez, J.P. Statistical time
features for global corrosion assessment in a truss bridge from vibration signals. Meas. J. Int. Meas. Confed.
2020, 160, 107858. [CrossRef]

43. Abdullah, S. Wavelet Bump Extraction (WBE) for Editing Variable Amplitude Fatigue Loadings. Ph.D. Thesis,
University of Sheffield United Kingdom, Sheffield, UK, 2005.

44. Devore, J.L.; Berk, K.N. Overview and descriptive statistics. In Modern Mathematical Statistics with Applications;
Springer: New York, NY, USA, 2013; pp. 1–49.

45. Palaniswamy, U.R.; Palaniswamy, K.M. Teaching and Research in Plant and Crop Science; Food Products and
The Haworth Refrence Press: New York, NY, USA, 2005.

46. Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47,
583–621. [CrossRef]

47. Morales, J.F.; Willems, R.; Van Huffel, S.; Varon, C. Evaluation of the ECG Derived Respiration in the
Presence of Irregular Heart Beats. In Proceedings of the 11th Conference of the European Study Group on
Cardiovascular Oscillations (ESGCO), Pisa, Italy, 15 July 2020; pp. 20–21.

48. Bajaj, V.; Taran, S.; Khare, S.K.; Sengur, A. Feature extraction method for classification of alertness and
drowsiness states EEG signals. Appl. Acoust. 2020, 163, 107224. [CrossRef]

49. Hecke, T.V. Power study of anova versus Kruskal-Wallis test. J. Stat. Manag. Syst. 2012, 15, 241–247.
[CrossRef]

50. Nisbet, R.; Miner, G.; Yale, K. What is classification. In Handbook of Statistical Analysis and Data Mining
Applications, 2nd ed.; Nisbet, R., Miner, G., Yale, K., Eds.; Academic Press: Boston, MA, USA, 2018; pp. 169–186.

51. Ardhapure, O.; Patil, G.; Udani, D.; Jetha, K. Comparative study of classification algorithm for text based
categorization. Int. J. Res. Eng. Technol. 2016, 5, 217–220.

52. Shobha, G.; Rangaswamy, S. Machine Learning. Handbook of Statistics, 1st ed.; Elsevier BV: Amsterdam,
The Netherlands, 2018; Volume 38, pp. 197–228.

53. Jukic, S.; Saracevic, M.; Subasi, A.; Kevric, J. Comparison of ensemble machine learning methods for
automated classification of focal and non-focal epileptic EEG signals. Mathematics 2020, 8, 1481. [CrossRef]

54. Joloudari, J.H.; Hassannataj Joloudari, E.; Saadatfar, H.; GhasemiGol, M.; Razavi, S.M.; Mosavi, A.; Nadai, L.
Coronary artery disease diagnosis; ranking the significant features using a random trees model. Int. J.
Environ. Res. Public Health 2020, 17, 731. [CrossRef]

55. Wei, J.K.E.; Jahmunah, V.; Pham, T.H.; Oh, S.L.; Ciaccio, E.J.; Acharya, U.R.; Ramli, N. Automated detection
of Alzheimer’s disease using bi-directional empirical model decomposition. Pattern Recognit. Lett. 2020, 135,
106–113. [CrossRef]

56. Borah, P.; Ahmed, H.A.; Bhattacharyya, D.K. A statistical feature selection technique. Netw. Modl. Anal.
Health Inform. Bioinform. 2014, 3, 55. [CrossRef]

57. Rasoul Safavian, S.; Landgrebe, D. A Survey of Decision Tree Classifier Methodology. IEEE Trans. Syst. Man
Cybern. Syst. 1990, 21, 660–674. [CrossRef]

58. Polat, K.; Günes, S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier
and fast Fourier transform. Appl. Math. Compt. 2007, 187, 1017–1026. [CrossRef]

59. Li, T.; Zhou, M. ECG classification using wavelet packet entropy and random forests. Entropy 2016, 18, 285.
[CrossRef]

http://dx.doi.org/10.1016/j.patrec.2015.11.018
http://dx.doi.org/10.1016/j.bbe.2015.11.001
http://dx.doi.org/10.3390/s150716225
http://dx.doi.org/10.3390/machines5040021
http://dx.doi.org/10.1016/j.measurement.2020.107858
http://dx.doi.org/10.1080/01621459.1952.10483441
http://dx.doi.org/10.1016/j.apacoust.2020.107224
http://dx.doi.org/10.1080/09720510.2012.10701623
http://dx.doi.org/10.3390/math8091481
http://dx.doi.org/10.3390/ijerph17030731
http://dx.doi.org/10.1016/j.patrec.2020.03.014
http://dx.doi.org/10.1007/s13721-014-0055-0
http://dx.doi.org/10.1109/21.97458
http://dx.doi.org/10.1016/j.amc.2006.09.022
http://dx.doi.org/10.3390/e18080285


Mathematics 2020, 8, 2125 17 of 17

60. Hamzenejad, A.; Jafarzadeh Ghoushchi, S.; Baradaran, V.; Mardani, A. A robust algorithm for classification
and diagnosis of brain disease using local linear approximation and generalized autoregressive conditional
heteroscedasticity model. Mathematics 2020, 8, 1268. [CrossRef]

61. Willigenburg, N.W.; Daffertshofer, A.; Kingma, I.; Van Dieën, J.H. Removing ECG contamination from EMG
recordings: A comparison of ICA-based and other filtering procedures. J. Electromyogr. Kinesiol. 2012, 22,
485–493. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/math8081268
http://dx.doi.org/10.1016/j.jelekin.2012.01.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Data Set Used 
	Preparation of the ECG Signals 
	Wavelet Packet Transform 
	Statistical Time Features 
	Kruskal–Wallis Method 
	Decision Tree Classifier 

	Methodology 
	Results 
	Discussion 
	Conclusions 
	References

