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Abstract: The infusion times and drug quantities are two primary variables to optimize when
designing a therapeutic schedule. In this work, we test and analyze several extensions to the gradient
descent equations in an optimal control algorithm conceived for therapy scheduling optimization.
The goal is to provide insights into the best strategies to follow in terms of convergence speed
when implementing our method in models for dendritic cell immunotherapy. The method gives a
pulsed-like control that models a series of bolus injections and aims to minimize a cost a function,
which minimizes tumor size and to keep the tumor under a threshold. Additionally, we introduce a
stochastic iteration step in the algorithm, which serves to reduce the number of gradient computations,
similar to a stochastic gradient descent scheme in machine learning. Finally, we employ the algorithm
to two therapy schedule optimization problems in dendritic cell immunotherapy and contrast our
method’s stochastic and non-stochastic optimizations.

Keywords: optimal control; immunotherapy; drug scheduling; adam optimizer

1. Introduction

Therapy schedules comprise previously planned protocols of injection times with their respective
vaccine quantity. Such protocols are proposed usually following therapist traits such as intuition and
experience. We aim to provide a rational therapy planning that relies on mathematical modeling,
optimal control, and simulations.

Optimal control is a popular tool to improve schedules for tumor treatment, and it is frequently
used to rationalize issues like infusion times and drug quantities. For instance, in [1], they address the
optimal control for a model with mixed immunotherapy and chemotherapy. Numerical and analytic
control techniques for continuous and bang-bang controls can be consulted in [2]. Therapeutic protocol
improvement by simulations have been made in [3] for Cytotoxic T Cell (CTL) and in [4] for denderitic
cell transfections.

Apart from immunotherapy applications, optimal control is used in a variety of medical
applications such as control of Dengue Fever [5] time valuation in chronic myeloid leukemia [6],
for finding the best therapy schedule for metastatic castrate-resistant prostate cancer using
abiraterone [7]. In [8], an optimal control scheme aids the effector cells and Interleukin-2 (IL-2)
intensity while lessening the tumor cells. A mathematical model for Chronic myeloid leukemia and
optimal control are used in [9] to obtain optimal piecewise-constant regimens. For a combination of
therapies, optimal control can be used to find the optimal treatment between several drug options,
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in [10] dominant treatment is found for the combination of chemotherapy, IL-2, and tumor-infiltrating
lymphocyte, considering the tumor size. Ref. [2] discuss several numerical and analytic control
techniques for continuous and bang-bang controls. The works [8,11,12], study models for tumor
growth, the immune system, and controlled drug therapies given in a Bang-Bang manner.

Standard procedures for taking anti-tumor medicament is to have an intramuscular shot or
an intravenous injection. In both cases, the periods for drug intake is on the order of minutes
or hours for intravenous intake. Hence, to implement continuous and bang-bang controls that
usually need the treatment to stay continually over days is unrealistic. In this paper, we do not
consider a continuous-infusion therapy, but pulse-like doses of short period (bolus injection) that
can be considered instantaneous. This resembles more accurately the procedure following real
immunotherapy treatments. Periodically pulsed immunotherapy is studied on [13,14] where the bolus
injections have very small time-span in comparison with the overall therapy. A therapy-optimizing
algorithm for pulsed dendritic immunotherapy is given in [15]; also, they give the foundation for
computing the gradient of a cost function that measures tumor outgrowth. Schedule optimization for
pulsed dendritic immunotherapy that encounters several impediments in the host environment, such
as immunosuppression and poor transference to the lymph nodes is addressed on [16]. Then, deciding
when and how much of such doses is a typical question when dealing with immunotherapy.

Gradient descent (GD) optimization algorithm is commonly used for schedule optimization when
there are pulsed controls [15,16]. The algorithm has many good qualities, but speed convergence
is not one of them. Considering that, we change the GD design in our method and use adaptive
optimizations that are well known in the area of deep learning and we show that they can be useful too
in the area of therapy scheduling for speeding up convergence. It was possible since such approaches
rely on the gradient calculation given in [15]. Moreover, we included a stochastic step for decrease the
number of gradient computations.

The road-map for this work is as follows. The explanation of the Gradient descent and its variants
are in Section 2. Section 3 contains the optimal control problem and the optimization algorithm,
followed by Section 4, that has a comparison between the GD variants for an application to a dendritic
vaccine schedule model. Also, Section 4 has a comparison between the deterministic case and stochastic
cases of the optimization algorithm. Section 5 applies the algorithm for a model calibrated to match
the tumor growth in mice. It shows that the stochastic case can give reasonable results with a less
computational cost. Finally, on Section 6 have some conclusions and future work.

2. Gradient Descent Optimization Algorithms

In this section, we describe the background for the gradient descent algorithm and some well
know optimization algorithms, each version aims to speed up the convergence.

Gradient descent (GD) is an algorithm to find a minimum of a smooth function | using the
iterative process:

st = 50 _ pyy(s(), (1)

that take small steps in the gradient V]. The updating of vector s € R? follows the opposite direction
of the gradient, and the parameter /1 gives the step amount the update. For a sufficiently small # and a
convex function |, Equation (1) will converge to a global minimum, and for non-convex function is only
guaranteed to converge in a local minimum. Step size & plays a vital role in the optimization process;
h must give a balance between speed and convergence in the optimization. The procedure includes
to test some value for h, for a few optimizations steps if the loss function decreases fast enough i,
is elected, if not, & is increased a little. Usually, & is small initially, values such as [10’1, 10’6] are
common in the literature; nevertheless, the range of h differs between different problems. For example,
in Section 4 we found that & = 10 provides us an acceptable convergence in our problem.

For its versatility and simplicity, GD is the workhorse algorithm for a vast number of applications
in areas such as mechanics, economics, physics, and machine learning. Equation (1) sometimes is also
called vanilla GD for its simplicity.
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2.1. Variants

Next, we summarize some adaptive optimization techniques that aim to improve the speed
convergence of the GD algorithm. Most of them are thoroughly used and identified in deep learning to
fit the parameters of a neural network. The following GD variants (or usually called optimizers) have
helped deep learning to improve the state-of-the-art of computer vision, speech recognition, and drug
discovery [17]. All of them tweak the GD algorithm to speed up and smooth convergence in distinct
forms. We use ® (Hadamard Product) for element-wise vector multiplication; and, square root and
division operation on vectors are element-wise operations for the sake of simplicity.

2.1.1. Momentum

GD has difficulty to reach an optimum because of its inclination to oscillate on steep surface
curves [18]. Momentum intends to add inertia and speed while also dampening oscillations; like a
snowball that passes through minor bumps but stays on the valley. The method of momentum [19]
accelerates iterations in such cases. Now, the gradient V] affects position indirectly through a so-called
velocity vector v,

o) = o) — v y(s), )
S('rlJrl) —_ S(n)+v(n+1). (3)

In practical terms, the updated position now depends on the past iteration of v and on the current
gradient V] (s()). The term p0(") has a dampening and speeding up effect on s similar to a snowball
down a valley. When the snowball is rolling in a pronounce slope, the velocity increases until it reaches
the bottom where the velocity decays.

2.1.2. Nesterov

Similar to momentum, this method not only looks at the past velocity but also into the possible
next iteration s"+1) = s(") — yv(") of the momentum update, this takes the form

o = g™ — k(™ — po), @)
S(n+1) _ S(n)+U(n+l). (5)

The reasoning is, that since momentum is about to push s by uv("), then, it make sense to
approximate V] on the direction s(") — yv().

2.1.3. Adagrad

Adagrad optimizer adapts the step size to use past gradient values. At each step a buffer variable
b accumulates the squared sum of past gradients,

p) = b 4 v)(sM) o v(s™), ©)

h
it — g M gy, 7
: S V) )

Now each element s will experience different step size, elements with high gradients will have
their step size reduced, and those with smaller gradients will have increased. It has been observed
that using the square in the denominator make the algorithm to perform better [19]. Also, € serves
as a smoothing term for preventing division by zero. Notice that at each optimization step, b adds
a positive term which could make b to grow so big that the current step size becomes too small and
prevent further advance.
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2.1.4. RMSprop

To cope with diminishing step size of Adagrad optimizer the buffer variable includes a decay rate
to smooth the impact from big gradients and the accumulative sum,

b = )+ (1) V](s™) @ V] (s™), 8)
h

(n+1)  _ gm) _ V(s

s s A= J(s™), )

popular default values for the decay rate y are 0.9,0.99,0.999. Now the active step size does not get
monotonically smaller [19].

2.1.5. Adam and Adam-Bias

These optimizers combine a smooth version of momentum with RMSprop to adjust the update
step h element-wise. Now we have a decaying mean (first moment) of past gradients,

mD = Bym) 4 (1 )V (s™). (19
The RMSprop part is the same,
o) = Boo(™ 4 (1= B)V](s™) & V](s™), (11)

and relates to the uncentered variance (second moment). The Adam optimizer is usually presented as,

m" ) = gim™ 4 (1 1) V](s™), (12)
o) = g0 4 (1— gy V(s © TI(s™), 13
St ) h m(nt1) (14)

Vot 1 e ’

and the one called Adam-bias optimizer as

m D = Bym™ 4 (1-B)V](s™), (15
(n+1)
mo= lm_inﬂ 1o
1
o) — ,BZZJ(")-l—(l—ﬁz)vf(s(n))QV](S(n))/ (17)
X p(n+1)
i -
sn+1) S(ﬂ)\/;ﬁ.m; (19)

where the variables 7f1, § are for correcting potential bias toward zero of m, v. The name Adam comes
from Adaptive Moment Estimator [20] in which they propose values of 0.9 for 1 and 0.999 for ;.

2.1.6. GD-Normalized

In our experiments, the elements of V] tend to differ several orders of magnitude, so, step size h
could be either significant or negligible in the updating. To smooth that effect, we include a version
that normalizes the gradient before making the schedule update;

S A [COVA IR

7

we call this GD-Normalized. For further discussion on the above methods, we refer to [21].
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3. The Optimal Control Algorithm for Optimizing Therapy Schedules

In this section, we define the optimal control problem for therapy scheduling and an algorithm
for optimizing therapy schedules using GD. This algorithm includes a stochastic step that only
updates a random part of the schedule at each iteration. This simple technique gives us similar
results on minimizing a cost function J in comparison with updating the entire schedule at each step.
The advantage is that it has less computational cost.

3.1. The Optimal Control Problem Definition

The clinical effectiveness of immunotherapy vaccines by simulations of mathematical
representations is a theme of open-ended research in mathematical oncology [22]. One of the most used
tools for modeling the complex interactions between the immune system, tumor cells, and external
therapies is ordinary differential equations (ODEs). With the mathematical model, hypothetical
protocols simulation can proceed with several therapy combinations of dose timing and size. Such
protocols could lead to new therapy dosing programs [4]. For this section we improve such hypothetical
protocols using an optimization algorithm based on optimal control.

The treatment is modeling by a system of ODEs that depends in the control u,

% = f(x,u); (20)

where x is the state variable and u measures the therapy effect. For this work, u will act only in one of
the independent variables of (20). Also, let ¢; be defined as the coordinate vector with i equal to the
index of such independent variable. For example we would have ¢4 for the system (24)—(28). Now,
let us consider a schedule of injections be given as,

S:{tl,tz tn}; (21)

such that o <t <--- <t,_1 < tg, with {( as the therapy fixed starting point and, ¢ is the therapy
fixed end. It is considered that a therapeutic protocol consists of n doses of size V given by the times
on s. Let £ be the space of schedules, then for a particular schedule S € £ the control variable takes
the form:

u(t) = Z Vo(t—t;). (22)
i=1

Notice, we are approximating the doses as an impulse given by the Dirac function (-). For this
work, we will focus on a cost function of the form,

J= /totf L(x(t, 1), u(t))dt + D(x(ty,u)); (23)

where L measures how effective is the running therapy and & measure the cost at the end of the
therapy. The optimal control problem consists in:

(P) Determine the schedule s € £ of n injectionsthat solves;

t
min [ L(x(t,u), u(t))dt + D(x(t,u)), x(0) = xo;
u(-)eu Jty
with I{ as the class of admissible controls defined as in (22), L is the running cost and & is the final cost.
Notice that x(-, u) is the solution of (20) using the control u. To solve (P), we use the next algorithm
that relies on calculating the cost function gradient.
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3.2. Optimization Algorithm

The Algorithm 1 uses the same method reported in [15] to compute the gradients of J. Since the
methods in Section 2 are guaranteed to converge for convex problems and the applications in this work
are for nonlinear dynamics (non-convex) the Algorithm 1 acts as a heuristic. Additionally, we also
study the case when a schedule s, is randomly chosen from s.

Algorithm 1: Schedule Optimization with stochastic step

S1  Fix the time horizon ty and ¢ r the number N of vaccine administrations, the value V of
vaccine quantity, an initial value xg of cells population and an initial schedule sy. Also,
let0 < p<lands = sp.

S2 Integrate the system (20) with initial value xg to obtain the trajectory xs(t). Now define the
schedule s, from choosing randomly m = Np values from the schedule s. For each t; of the
schedule s, solve

dz;
ditl = Dxf(xs)‘zz
dw;
dtl = DyL(xs) -z

in the interval [;, t¢] with initial condition ,

zi(ti) = flxs(t) — f(xs(ti) +e;- V)

wi(t) = 0

Obtain
oD
E)Ti =€ 'Zi(tf)

3 [y L(x(t,u), u(t))dt
t
J L
Save VJ; = g? + M for each t;.

S3  Foreacht;, update the schedule sast; =t; — hV];. Go to S1.

In step S3 of Algorithm 1, the correct decision of / is essential. If 1 is very big, we could not see
progress, if h is too insignificant, the optimization could develop slowly. The S3 step is the vanilla GD
indicated by (1). Step S3 can be interchanged for any optimization algorithm of Section 2 The choice of
those optimization algorithms has a significant impact on the number of optimization steps needed to
reach the minimum, as we will observe in the next section. Vanilla GD is the optimization algorithm
found in the literature for schedule optimization using optimal pulsed control [15,23].

Notice that for each optimization step (51-S3) we are letting (1 — p) N time injection values t; with
no updating. That lightens the number of gradient computations on each step. From our simulations,
whenever Algorithm 1 converges to a minimum using p = 1 it will also converge with 0.3 < p <1,
but further exploration is needed to define the lower bound for p to make certain minimum reaching.
Using p = 1 and vanilla GD equation, we restore the algorithm used in [15,16]. Also, Algorithm 1
resembles the Stochastic Gradient Descent (SGD) algorithms adopted in deep learning applications.
SGD involves updating a parameter vector 0 from a subset of training samples randomly chosen
(mini-batch) instead of the whole training set. A drawback of SGD is that the cost function shows high
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fluctuations while is updating; the smallest the mini-batch, the higher the fluctuations. We discover
analogous behavior in our schedule evolution.

4. Application to a Dendritic Vaccine Schedule for Tumor Cells Model

This section has the optimization of two initial therapy schedules, one with a few injections times
and another with daily doses over six months. We compare the gradient descent variants presented
in Section 2 with attention on convergence speed-up. Algorithm 1 use the next mathematical model
which accounts for tumor-immune and dendritic vaccine interactions, further details and parameters
can be found in [23],

dT T
= @T-£)-elC @4)
dH H
f
dC C
o = M- hC+al(T+D)(dC(1- 7)), (26)
f
lii—lt) = —e3DC+u, (27)
dl
7 = @HD—ciCl—eyl; (28)

which has 5 state variables:

T , the tumor cells.

H , the CD4 T helper cells.

C, the CD8 T or CTL cytotoxic cells.
D, the antigen loaded dendritic cells.
I, the IL — 2 Interleukin-2 cytokine.

In this section, Algorithm 1 aims to minimize the cost function,

= ./..tf ([T(x(t,u)) - Tmax]+)2 dt + T(X(tf,u)); 29)

1

where x(t, 1) is the solution of (24)-(28). Notice that the running cost,
([T(x(t,u)) = Twax)+)?; (30)

measure how much cancer cells T goes beyond the threshold Ty, and the final cost T (x(tf,u))
measures the number of cancer cells at the end. Then, the optimizer penalizes schedules that let T(t)
go above Tiuqy while making T(x(t, u)) as small as possible.

4.1. Optimization and Comparison of GD Variants

In this subsection, we compare the GD extensions from Section 2 on Algorithm 1 to minimize the
cost function in Equation (29).

We do two optimization runs, one for Ty,,x = 0.80 (Figure 1) and other for T, = 0.85 (Figure 2)
with the initial schedule;

sO = [70,875,1150, 1250, 1375, 1450, 2200, 2500, 3200, 4300, (31)

with doses of V = 0.5. From Figure 1a miniature GD has faster first decay but Adam variant quickly
outperforms it. Most of the optimizers oscillate after step 50 except for GD and GD-Normalized
which has a slower convergence. The first to converge is Adam to the minimum 0.10, and momentum
to converge to 0.10 too but stays in a decreasing oscillatory behavior. Adam-bias has a moderate
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initial convergence, but after step 225 it decreases fast going below 0.05, although it converges to
0.14 approximately until step 400 (Figure 1c). From Figure 1b, we can appreciate that Adam and
Momentum converge to a local minimum of roughly 0.10.

Total cost

0 5 100

Ea—
Optimization steps (log)

Total cost
Total cost (log)

0.5

0.0k,

Optimization steps Optimization steps

(a) (b)

— GD GD Normalized — Adam — Adam bias

—— Momentum — Nesterov
T T

030

0.8

Nesterov

Total cost

Adam bias

0.6 | Nomentum
(GD Normalized

Adam

C Nesterov

790 ) . 800
Optimization steps

Total cost
o
N
T
—

Adam bias
Adam
0.2} J ‘ . GD
Momentum
ool GD Normalized

0 200 400 600 800 1000
Optimization steps

(c) 1000 iterations plot

Figure 1. Panel (a) The linear plots of the total cost (running cost + final cost) vs optimization steps,
using different GD variants and T, = 0.80. The miniature is the log plot in the x-axis and shows
a detailed view of the first steps. Panel (b) is the logarithmic plot on the y-axis. Panel (c) shows the
optimization for 1000 steps. The miniature shows a detailed view of the last 500 steps.

For the case Ty;ax = 0.85 Figure 2 shows similar results than the case Ty, = 0.80. Adam has
the faster initial decay, goes below 0.1 on about 15 optimization steps but oscillates back and forth
several times, then goes below 0.05 on about 50 optimization steps (Figure 2b). The miniature of
(Figure 2c) shows Momentum and Adam variants converging to the same value 0.11. Nesterov variant
oscillates around and never settles down. The variant GD-Normalized converges to 0.094 until
650 optimizations steps where it shows small fluctuations. On the other hand, GD converges to 0.094
until 800 optimization steps.

Cases Tyax = 0.80 and Tyy = 0.85 presents many oscillations which are very common in
algorithms using momentum-like optimization [18], and this probably can be adjusted with a different
parameter choice for Adam, Momentum, and Nesterov. Vanilla GD and GD-Normalized do not present
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prominent oscillations but present a slower convergence
each optimization variant.

9of17

. Table 1 shows the parameter election for

I
08 0.500f
_ 08f
§ ‘g 0.100¢
k] T 0.050
S 04f =
02r 0.010}
0.005}
0.0k, 1 N L L L | I L L L | L .
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Optimization steps Optimization steps
(a) (b) Log plot
— GD —— GD Normalized — Adam — Adam bias
—— Momentum — Nesterov
030
0.8+ 0.25
Nesterov
]
8
s
’E ~ Adam bi
0.6 -~ Momentum
~ GD Normalized
~ Adam
E o0 Nesterov
© 700 800 1000
S 04Ff Optimization steps
© Adam bias
Adam
0.2f GD
| \‘ /
| /~ —— Momentum
\ GD Normalized
0.0, s s s s .
0 200 400 600 800 1000

Optimization steps

(c) 1000 iterations plot

Figure 2. Panel (a) The linear plots of the total cost (running cost + final cost) for each optimization

using several GD variants when Ty, = 0.85. Panel (b) the

logarithmic plot. Adam variant shows the

faster initial decay and also reaches the smaller minimum at roughly 50 steps. Panel (c) iterations up to

1000 steps.

Table 1. Parameter selection for each optimization variant.

Method Parameters

GD h=10

GD Normalized h=10

Adam h=10,81 =09, B = 0.999
Adam bias h =10, By = 0.9, B = 0.999
Momentum h=10,u =09
Nesterov Normalized h=10,4 =09

Figure 3 shows the schedule evolution for each GD

variant. At each iteration, each optimizer

moves 5(?) to try to minimize the cost function J. The abscissa shows the number of optimization steps,



Mathematics 2020, 8, 2114 10 of 17

and the ordinate shows the administration times in hours. On the whole, each GD variant favors an
accumulation at the end of the therapy for T(x(tf, u)) minimization; also, there are equally spaced
injections that contribute to decreasing the running cost. When two or more injection times collapse
at roughly the same value, can be interpreted as a single injection with dose size as the sum of every
collapsing dose. Figure 3 also reveals the difference between the convergence of the GD variants,
Adam variant moves a lot faster the injection times to the end of the therapy. Conversely GD and
GD-Normalized have little effect on the initial schedule; nonetheless, they also show a tendency to
move injection times to the end. Nesterov and Momentum have a similar evolution, expected as they
are very similar. Unexpectedly, Adam-bias evolve a lot slower than Adam, probably Equations (12)
and (13) do not start biased towards zero, and the adaptive step size coming from dividing by v/ + €
hinders the convergence. Next, it is explored the case for daily doses for six months.

4000 e T 4000
& 3000 & 3000~
% %
8 [T T BT 3
£ - R £
S 2000 e S 2000
3 ; 3 -
€ e € =
1000 1000
0 S - obe S
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Optimization steps Optimization steps
GD GD-Normalized

4000 4000

3000[ " 3000[

2000 2000

Injection times(hours)
njection times(hours)

1000 ~ 1000

3 — S
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Optimization steps Optimization steps
Momentum Nesterov

BOODF T * r ot ot r e

4000 4000

3000 3000

2000 2000

Injection times(hours)
Injection times(hours)

1000 1000

0 oL
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Optimization steps Optimization steps
Adam Adam-bias

Figure 3. Comparison between the distinct schedule evolution of each GD variant (T, = 0.80).
Daily Doses over Six Months

Now, we optimize a more extensive first schedule 50 over six months (4320 h). It comprises
daily injections of dose size V = 0.01666 . . ., with a total dose of 3 roughly. Here we use the same cost
function of Equation (29). We use Algorithm 1 deterministically with p = 1 and stochastically with
p = 0.5,0.3. Also, it is run for 300 optimizations steps using Adam variant with h = 10, 1 = 0.9,
B2 = 0.999.
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Notice that smaller values for p mean less computational cost. Let N be the fixed number of
optimizations steps and s(O) € R . Then the total number of gradient calculations are given by;

Ng(p) = N-d-p.

For this example, using p = 0.5, 0.3 make cost function to converge to the same minima. Figure 4
displays the plots of minimization for cost functions | using p = 1,0.5,0.3. For the three cases the
running cost and the total cost looks very similar, on the other hand, the final cost (the miniatures)
does not. The running cost for each instance decays quickly to 0.5. But, for p = 1 case running cost
fluctuate at the 10-20 optimization steps, then converges near to 0.5 until step 100. The final cost
causes these fluctuations (better shown in the miniatures), jumping up when it reaches 0.45 and
stabilizing until step 150 onto 0.53. Random cases in contrast, final cost for p = 0.5 decays and
fluctuates inside the interval [0.45,0.50] and for p = 0.3 inside interval [0.45,0.40]. Consequently,
stochastic instances display slightly better total cost, because their final cost is below deterministic case
final cost. Furthermore, random instances have fewer gradient computations. For instance, since p =1
gives Ng(1) =54,000, p = 0.5 gives N, (0.5) = 27,000, and for p = 0.3 we have N¢(0.3) = 16,200. Hence,
the stochastic versions only compute the 50% and 30% of the gradients when p = 1.

35 3.5
3.0 3.0
25 L 25 : ’
- 20 : .20 -
1.5 1.5
o " Optimization steps o T Optimization steps
0.5 \M;V.NMW@_N— 0.5 \\'\,—\‘, e —
0.0 0.0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Optimization steps Optimization steps
(@p=05 (b)p=03
3.5 0.75 ]
0.70
3.0r ]
3 0.65
3
251 < 060 ]
R=
% 055
.20 ]
3 0.50
(&)
1.5¢ 045 ]
0 50 100 150 200 250 300
Optimization steps
1.0 ]
\ =
0.5 W~ :
0.0 ‘ ‘ ‘ ‘ ‘ il
0 50 100 150 200 250 300
Optimization steps
(p=1
—— Final cost Running cost Total cost

Figure 4. (a) The minimization of the cost function computing 100% of the gradients (p = 1) at
each optimization step. (b) Using 50% (p = 0.5) of gradients. (c) Using 30% (p = 0.3) of gradients.
The smaller figures show the final cost.
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Figure 5 displays the corresponding schedule dynamics for the three cases. Therapy starts at
t =200 h and ends after six months at ¢ = 4520 h. For the deterministic case (p = 1) displays a
well defined initial movement towards f = 200 h, 1000 h, 1400 h, 4300 h, 4520 h which continues to
accumulate until collapsing into a single time point. Not all injection times combine; between [1400 h,
4300 h] some injection times stay uncombined until the optimization ends. Although Interval [1400 h,
4300 h] presents an accumulation of injections in fewer quantities, in general shows low and frequent
doses similar to what is called a metronomic therapy [24]. The accumulation at the start (¢ = 200 h) and
end (t = 4320 h) is because Algorithm 1 let injections to go neither above the fixed end nor below the
start. Such restriction was required to obtain successful optimization; Algorithm 1 failed to converge
to a minimum when the therapy start and end were variable. So, to optimize a schedule with variable
period requires further analysis.

For the stochastic cases p = 0.5,0.3 in Figure 5a,b, the schedule evolution is less smooth, and in
comparison, looks like a perturbed version of the deterministic one. At injection times ¢ =200 h, 1000 h,
1400 h, 4300 h, 4520 h, there is a tendency to accumulate; and further steps could show a single injection.
Notice that inside [1400 h, 4300 h] stochastic and deterministic optimizations have sparse injection
times of frequent and low dose. Also, both cases accumulate injections but the deterministic case
appears very plain. Notice that both optimization cases present injection times that move in the same
direction forming groups, for stochastic versions, that movement looks messy and delayed. That can
be explained, considering that some injection times have a deferred update; at each optimization step
Algorithm 1 only picks to update p * 100% of the injection times from the schedule, for the (1 — p)%
not chosen, the system is in a different state that if they were updated at once.

4520 7 4520 4520 1
4000 ¥ 4000 4000
3000 IS 3000/ 3000 1
7 7 7
3 3 5
e 2 2
(%] (7] 7]
£ £ £
c = =
K] 5 il o
3 2000 A~ T 2000 T 2000
2 N 2 2
£ £ £
1400 ) 1400 |} 1400
1000/} 1000 1000 f13;
“’\ \
200 {0 200 | 200 ih
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Optimization steps Optimization steps Optimization steps
@p=1 (b)p=05 (g)p=03

Figure 5. Schedule evolution for p = 1,0.5,0.3. Panel (a), the deterministic case, have Algorithm 1
using p = 1. Panel (b) stochastic case is done with Algorithm 1 using p = 0.5, so at each optimization
step, the algorithm draws 50% of the doses from the schedule to update. Panel (c) stochastic case made
with Algorithm 1 using p = 0.3. The schedule shows fluctuations for the stochastic cases.
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Since the deterministic and stochastic variant yields similar schedules, then perhaps the schedule
from the deterministic variant is stable to small perturbations.

5. Application for Therapy Schedule Improvement in Murine Model

In this section, we examine a murine mathematical model that deals with the effects of dendritic
cell bolus doses, and obstacles in the host environment; such as immunosuppression, and vaccine
effect reduction generated by insufficient transference to the lymph nodes. The analyzed model is;

ar Kr M;
E = T’TTIOg <T) — QTCT <€T i M[) (32)
Fg +
o[ TCr ) (33)
er + Flg
dH H
dcC C
E = 4ac—+ T’CIC (1 - I(C) - ‘Z/ICC, (35)
ab = —upCD+u, (36)
dt
dl
It = —ucCl+rDH — ujl, (37)
dFg
dF.
7: = a,cC —puqFy, (39)
dM[ . aMWF"y .
7 = W + &M ,uMlMI/ (40)

which has 8 state variables:

T , the tumor cells.

H , the CD4 T helper cells.

C, the CD8 T or CTL cytotoxic cells.

D, the antigen loaded dendritic cells.

I, the IL — 2 Interleukin-2 cytokine.

Fg ,the TFG — B T cell inhibitor.

F, , the IFN — o which up-regulates MHC class 1.

M; , is the number MHC class 1 receptors per melanoma cell.

We have calibrated the parameters of this model to the tumor growth data of mice imbued with
melanoma cells [25], such parameters and deeper discussion are on [16]. We apply Algorithm 1
to improve a starting schedule 5(*), so that the eventual schedule drives the tumor mass to stay
under threshold Ty, = 3.7 x 10°. Figure 6¢ have 300 optimizations steps using Adam variant
with h = =2, f1 = 0.9, B2 = 0.999 and a fixed horizon t; = 5000 h. We start with the schedule

s =180 160 ... 4920| with injection times every 80 days of amount V = ¢ 71.93548 x 10° and

overall dosage e,1.31613 x 107, where e ¢ = 0.05 is the portion of dendritic cells that reach to the lymph
nodes. Figure 7 indicates the deterministic and stochastic schedule evolution. Deterministic case
renews the full schedule in every optimization step, and the stochastic form 50% percent of the time
points (p = 0.5). Both optimizations distribute the injections times, so the therapy keeps the number of
tumor cells below T4y (Figure 6).

For the deterministic case, the first optimization steps in Figure 7a illustrates a trend for point
times #; > 1000 to advance to late times, and for t; < 1000 move to a early times. This tendency remains
until injection times stop evolving, and the following schedule has cycles of frequent doses and periods
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without doses. For stochastic optimization (Figure 7b), the initial evolution is like the deterministic
one, but with tinier updates. After 300 optimization steps, the doses do not stay fix, the injection times
can further evolve. The resulting schedule comprises scattered doses over the treatment duration and
a few doses of fusions.

1x1010 /\
%”/ 5x10° Tone
3
2
8 1x10°
€
2 5x108
T P S S S S
1000 2000 3000 4000 5000
Time (Hours)
—— Tumor
(a) Tumor growth before optimization
1x1010 1x1010
g 5x10° g 5x10° A _
8 3
° =
2 1x10° 2 1x10°
€ €
Z 5x108 2 5x108
1x108 ‘ ‘ ‘ ‘ %108 b
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Time (Hours) Time (Hours)
(b) Tumor growth after optimization (c) Tumor growth after optimization
p = 1 Deterministic p = 0.5 Stochastic

Figure 6. Panel (a) shows the tumor growth using a initial 80-day periodic schedule with dose size
V = 1.93548 x 10° over 5000 h using a total dose of 1.31613 x 107. Panel (b) the tumor growth after the
optimization of the cost function using p = 1, the optimized schedule makes the tumor cells count to
stay below Ty = 3.7 X 10°. Panel (c) the tumor growth after the optimization of the cost function
using p = 0.5, the optimized schedule makes the tumor cells count go below Ty;ax = 3.7 X 10° for most
of the 5000 h. The stochastic case has less final tumor cell count.

Figure 6a displays the tumor expansion for the first dose protocol. There is a considerable tumor
growth that surpasses T,y in the period [0 h, 1000 h], later when therapy influence; the tumor decreases
and stays about 5 x 108. Figure 6b illustrates tumor growth, reacting to the therapy after schedule
optimization with p = 1. The optimized schedule drives T to stay below T};;y; however, T stay rising
and fluctuating towards the therapy end. Figure 6¢ (the stochastic optimization) shows that T resides
mostly below Ty, except for two instances about ¢ = 600 h, 1800 h. Nonetheless, tumor growth
progresses decreasing towards the end. In contrast, the stochastic optimization computed half the
gradients computed by the deterministic optimization.
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Figure 7. Panel (a), the deterministic case, considers Algorithm 1 using p = 1. Panel (b) shows the
stochastic case using p = 0.5, so, at each optimization step, the algorithm picks 50% of the injection
times from the schedule to update. The deterministic case progresses to well-marked schedules.
The stochastic version produces a more scattered schedule than the deterministic.

6. Concluding Remarks

In this study, we introduce a stochastic gradient descent technique for optimization problems
with pulsed controls and a comparison between several gradient descent extensions. The comparison
shows different convergence speeds between optimizers. These methods are well known but have
convergence guarantees only for convex problems. However, the problems in Sections 4 and 5 involve
nonlinear dynamics, thus they are non-convex, which makes it difficult to make a rigorous convergence
study. We aim to highlight the importance of using adaptive optimization algorithms in these kinds
of applications empirically. In Sections 4 and 5 we show that not every optimization approach will
perform as expected, for example, Adam-bias has slower convergence than Adam, when regularly,
Adam-bias converges faster on machine learning applications.

In the applications, we employed the method to identify therapy schedules that control tumor
volume to stay under a threshold while minimizing tumor volume towards the therapy end. For both
applications, the stochastic variant uses fewer gradient computations than the deterministic variation,
with comparable results. We apply this method in the cancer treatment scope, but it can be transferred
to ODE models with pulsed control that intends to minimize a cost function in the form of Equation (23).

The method presented in this manuscript rationalize the construction of immunotherapy
schedules, which could complement therapist intuition and experience in therapy planning. Future
work continues the technique for real clinical practice. We aim to optimize dosage and to introduce a
penalty term that accounts for timing restrictions, such as weekends and holidays. Experiments on
non-fixed time boundaries fail to converge, which calls for further research.
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