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Abstract: In this article, a soft s-open set in soft bitopological structures is introduced. With the help
of this newly defined soft s-open set, soft separation axioms are regenerated in soft bitopological
structures with respect to crisp points. Soft continuity at some certain points, soft bases, soft subbase,
soft homeomorphism, soft first-countable and soft second-countable, soft connected, soft disconnected
and soft locally connected spaces are defined with respect to crisp points under s-open sets in soft
bitopological spaces. The product of two soft

(
Si : i = 1, 2

)
axioms with respect crisp points with

almost all possibilities in soft bitopological spaces relative to semiopen sets are introduced. In addition
to this, soft (countability, base, subbase, finite intersection property, continuity) are addressed with
respect to semiopen sets in soft bitopological spaces. Product of soft first and second coordinate
spaces are addressed with respect to semiopen sets in soft bitopological spaces. The characterization
of soft separation axioms with soft connectedness is addressed with respect to semiopen sets in soft
bitopological spaces. In addition to this, the product of two soft topological spaces is (S1 and S2 ) space
if each coordinate space is soft (S1 and S2 ) space, product of two sot topological spaces is (S regular
and C regular) space if each coordinate space is (S regular and C regular), the product of two soft
topological spaces is connected if each coordinate space is soft connected and the product of two soft
topological spaces is (first-countable, second-countable) if each coordinate space is (first countable,
second-countable).

Keywords: soft sets; soft topological space; soft s-open set; soft bitopological spaces; soft s-separation
axioms; soft product space; soft connectedness and soft coordinate spaces

1. Introduction

The soft set theory initiated by Molodtsov [1] has been demonstrated as an intelligent mathematical
tool to deal with problems encompassing uncertainties or inexact data. Old-fashioned tools such
as fuzzy sets [2], rough sets [3], vague sets [4], probability theory, etc. cannot be cast-off effectively
because one of the root problems with these models is the absence of a sufficient number of expressive
parameters to deal with uncertainty. In order to add a reasonable number of expressive parameters,
Molodtsov [1] has shown that soft set philosophy has a rich potential to exercise in multifarious fields
of mathematics. Maji et al. [5] familiarized comprehensive theoretical construction. Works on soft set
philosophy are growing very speedily with all its potentiality and are being cast-off in different areas
of mathematics [6–11]. In the case of the soft set, the parametrization is done with the assistance of
words, sentences, functions, etc. For different characteristics of the decision variables present in soft set
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theory, different hybridization viz. Fuzzy soft sets [12], rough soft sets [13], intuitionistic fuzzy soft
sets [14], vague soft sets [15], neutrosophic soft sets [16], etc. have been introduced with the passage of
pieces of time research was in progress in the field of soft set theory.

Pakistani mathematician M. Shabir and M. Naz [17] ushered in the novel concept of soft topological
spaces, which are defined relative to an initial universe of discourse with a fixed set of decision variables.
In his work, different basic recipes and fundamental results were discussed with respect to crisp points,
and counter-examples were also planted to clear the doubts. Soft separation axioms with respect to
crisp points were discussed. I. Zorlutune et al. [18] tried his hands to fill in the gap that exists in [17] and
studied some new features of soft continuous mapping and gave some innovative categorizations of
soft continuous, soft open, soft closed mappings and also soft homeomorphisms topological structures.

In 2012, E. Peyghan, B. Samadi and A. Tayebi [19] filled in the gap that exists in [18] and ushered
in some new features of soft sets and manifestly explored the notions of soft connectedness in soft
topological spaces with respect to crisp points. The same pieces of work were further scrutinized and
modified in 2014, M. Al-Khafaj and M. Mahmood [20] with the introduction of some properties of soft
connected spaces and soft locally connected spaces with respect to ordinary points. M. Akdag and
A. Ozkan [21] investigated some basic characters of basic results for soft topology relative to soft weak
open sets, namely soft semiopen (closed) sets and defined soft s (closure and interior) in STS relative to
crisp points. S.A. El-sheikh et al. [22] introduced new soft separation structures rests on soft weak
open sets, namely, soft b-open sets which are in true sense the generalization of soft open sets.

S. Hussain and B. Ahmad [23] introduced the concept of soft separation axiom in soft topological
spaces in full detail for the first time with respect to soft points. They provided examples for almost
all results with respect to soft points. Soft regular, soft T3, soft normal and soft T4 axioms using soft
points are discussed. Khattak et al. [24] introduced the concept of α and soft β separation axioms
in soft single point spaces and in soft ordinary spaces with respect to crisp points and soft points.
M. Naz et al. [25] introduced the concept of soft bitopological spaces. First, the authors discussed the
basic concepts of soft bitopology and then addressed different spaces in soft bitopology with respect to
soft open sets. The results are supported by suitable examples.

M. Ittanagi [26] opened the door to pairwise notion of sbts and studied some types of soft separation
axioms in a pairwise manner for sbts with respect to crisp points. Research on the same structures
attracted the attention of researchers and resulted in T.Y., and C.G. Aras [27] giving birth to the concept
of soft pairwise continuity, soft pairwise open (closed) mappings, pairwise soft homeomorphism
and scrutinized their basic characters in sbts. A. Kandil [28] pointed out the notion of pairwise soft
connectedness and disconnectedness under the restriction of the idea of pairwise separated soft sets
in sbts. They tried their best to explain the newly defined concepts with the support of examples.
All the papers that are related so far to soft bitopological spaces do not have any results about weak
separation axioms related to soft points. This big gap was bridged by A.M. Khattak et al. [29] for
the first time, characterized soft s-separation axioms in soft bitopological spaces with respect to soft
points. Soft regularity and normality were also studied with respect to soft points in soft bitopological
spaces. In continuation, A.M. Khattak did not stop his work and resulted in Khattak, and some other
researchers [30] studied some basic results and hereditary properties in soft bitopological spaces with
respect to soft points.

G. Senel [31] introduced the concept of soft bitopological Hausdorff space (SBT Hausdorff space) as
an original study. First, the author introduced some new concepts in soft bitopological space such as SBT
point, SBT continuous function and SBT homeomorphism. Second, the author defined SBT Hausdorff
space. The authors analyzed whether an SBT space is Hausdorff or not by SBT homeomorphism
defined from an SBT Hausdorff space to researched SBT space. Last, the author finished their study
by defining SBT property and hereditary SBT by SBT homeomorphism and investigate the relations
between SBT space and SBT subspace.
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T.Y. Öztürk, S. Bayramov [32] introduced the concept of the pointwise topology of soft topological
spaces. Finally, the authors investigated the properties of soft mapping spaces and the relationships
between some soft mapping spaces.

S. Bayramov, G.[33] investigated some basic notions of soft topological spaces by using a new soft
point concept. Later the authors addressed Ti-soft space and the relationships between them in detail.
Finally, the authors define soft compactness and explore some of its important properties. The above
references [31–33] became a source of motivation for my research work.

There is a big gap for the researchers to define and investigate new structures, namely soft
compactness, soft connectedness, soft bases, soft subbases, soft countability, finite intersection properties,
soft coordinate spaces etc. In our study, we introduce some new definitions, which are soft semiopen set,
soft continuity at some certain points, soft bases, soft subbase, soft homeomorphism, soft first-countable,
soft connected, soft disconnected and soft locally connected spaces with respect to crisp points under
s-open sets in soft bitopological spaces.

In the present article, we will present the notion of soft bitopological structure relative to the soft
semiopen set, which is a generalization of the soft open set. The rest of this work is organized as follows:
In the next section, concepts, notations and basic properties of soft sets and soft topology are recalled.
In Section 3, we introduced some new definitions, which are necessary for our future sections of this
article. In Section 4, some important definitions are introduced in soft bitopological spaces with respect
to crisp points under soft semiopen sets. In Section 5, the engagement of section two and section three
with some important results with respect to the crisp points under soft semiopen sets are addressed.
In Section 6, the characterization of soft separation axioms with soft connectedness is addressed with
respect to semiopen sets in soft bitopological spaces. In the final section, some concluding comments
are summarized, and future work is included.

2. Basic Concept

In this section, we present the vital definitions and results of soft set theory that are needed in
this article.

Definition 1. ([1]) Let X be the universal set, and E be the set of expressive parameters. Let P(X) supposes the
power set of X which contains all possible subsets of X and E be the super set of A. An ordered pair ( f , A) is
called a soft set over X, where f is a mapping given by f : A→ P(X) . This signifies that a soft set over X is a
parametrized family of subsets of the universal set X. For e ∈ A, f (e) is value at particular expressive parameter
which engages a particular subset of the universal set and considered as the set of e-approximate element of the soft
set ( f , A) and if e < A, then f (e) = ϕ implies meaningless that is ( f , A) =

{
f (e) : e ∈ A⊆̃E , ( f : A→ P(X )

}
.

The family of all these soft sets is symbolized as SS(X )A.

Definition 2 ([1]). For two soft sets ( f , A) and (g, B) over the same universe of discourse X, we say
( f , A) ⊆̃(g, B) if A ⊆ B, f (e) ⊆ g(e)∀ ∈ A.
And if ⊆ A, f (e)⊇̃g(e)∀ ∈ B. Then the two soft sets are said to be soft equal. This is possible only if we are
playing with the same expressive parameter set.

Definition 3 ([17]). A soft set ( f , A) ∈ SS(X )A is said to be an absolute soft set, denoted by (X̃,A) if
f (e) = X,∀ e ∈ A. Moreover, soft set ( f , A) ∈ SS(X )A is said to be null soft set denoted by (ϕ̃,A) if
f (e) = ϕ,∀ e ∈ A.

Definition 4 ([17]). A soft set ( f , A) ∈ SS(X )A is said to have complement denoted by ( f , A)c where,
f c : A→ P(X ) is a mapping given by f c(e) = X − f (e),∀ e ∈ A.
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Definition 5 ([17]). The difference of two soft sets ( f , A) and (g, A) over the same parameter set and universe
of discourse X denoted by ( f , A) − (g, A) is the soft set namely, (H, A), where ∀ e ∈ A, H(e) = f (e) − g(e) or
(g, A) − ( f , A).

Definition 6 ([1]). Let ( f , A) and (g, B) be two soft sets over two different sets of parameters and the same universe
of discourse X. The soft union of ( f , A) and (g, B) is the soft set (H, C) such that ( f , A)∪̃(g, B) = (H, C),
where C = A∪ B and for all e ∈ C

H(e) =


f(e) if B ⊂ A, i.e., if e ∈ (A\B)
g(e) if A ⊂ B, i.e., if e ∈ (B\A)

f(e)∪ g(e) if e ∈ (A∩ B)


Definition 7 ([1]). Let ( f , A) and (g, B) be two soft sets over two different sets of parameters and the
same universe of discourse X. The soft intersection of ( f , A) and (g, B) is the soft set (H, C) such that
( f , A)∩̃(g, B) = (H, C), where C = A∩ B and H(e) = f (e)∩̃g(e) f or each e ∈ C.

Definition 8 ([34]). A so f t set ( f , A) ∈ SS(X )A is said to be a soft point in (X̃, A) If there exists x ∈ X and
e ∈ A in such a track that f (e) = { x} subject to f (ec) = ϕ for each ec = A− { e} . This soft point is signified by
xe where, xe : A→ P(X ) following track

( xe , A) =

(
{ x}, i f e = a
ϕ , i f e , a f or all e ∈ A

)
A soft point ( xe , A) is said to be housed off in so f t set( f , A) signifying xe

∈ ( xe , A), if xe (e)⊆̃ f (e), that is
{ x}⊆̃ f (e). Obviously, xe

∈ ( xe , A) i f f ( xe , A)⊆̃( f , A). In addition, two soft points xe1 , ye2 relative to the
crisp set X are said to be equal if x = y and e1 = e2 that is bi-equal. This means that if the equality symbol is
disturbed in either case, then the equality between xe1 and ye2 will automatically be unbalanced.

Definition 9 ([17]). Let τ̃ be a collection of soft sets over a universe of discourse X with a fixed set of expressive
parameters E. Thence τ̃⊆̃SS(X)E is called a soft topology on X if it qualifies the following axioms:

(1) (X̃, E), (ϕ̃, E)∈̃̃τ, Where X̃(e) = X,∀ e ∈ E and ϕ̃(e) = ϕ,∀ e ∈ E
(2) Union of any number of soft sets in τ̃ belongs to τ̃
(3) The intersection of any two or finite number of soft sets in τ̃ belongs to τ̃.

The structure of ordered triple (X̃, τ̃, E) is called a soft topological structure. Any candidate of τ̃ is said to
be a soft open set.

Definition 10 ([35]). Suppose ( f , E) be any soft set of soft topological space (X̃,τ̃ , E). Then ( f , E) is said to be a
soft semiopen set of (X̃,τ̃ , E) if ( f , E) ⊆̃cl(int(( f , E) )) and said to be soft semiclosed if ( f , E) ⊇̃int(cl(( f , E) )).
The set of all soft semiopen sets is denoted by SSO(X)E and the set of all soft semiclosed sets is denoted by
SSC(X)E.

3. Soft S-Open Sets in Soft Bi-Topological Space

In this section, we introduced some new definitions, which are necessary for our future sections
of this article. Soft semiopen set, soft continuity at some certain points, soft bases, soft subbase,
soft homeomorphism, soft first-countable and soft second-countable, soft connected, soft disconnected
and soft locally connected spaces are defined with respect to crisp points under s-open sets in soft
bitopological spaces. All most all the results are supported by examples.
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Definition 11. A quadrable system (X , τ̃1, τ̃2, E) is SBTSpace relative to the crisp set X, where τ̃1 and τ̃2

are supposed to be arbitrary soft topologies on the crisp set X and E be the set of parameters.

Example 1. Suppose X =
{
x1, x2, x3

}
and E =

{
e1, e2

}
. We develop the following soft sets relative to crisp

set X; 

(
f1, E

)
=

{(
e1,

{
x1, x2

}
),

(
e2,

{
x2, x3

}
)
}
,(

f2, E
)
=

{(
e1,

{
x1

}
),

(
e2,

{
x1, x2

}
)
}
,(

f3, E
)
=

{(
e1,

{
x2

}
),

(
e2,

{
x2

}
)
}
,(

f4, E
)
=

{(
e1,

{
x1, x2

}
),

(
e2,

{
x3

}
)
}
,(

g1, E
)
=

{(
e1,

{
x1

}
),

(
e2,

{
x1, x2

}
)
}
,(

g2, E
)
=

{(
e1,

{
x2, x3

}
),

(
e2,

{
x2, x3

}
)
}
,(

g3, E
)
=

{(
e1,∅

)
,
(
e2,

{
x2

}
)
}
.

Then(X, τ̃1, τ̃2, E)is SBTSpace.
τ̃1 =

{
∅̃, X̌,

(
f1, E

)
,
(
f2, E

)
,
(
f3, E

)
,
(
f4, E

)}
,

τ̃2 =
{
∅̃, X̌,

(
g1, E

)
,
(
g2, E

)
,
(
g3, E

)}
Definition 12. Let (X , τ̃1, τ̃2, E) be a SBTSpace relative to the crisp set X. A soft set (G, E) over X is said
to be soft semiopen If there exists a soft semiopen set

(
G1, E

)
∈ τ̃1 and soft semiopen set

(
G2, E

)
∈ τ̃2 such

that (G, E) =
(
G1, E

)⋃̃
(
(
G2, E

)
. A soft set (G, E) over X is said to be close in (X , τ̃1, τ̃2, E) if its respective

complement is soft semiopen in (X , τ̃1, τ̃2, E).

Definition 13. Suppose ( f , E) be any soft set of soft bitopological space (X , τ̃1, τ̃2, E). Then ( f , E) is said
to be a soft semiopen set of (X , τ̃1, τ̃2, E) if ( f , E)⊆̃τ̃1 − cl(̃τ2 − int(( f , E))) and said to be soft semiclosed if
( f , E)⊇̃τ̃1 − int(̃τ2 − cl(( f , E))). The set of all soft semiopen sets is denoted by SSOSOSBT(X)E and the set of
all soft semiclosed sets is denoted by SSCSOSBT(X)E .

Definition 14. Let
(
X1 , τ̃1, τ̃2, E

)
and (X2 , F̃1, F̃2, E) be two SBTSpaces over the crisp sets X1 and X2

respectively and f :
(
X1 , τ̃1, τ̃2, E

)
→ (X2 , F̃1, F̃2, E) be a soft mapping. Then f is said to be soft continuous at

a soft point xe
∈̃SS(X)E i f f for each soft semiopen set (H, E) in (X2 , F̃1, F̃2, E) containing f (xe) there exists a soft

semiopen (G, E) set in
(
X1 , τ̃1, τ̃2, E

)
containing xe such that f ((G, E) )⊆̃(H, E) that is f (xe) ∈̃ f (G, E) ⊆̃(H, E)

or xe
∈̃(G, E) ⊆̃(H, E).

Example 2. Suppose X =
{
x1, x2, x3

}
, Y =

{
y1, y2, y3

}
and E =

{
e1, e2

}
. Then τ̃1 =

{
∅̃,X̌, (F, E)

}
, τ̃2 ={

∅̃,X̌, (G, E)
}

two soft topological spaces over X and η̃1 =
{
∅̃,Y̌, (H, E)

}
, η̃2 =

{
∅̃,Y̌, (K, E)

}
are two soft

topological spaces over Y. Here the soft sets over X and Y are defined as follows;
(F, E) =

{(
e1,

{
x1, x3

} )
,
(
e2,

{
x2, x3

} )}
(G, E) =

{(
e1,

{
x2, x3

} )
,
(
e2,

{
x1, x3

} )}
(H, E) =

{(
e1,

{
y1, y2

} )
,
(
e2,

{
y2, y3

} )}
(K, E) =

{(
e1,

{
y2, y3

} )
,
(
e2,

{
y1, y2

} )}
Then

(
X1 , τ̃1, τ̃2, E

)
and

(
X1 , η̃1, η̃2, E

)
are two soft bitopological spaces.

τ̃1 ∪ τ̃2 =
{
∅̃,X̌,(F, E), (G, E)

}
, η̃1 ∪ η̃2 =

{
∅̃,Y̌,(H, E), (K, E)

}
.
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If the mapping f : X→ Y defined as 
f
(
X1

e1

)
= Y1

e1

f
(
X1

e1

)
= Y1

e1

f
(
X1

e1

)
= Y1

e1

f
(
X1

e1

)
= Y1

e1

Then f soft semiopen and soft semiclosed.

Definition 15. Let (X , τ̃1, τ̃2, E) be a SBTSpace relative to the crisp set X and ⊆ (X , τ̃1, τ̃2, E). If every
element of (X , τ̃1, τ̃2, E) can be written as a soft union of elements ofW, thenW is called a so f t base for the soft
bitopology (X , τ̃1, τ̃2, E) . Each element ofW is called a soft base element.

Example 3. Let (X , τ̃1, τ̃2, E) be a SBTSpace relative to the crisp set X. Where the crisp set is X =
{
x1, x2, x3

}
and Eparamater =

{
e1, e2, e3, e4, e5, e6

}
be the universal set of parameters and A paramater =

{
e1, e2

}
be the subset of

the universal set of parameters

E =
{
e1, e2, e3, e4, e5, e6

}
, (X , τ̃1, E) =

{
ϕ̃, X̃, f 1, f 2, f 3, f 4, f 5, . . . . . . . . . .. f 18

}
then is a STSpace relative to the crisp set X and (X , τ̃2, E) = {ϕ̃, X̃} is a STSpace relative to the crisp set
X We define the soft functions as:

f 1
(
e1

)
= ϕ̃, f 1

(
e2

)
=

{
x1

}
, f 2

(
e1

)
= ϕ̃,

f 2
(
e2

)
=

{
x2

}
, f 3

(
e1

)
= ϕ̃, f 3

(
e2

)
=

{
x1, x2

}
f 4

(
e1

)
=

{
x1

}
, f 4

(
e2

)
= ϕ̃, f 5

(
e1

)
=

{
x1

}
,

f 5
(
e2

)
= ϕ̃, f 6

(
e1

)
=

{
x1, x2

}
, f 6

(
e2

)
= ϕ̃,

f 7
(
e1

)
=

{
x1

}
, f 7

(
e2

)
=

{
x2

}
, f 8

(
e1

)
=

{
x2

}
,

f 8
(
e2

)
=

{
x1

}
, f 9

(
e1

)
=

{
x2

}
, f 9

(
e2

)
=

{
x2

}
,

f 10
(
e1

)
=

{
x2

}
, f 10

(
e2

)
=

{
x1, x3

}
, f 11

(
e1

)
=

{
x1, x2

}
,

f 11
(
e2

)
=

{
x2

}
, f 12

(
e1

)
=

{
x1, x3

}
, f 12

(
e2

)
=

{
x1, x3

}
,

f 13
(
e1

)
= X, f 13

(
e2

)
=

{
x1, x3

}
, f 14

(
e1

)
=

{
x1, x3

}
,

f 14
(
e2

)
= X, f 15

(
e1

)
=

{
x1, x2

}
, f 15

(
e2

)
=

{
x2

}
,

f 16
(
e1

)
=

{
x1

}
, f 16

(
e2

)
=

{
x2

}
, f 17

(
e1

)
=

{
x1

}
,

f 17
(
e2

)
=

{
x1, x2

}
, f 18

(
e1

)
=

{
x1, x2

}
, f 18

(
e2

)
=

{
x1, x2

}
.

PutW =
{
ϕ̃, X̃, f 1, f 2, f 4, f 5, f 9, f 14, f 15, f 17

}
.

ThenW is so f t base f or (X, τ̃1, τ̃2, E).

Definition 16. Let (X , τ̃1, τ̃2, E) be a SBTSpace relative to the crisp set X and P ˜⊆ (X , τ̃1, τ̃2, E) . Then
this soft collection is said to be a soft subbase for (X , τ̃1, τ̃2, E) i f the collection of all finite soft intersections of
members of P is a soft base for (X , τ̃1, τ̃2, E) .

Definition 17. Let
(
X1 , τ̃1, τ̃2, E

)
and (X2 , F̃1, F̃2, E) be two SBTSpaces over the crisp sets X1 and X2

respectively. Let f :
(
X1 , τ̃1, τ̃2, E

)
→ (X2 , F̃1, F̃2, E) be soft mapping. This soft mapping is said to be a soft

homeomorphism if this soft mapping is soft one-one, soft one-two and soft bi-continuous.

Definition 18. Let (X , τ̃1, τ̃2, E) be a SBTSpace relative to the crisp set X. This soft space is said to be soft,
first-countable if every point of X a soft-countable soft local base.
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Definition 19. Let (X , τ̃1, τ̃2, E) be a SBTSpace relative to the crisp set X. This soft space is said to be soft
second if there exists a soft-countable soft base for

(
X1 , τ̃1, τ̃2, E

)
.

Definition 20. Let (X , τ̃1, τ̃2, E) be a SBTSpace relative to the crisp set X and
(

f 1, E
)
,
(

f 2, E
)

be soft subsets

of the given space, then the soft sets
(

f 1, E
)

and
(

f 2, E
)
, are said to be soft separated or soft disconnected if


(1) :

(
f 1, E

)
, (ϕ, E),

(
f 2, E

)
, (ϕ, E)

(2) :
(

f 1, E
)
∩̃( f 2, E) = (ϕ, E),(

f 2, E
)
∩̃( f 1, E) = (ϕ, E)

(3) : (X , τ̃1, τ̃2, E) =
(

f 1, E
)
∪̃

(
f 2, E

)
.

Definition 21. Let (X , τ̃1, τ̃2, E) be a SBTSpace relative to the crisp set X is said to soft connected if f is not
soft disconnected.

Definition 22. Let (X , τ̃1, τ̃2, E) be a SBTSpace relative to the crisp set X is said to be soft locally s-connected
at x∈̃X if for every soft s-open set ( f , E) with respect to (X , τ̃1, τ̃2, E) where, ( f , E) =

(
f 1, E

)⋃̃(
f 2, E

)
there

exists a soft connected s-open set (G, E) with respect to the same space (X , τ̃1, τ̃2, E) containing x contained
in ( f , E), where (G, E) =

(
G1, E

)⋃̃(
G2, E

)
with

(
G1, E

)
∈ τ̃1,

(
G2, E

)
∈ τ̃2. The space (X , τ̃1, τ̃2, E) said to be

soft locally connected i f f it is soft locally connected at each of its points.

4. Separation Axioms in Soft Bi-Topological Spaces

In this section, some important definitions of soft structures are introduced in soft bitopological
spaces with respect to crisp points under soft semiopen sets.

Definition 23. Let (X , τ̃1, τ̃2, E) be a SBTSpace relative to the crisp set X, A ⊆ E and x, y ∈ X such
that x > y or x < y If there exists at least one soft (X , τ̃1, τ̃2, E) s-open set

(
f 1, A

)
or

(
f 2, A

)
such that

x ∈
(

f 1, A
)
, y <

(
f 1, A

)
or y ∈

(
f 2, A

)
, x <

(
f 2, A

)
then (X , τ̃1, τ̃2, E) is said be a soft S0 space.

Definition 24. Let (X , τ̃1, τ̃2, E) be a SBTSpace relative to the crisp set X, A ⊆ E and x, y ∈ X
such that x > y or x < y If there exists a soft (X , τ̃1, τ̃2, E) s-open sets

(
f 1, A

)
and

(
f 2, A

)
such that

x ∈
(

f 1, A
)
, y <

(
f 1, A

)
and y ∈

(
f 2, A

)
, x <

(
f 2, A

)
then (X , τ̃1, τ̃2, E) is said be a soft S1 space.

Definition 25. Let (X , τ̃1, τ̃2, E) be a SBTSpace relative to the crisp set X, A ⊆ E and x, y ∈ X
such that x > y or x < y If there exists a soft (X , τ̃1, τ̃2, E) s-open sets

(
f 1, A

)
and

(
f 2, A

)
such that

x ∈
(

f 1, A
)
, y ∈

(
f 2, A

)
with

(
f 1, A

)
∩̃

(
f 2, A

)
= ∅A. then (X , τ̃1, τ̃2, E) is said be a soft S2 space.

Definition 26. Let (X , τ̃1, τ̃2, E) be a SBTSpace relative to the crisp set, A ⊆ E. Then (X , τ̃1, τ̃2, E) is said
to be regular if for every soft s-closed subset ( f , A) and every point x < ( f , A), there exists a soft s-open sets
(g, A) and (h, A) such that ( f , A) ⊆ (g, A), x ∈ (h, A) and the possibility of (g, A) rules out the possibility
of (h, A).

5. Product of Soft Separation Axioms and Soft (First and Second) Coordinate Spaces

In this section, the engagement of section two and section three with some important results with
respect to crisp points under soft semiopen sets is addressed. The product of two soft S0 axioms with
respect crisp points with almost all possibilities, the product of two soft S1 axioms with respect crisp
points with almost all possibilities and product of two soft S2 axioms with respect to crisp points with
almost all possibilities in soft bitopological spaces relative to semiopen sets are introduced. In addition
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to this, soft (countability, base, subbase, finite intersection property, continuity) are addressed with
respect to semiopen sets in soft bitopological spaces. Finally, the product of soft first and second
coordinate spaces are addressed with respect to semiopen sets in soft bitopological spaces.

Theorem 1. If (X1 , τ̃1, τ̃2, E) and (X2 , F̃1, F̃2, E) be two SBTSpaces over the crisp sets X1 and X2

respectively such that these are two soft S0 space. Then their product (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) is soft
S0 space.

Proof. Let (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) be the soft product space. We prove that it is soft S0 space.
Suppose (x1, y1) and (x2, y2) are two distinct soft points in (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) then different
cases are x1 > x2 , or y1 > y2, x1

� x2 or y1
� y2.

Case (I) If x1 > x2, then (X1 , τ̃1, τ̃2, E) being soft S0 space, corresponding to this pair of distinct
soft points there exists a (X2 , F̃1, F̃2, E) soft s-open set (G, E) such that x1

∈ (G, E) and x2 < (G, E) . Thus,
(G, E) ∗X2 is soft ((X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) ) s-open set catching (x1, y1) but bay passing (x2, y2) .

Case (II) If x1
� x2, then (X1 , τ̃1, τ̃2, E) being soft S0 space, corresponding to this pair of distinct

soft points there exists a (X2 , F̃1, F̃2, E) soft s-open set (G, E) such that x1
∈ (G, E) and x2 < (G, E) . Thus,

(G, E) ∗X2 is soft ((X1 , τ̃1, τ̃2, E) ∗(X2 , F̃1, F̃2, E) ) s-open set catching (x1, y1) but bay passing (x2, y2) .
Case (III) If y1 > y2, then (X1, τ̃1, τ̃2, E) being soft S0 space, corresponding to this pair of distinct

points there exists a (X2 , F̃1, F̃2, E)–soft s-open set (H, A) such that y1
∈ (H, A) and y2 < (H, A) . Thus,

X1
∗ (H, A) is soft ((X1, τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E)) s-open set arresting (x1, y1) and bypassing (x2, y2).

Thus for any two distinct points of in X1
∗X2 there exists a (X1, τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) soft s-open set

arresting one of them and bypassing the other. Hence (X1, τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) is soft S 0 space.
Case (IV) If y1

� y2, then (X1, τ̃1, τ̃2, E) being soft S0 space, corresponding to this pair of
distinct points there exists a (X2 , F̃1, F̃2, E) soft s-open set (H, A) such that y1

∈ (H, A) and y2 < (H, A) .
Thus, X1

∗ (H, A) is soft ((X1, τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E)) s-open set arresting (x1, y1) and bypassing
(x2, y2). Thus for any two distinct points of in X1

∗X2 there exists a (X1, τ̃1, τ̃2, E) ∗(X2 , F̃1, F̃2, E) soft
s-open set arresting one of them and bypassing the other. Hence (X1, τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) is soft
S 0 space. �

Theorem 2. If (X1 , τ̃1, τ̃2, E) and (X2 , F̃1, F̃2, E) be two SBTSpaces over the crisp sets X1 and X2

respectively such that these are two soft S1 Spaces. Then their product (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) is
soft S1 Spaces.

Proof. Let (X1 , τ̃1, τ̃2, E) and (X2 , F̃1, F̃2, E) be two SBTSpaces such that they are soft S1 Spaces,
respectively. Then we have to show that their product that is (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) is also soft
S1 Space. For this proof, it is sufficient to show that each soft subset of (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E)
consisting of exactly one soft point is a soft (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) s-closed set. Let (x1, y1) ∈

X1
∗X2 so that x1

∈ X1 and y1
∈ X2.

Case (I) x1 > y1 Now, (X1 , τ̃1, τ̃2, E) being soft S1 Space, ( x1, A)
c is soft (X1 , τ̃1, τ̃2, E) s−closed

and therefore, (y1, A)
c is soft (X2 , F̃1, F̃2, E) s-open. Also, (X2 , F̃1, F̃2, E) being soft S1 Space.

So (( x1, A)
c
) ∗ ((y1, A)

c
) ∈ (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) that is

{
(( x1, y1)c, A)

}
∈ (X1 , τ̃1, τ̃2, E) ∗

(X2 , F̃1, F̃2, E) and hence,
{
(((x1, y1)

c, A)
}

is soft (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) s−closed. Hence

(X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) is soft S1 Space.
Case (II) x1

� y1 Now, (X1 , τ̃1, τ̃2, E) being soft S1 Space, ( x1, A)
c is soft (X1 , τ̃1, τ̃2, E) s−closed

and therefore, (y1, A)
c is soft (X2 , F̃1, F̃2, E) s-open. Also, (X2 , F̃1, F̃2, E) being soft S1 Space.

So (( x1, A)
c
) ∗ ((y1, A)

c
) ∈ (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) that is

{
(( x1, y1)c,A )

}
∈ (X1 , τ̃1, τ̃2, E) ∗

(X2 , F̃1, F̃2, E) and hence,
{
(((x1, y1)

c,A )
}

is soft (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) s-closed. Hence

(X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) is soft S1 Space. �
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Theorem 3. If (X1 , τ̃1, τ̃2, E) and (X2 , F̃1, F̃2, E) be two SBTSpaces over the crisp sets X1 and X2

respectively such that these are two soft S-Hausdorff spaces. Then their product (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E)
is soft S-Hausdorff space.

Proof. Let (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) be the product space. We prove that it is a soft S−Hausdorff
space. Suppose (x1, x2) and (y1, y2) are two distinct points in X1

∗X2.
Case (I) When x1 = y1, then x2 , y2. let x2 > y2 therefore (x1, x2) , (y1, y2) By the soft

S−Hausdorff space property, given a pair of elements x2, y2
∈ X2 such that x2 > y2 there are disjoint

soft s-open sets such that (G2, A), (H2, A)⊂̃(X2 , F̃1, F̃2, E) such that x2
∈ (G2, A), that x2

∈ (H2, A).
Then X1

∗(G2, A) and (X1
∗X2 )∗(H2, A) are disjoint soft s-open sets in (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E).

For, x1
∈ (X crisp1

)A , x2
∈ (G2, A) implies that (x1, x2) ∈ ((X crisp1

)A ∗ (G
2, A)), y1

∈ X1, y2
∈ (H2, A)

implies that (y1, y2) ∈ X1
∗ (H2, A). this whole situation leads us to the conclusion that (X1 , τ̃1, τ̃2, E) ∗

(X2 , F̃1, F̃2, E) is a soft S−Hausdorff space.
Case (II) If x1 , y1 let x1 > y1 then too (x1, y1) > (x2, y2). By the soft S−Hausdorff space

property, given a pair of elements (x1, y1) ∈ (X1 , τ̃1, τ̃2, E) such that x2 > y2, there are disjoint s-open
sets in (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) such that (G1, A), (H1, A)⊂̃(X1 , τ̃1, τ̃2, E) such that x1

∈ (G1, A),
that y1

∈ (H1, A). Then (G1, A) ∗ (X2 , F̃1, F̃2, E) and (H1, A) ∗ (X2 , F̃1, F̃2, E) are disjoint soft s-open
sets in (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E). For, x1

∈ (X1 , τ̃1, τ̃2, E), x2
∈ (G2, A) implies that (x1, x2) ∈

(G1, A) ∗X2 , y1
∈ (H1, A) ∗X2 , y2

∈ (H2, A) implies that (y1, y2) ∈ (H1, A) ∗X2 . This whole situation
leads us to the conclusion that (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) is a soft S-Hausdorff space. �

Theorem 4. Let (X1 , τ̃1, τ̃2, E) and (X2 , F̃1, F̃2, E) be two second-countable SBTSpaces then their product,
that is (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) is also soft second-countable SBTSpace.

Proof. To prove (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) is second-countable SBTSpaces. Our assumption
implies that there are countable soft s-bases ℬ1 =

{
Bi : i ∈ N

}
and ℬ2 =

{
Ci = i ∈ N

}
for (X1 , τ̃1, τ̃2, E)

and (X2 , F̃1, F̃2, E) respectively. ℬ = (G1,A ) ∗ (G2,A ); such that (G1,A ) and (G2,A ) are soft s-open
such that (G1,A ) ∈

{
(X1 , τ̃1, τ̃2, E), (G2,A ) ∈ (X2 , F̃1, F̃2, E)

}
is a soft base for soft product topology

(X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E). If we write C =
{
Bi
∗C j; i, j ∈ N

}
= B1

∗B2 is soft-countable, this implies

that C is soft-countable. By definition of soft base ℬ, and (x1, y1) ∈ N ∈ (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E)
implies that there exists a soft s-open sets (G, A), (H, A) such that (G, A) ∗ (H, A) ∈ ℬ such that
(x1, y1) ∈ (G, A) ∗ (H, A)⊂̃N implies x1

∈ (G, A) ∈ (X1 , τ̃1, τ̃2, E), y1
∈ (H, A) ∈ (X2 , F̃1, F̃2, E) this

implies that there exists Bi
∈ B1, C j

∈ B2 such that x1
∈ Bi
⊂̃(G, A), y1

∈ C j
⊂̃(H, A) this implies that

(x1, y1) ∈ Bi
∗C j
⊂̃(G, A) ∗ (H, A)⊂̃N. By definition this proves that C is a soft base for the soft product

topology (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) . In addition, C has been shown to be soft-countable. Hence,
(X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) is soft second-countable relative to soft s-open set. �

Theorem 5. Let (X1 , τ̃1, τ̃2, E) and (X2 , F̃1, F̃2, E) be two SBTSpaces on the crisp sets X1 and X2

respectively. the collection ℬ =
{
(G1, A) ∗ (G2, A) : (G1, A) ∈ (̃τ1 ∪ τ̃2), (G2, A) ∈ (F̃1 ∪ F̃2)

}
is a so f t base

for some product soft topologies (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E), where (G1, A) and (G2, A) are soft s-open
sets in their corresponding SBTSpaces.

Proof. Let (X1 , τ̃1, τ̃2, E) and (X2 , F̃1, F̃2, E) be two SBTSpaces on the crisp sets X1 and X2

respectively. Suppose (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) be the soft product topology.
B =

{
(u1,A ) ∗ (u2, A) : (u, A) ∈ (̃τ1 ∪ τ̃2), (u2, A) ∈ (F̃1 ∪ F̃2)

}
where (u1, A) is soft s-open

in (F̃1 ∪ F̃2) and (u2, A) is soft-open in (̃τ1 ∪ τ̃2). We need to prove B is a so f t base for some
soft topology on (X1, τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E). To prove that ∪{B : B ∈ℬ} = (X1 , τ̃1, τ̃2, E) ∗
(X2 , F̃1, F̃2, E). Clearly, (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) ∈ ℬ this implies that (X1 , τ̃1, τ̃2, E) ∗
(X2 , F̃1, F̃2, E) = ∪{B : B ∈ℬ}. Next, let (u1, A) ∗ (u2, A), (J 1, A) ∗ (J 2, A) ∈ B where (J 1, A)

is soft s-open in (F̃1 ∪ F̃2) and (J 2, A) is so f t s-open in (̃τ1 ∪ τ̃2) and suppose (x1,x2) ∈
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((u1, A) ∗ (u2, A)) ∩ ((J 1, A) ∗ (J 2, A)) ∈ B. To prove that there exists (J 1, A) so f t s-open
in (F̃1 ∪ F̃2) and (J 2, A) is so f t s-open in (̃τ1 ∪ τ̃2) such that (f1, A) ∗ (f2, A) ∈ℬ such that (x1,x2) ∈

(f1, A) ∗ (f2, A)⊂̃((u1, A) ∗ (u2, A)) ∩ ((J 1, A) ∗ (J 2, A)) that is (x1,x2) ∈ ((u1, A) ∗ (u2, A)) ∩

((J 1, A) ∗ (J 2, A)) this implies (x1,x2) ∈ ((u1, A) ∗ (u2, A)), (x1,x2) ∈ ((J 1, A) ∗ (J 2, A)) This
implies that x1

∈ (u1, A),x2
∈ (u2,A ), x1

∈ (J 1, A),x2
∈ (J 2, A) implies that x1

∈

((u1, A)∩ (J 1, A)), x2
∈ ((u2, A)∩ (J 2, A)) implies that x1

∈ (f1, A), x2
∈ (f2, A). On taking

(f1, A)=(u1, A) ∩ (J 1, A), (f2, A)=(u2, A) ∩ (J 2, A) this implies (x1,x2) ∈ (f1, A) ∗ (f2, A).
(A1, A) ∗ (u2, A) ∈ ℬ, (J 1, A) ∗ (J 2, A) ∈ ℬ this implies that (u1, A) ∈ (X1 , τ̃1, τ̃2, E), (u2, A) ∈

(X2 , F̃1, F̃2, E) , (J 1, A) ∈ (X1 , τ̃1, τ̃2, E), (J 2,A ) ∈ (X2 , F̃1, F̃2, E) this implies that (u1, A)∩ (J 1, A) ∈

(X1 , τ̃1, τ̃2, E), (u2, A)∩ (J 2, A) ∈ (X2 , F̃1, F̃2, E) . This implies that (f1, A) ∈ (X1 , τ̃1, τ̃2, E), (f2, A) ∈

(X2 , F̃1, F̃2, E) this implies that (f1, A) ∗ (f2, A) ∈ ℬ. Thus we have shown that there exists
(f1, A) ∗ (f2, A) ∈ ℬ such that (x1,x2) ∈ (f1, A) ∗ (f2, A). Remaining to prove that (f1, A) ∗

(f2, A)⊂̃((u1, A)∗A) ∩ ((J 1, A) ∗ (J 2, A)). Let (y1, y2) ∈ (f1, A) ∗ (f2, A) be arbitrary distinct
points. (y1, y2) ∈ ((f1, A) ∗ (f2, A)) implies that y1

∈ (f1, A), y2
∈ (f2, A) implies that y1

∈

((u1,A )∩ (J 1, A)), y2
∈ ((u2, A)∩ (J 2, A)) implies that y1

∈ (u1, A), y1
∈ (J 1, A); y2

∈ (u2, A), y2
∈

(J 2, A) this implies that (y1, y2) ∈ ((u1, A) ∗ (u2, A)), (y1, y2) ∈ ((J 1, A) ∗ (J 2, A)) this implies that
(y1, y2) ∈ ((u1, A) ∗ (u2, A))∩ ((J 1, A) ∗ (J 2, A)). This implies (f1, A) ∗ (f2, A)((u1, A) ∗ (u2, A)) )∩

((J 1, A) ∗ (J 2, A)). Thus ℬ is a base. �

Theorem 6. Let (X1 , τ̃1, τ̃2, E) and (X2 , F̃1, F̃2, E) be two SBTSpaces on the crisp sets X1 and
X2 respectively. Let ℬ1 and ℬ2 be soft bases for (X1 , τ̃1, τ̃2, E) and (X2 , F̃1, F̃2, E) respectively. Let
(X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) be the soft product space.

Then B =
{
B1
∗ B2 : B1

∈ℬ1, B2
∈ℬ2

}
is a soft base for the product soft topology (X1 , τ̃1, τ̃2, E) ∗

(X2 , F̃1, F̃2, E) relative to soft s-open sets.

Proof. C =
{
(G1,A ) ∗ (G2,A ) : (G1,A ) ∈ (X1 , τ̃1, τ̃2, E), (G2,A ) ∈ (X2 , F̃1, F̃2, E)

}
Then C is a soft base for the topology (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E). We have to prove that B is a

soft base for (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E). According to the soft base, for any (x̃1, x̃2) ∈ (G,A ) ∈

(X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E)where (G, A) is soft s-open relative (̃τ1,̃τ2)∪ ((F̃1, F̃2) implies there exists

a soft (̃τ1,̃τ2) s-open sets (G1,A ) and (F̃1, F̃2) soft s-open set (G2, A) such that (G1, A) ∗ (G2, A) ∈ C
such that (x1,x2) ∈ (G1, A) ∗ (G2, A)⊂̃(G, A). Again (x1,x2) ∈ (G1, A) ∗ (G2, A) ∈ C implies that
x1
∈ (G1,A ) ∈ (X1 , τ̃1, τ̃2, E),x2

∈ (G2, A) ∈ (F̃1, F̃2). Applying the definition of a soft base, x1
∈

(G1, A) ∈ (X1 , τ̃1, τ̃2, E) this implies that there exists B1
∈ℬ1 such that x1

∈ B1
⊂̃(G1, A) . . . . . . .(1)

x2
∈ (G2,A ) ∈ (X2 , F̃1, F̃2, E) implies that there exists B2

∈ ℬ2 such that x2
∈

B2
⊂̃(G2, A) . . . . . . .(2). Now B1

∈ℬ1, B2
∈ℬ2

∈ B this implies that ℬ1
∗B2
∈ B. Now maxing (1) and (2)

implies that there exists ℬ1
∗B2
∈ B such that (x1,x2) ∈ℬ1

∗B2
⊂̃(G1, A)⊂̃(G2, A)⊂̃(G, A) or (x1,x2) ∈

ℬ1
∗B2
⊂̃(G, A). By definition, this proves that B is a soft base for (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) relative

to soft s -open sets. �

Theorem 7. Let (X1 , τ̃1, τ̃2, E) and (X2 , F̃1, F̃2, E) be two SBTSpaces on the crisp set X1 and X2

respectively. Suppose L and M be soft subbases for (X1 , τ̃1, τ̃2, E) and (X2 , F̃1, F̃2, E) respectively. Then the
collection A of all soft subsets of the f orm L ∗ (X1 , τ̃1, τ̃2, E) and M ∗ (X2 , F̃1, F̃2, E), is a soft subbase for the
product soft (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) where L ∈ (ℒ ,A ), M ∈ (ℳ, A)

Proof. In order to prove that A is a soft subbase for (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E), we have to
prove that the soft collection of s-open sets (G , A) of the finite intersection of soft members of A form
a soft base for (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E). Since the intersection of empty soft subcollection of
(X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) and so (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) ∈ (G,A ). Next, we suppose that{
(L1A ) ∗ (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E), (L1, A) ∗ (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E), (L1,A ) ∗ (X1 , τ̃1, τ̃2, E)

∗(X2 , F̃1, F̃2, E)(L,rA) ∗ (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E), . . . . . . (Lp, A) ∗ (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E)
}
]
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{
(X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) ∗ (M1, A), (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) ∗ (M2, A), (X1 , τ̃1, τ̃2, E)

∗(X2 , F̃1, F̃2, E) ∗ (M3, A), (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) ∗ (Mr, A), (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E)
∗(Mq, A)

}
be a non-empty infinite soft subcollection of A. This soft intersection of these

elements belong to (G, A), by the construction of (G, A). This elements of (G, A) is{
((L,1A) ∗ (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E))∩ ((L,2A) ∗ (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E))∩ ((L,3A)

∗(X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E))∩ ((L,rA ) ∗ (X1 , τ̃1, τ̃2, E) ∗ (X1 , F̃1, F̃2, E)), . . . . . . (L,pA ) ∗ (X1 , τ̃1, τ̃2, E)
∗(X2 , F̃1, F̃2, E)

}
∩

{
((X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) ∗ (M,1A))∩ (((X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) ∗ (M,2A)

∩((X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) ∗ (M,3A))∩ ((X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) ∗ (M,RA)), . . . . . .
((X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) ∗ (M,qA))

}
.

[∩
{
((X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) ∗ ((M,1 A))∩ (M,2 A))∩ ((M,3 A))∩ (M,R A)), . . . . . . (M,q A))

}
((L,1 A)∩ ((L,2 A)∩ ((L,3 A))∩ ((L,r A), . . . . . . (L,p A))∗((M,1 A))∩ (M,2 A))∩ ((M,3 A))∩ (M,R A)),
. . . . . . (M,q A)) =

⋂p
n=1[(L,r A)] ∗

⋂q
r=1[(M,r A)]. We supposed that B is a soft base for (X1 , τ̃1, τ̃2, E)

generated by the elements of (ℒ , A) and C is a soft base for (X2 , F̃1, F̃2, E) generated by the elements
of (ℳ, A). Since the finite soft intersection of soft subbase form, the soft base for that soft topology.
In view of the above statements,

⋂p
n=1[(L,r A)] ∈ℬ,

⋂q
r=1[(M,r A)] ∈ C. Hence of (G , A) is expressible

as (G , A) =
{
B ∗C : B ∈ℬ, C ∈ {

}
. Then (G , A) is soft s-open such that (G , A) ∈ (̃τ1, τ̃2)∪ (F̃1, F̃2) is a

soft base for (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E). But (G , A) is obtained from the finite soft intersection of
members of A . It follows that A is a soft subbase for (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) . �

Theorem 8. Let (X1 , τ̃1, τ̃2, E) and (X2 , F̃1, F̃2, E) be two SBTSpaces on the crisp set X1 and X2

respectively. Let (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) be the product space. Then, the soft projection maps π1 and
π2 are soft continuous, and soft s-open.

Proof. Suppose (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) be a product space of SBTSpaces (X1 , τ̃1, τ̃2, E)
and (X2 , F̃1, F̃2, E). Then X = (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) . Define soft maps π1 : (X1 , τ̃1, τ̃2, E)
∗(X2 , F̃1, F̃2, E)→ (X1 , τ̃1, τ̃2, E) such that π1(x1,x2) = x1 f or all (x1,x2) ∈ (X1, τ̃1, τ̃2, E)
∗(X2 , F̃1, F̃2, E),π2 : (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E)→ (X2 , F̃1, F̃2, E) such that π2(x1,x2) = x2 for
all (x1,x2) ∈ (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E). Then π1 and π2 both are called soft projection maps on
the soft first and second coordinate spaces, respectively.

Step (1) First, we show that π1 is soft continuous. Let (G, A)⊂̃(X1 , τ̃1, τ̃2, E) be arbitrary soft
s-open set. π−1(G, A) =

{
(x1,x2) ∈ (X1, τ̃1, τ̃2, E) ∗ (X2, F̃1, F̃2, E) : π1(x1, (X1, τ̃1, τ̃2, E)) ∈ (G, A)

}
=

{
(x1,x2) ∈ (X1, τ̃1, τ̃2, E) ∗ (X2, F̃1, F̃2, E) : x1

∈ (G, A)
}
=

{
(x1,x2) ∈ (X1, τ̃1, τ̃2, E) ∗ (X2, F̃1, F̃2, E) :

x1
∈ (G, A)

}
= (G, A) ∗ (X2, F̃1, F̃2, E)is soft s-open set in (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) . This implies

π1 is soft continuous. The proof runs on similar lines to show that π2 is soft continuous.
Step (2) To prove that the soft projection maps are soft s-open maps. Let (G,A)⊂̃(X1 , τ̃1, τ̃2, E) ∗

(X2 , F̃1, F̃2, E) be an arbitrary soft s-open set. Let x1
∈ π2 [(G,A)] be arbitrary. This means

that there exists (̃u1, ũ2) ∈ (G, A) such that π2 (̃u1, ũ2)x2 this implies that ũ1 = x2 because
π2 (̃u1, ũ2) = ũ2. Now, (̃u1,x2 ) ∈ (G, A). Let B be the base for the soft topology
(X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E). Then by definition of a soft base, (̃u1,x2 ) ∈ (G, A) ∈ (X1 , τ̃1, τ̃2, E) ∗
(X2 , F̃1, F̃2, E) implies that there exists a soft (̃τ1, τ̃2) s-open set (U1, A) and soft (̃F1, F̃2) s-open
set (U2, A) such that (U1, A) ∗ (U2, A) ∈ ℬ such that (̃u1,x2 ) ∈ (U1, A) ∗ (U2, A)⊂̃(G, A)

implies that π2((̃u1,x2 ),x2 ) ∈ π2 ((U1, A) ∗ (U2, A) )⊂̃(G, A)⊂̃π2((G, A)). for π2((U1, A) ∗ (U2, A) ) ={
π2 (x1,x2) : (x1,x2) ∈ ((U1, A) ∗ (U2, A) )

}
=

{
x2 : x1

∈ (U1, A),x2
∈ (U2, A)

}
= (U2, A). This proves

that x2 is a soft interior point of π2((G, A)). But x2 is an arbitrary soft point of π2((G, A)). Therefore,
every point of π2((G, A)) is a soft interior point. This proves that π2((G, A)) is soft s-open in (X1 , τ̃1, τ̃2, E).
This proves that the soft map π2 : (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E)→ (X2 , F̃1, F̃2, E) is the soft s-open map.
A proof can be written on the same lines to show that π2 is a soft s-open map. Consequently, projection
maps are soft s-open maps. This finishes the proof. �
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Theorem 9. Let (X1 , τ̃1, τ̃2, E) and (X2 , F̃1, F̃2, E) be two SBTSpaces on the crisp set X1 and X2 respectively.
(X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) be the product space, π1 : (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E)→ (X1 , τ̃1, τ̃2, E) ,
π2 : (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) → (X2 , F̃1, F̃2, E) be the soft projections maps on the first and

second coordinate spaces, respectively. Let (y1,T1,T2, E) be another soft bitopological space such that
ℱ : (y1,T1,T2, E) → (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) . Then ℱ is soft continuous ⇐⇒ π1oℱ and π2oℱ
are soft continuous maps.

Proof. Let (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) be the soft product topological
space. Let (y1,T1,T2, E) be another soft bitopological space. Let ℬ be
the soft base for the soft product topology (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E). Now
π1oℱ : (y1,T1,T2, E) → (X1 , τ̃1, τ̃2, E) , π2oℱ : (y1,T1,T2, E) → (X2 , F̃1, F̃2, E) are also soft
maps. Let ℱ be soft continuous. Now π1oℱ and π2oℱ are continuous soft maps. Conversely,
suppose that π1oℱ and π2oℱ are continuous soft maps. To show that ℱ is continuous.
Let (G, A)⊂̃(X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E) be arbitrary soft s-open set. If we prove that
ℱ −1((G, A)) is soft s-open in (y1,T1,T2, E), the result will follow. Let ỹ ∈ ℱ −1((G, A)) be an
arbitrary, then ℱ (ỹ) ∈ (G, A). therefore, ℱ (ỹ) is an element of (X1 , τ̃1, τ̃2, E) ∗ (X2 , F̃1, F̃2, E)
and hence it can be taken as ℱ (ỹ) = (x1,x2) ∈ (G, A) by definition of the soft base,
(x1,x2) ∈ (G, A) ∈ (X1 , τ̃1, τ̃2, E) ∗ (y1,T1,T2, E) there exists a soft (̃τ1 ∪ τ̃2) s-open set
(U1, A) and soft (F̃1 ∪ F̃2) s-open set (U2, A) and such that (U1, A) ∗ (U2, A) ∈ ℬ such that
x1
∈ (U1, A) ∗ (U2,A )⊂̃(G, A) implies that π1((x1,x2)) ∈ π1((U1, A) ∗ (U2, A))⊂̃π1(G, A) and

π2((x1,x2)) ∈ π2((U1, A) ∗ (U2, A))⊂̃π2(G, A) this implies that x1
∈ (U1,A )⊂̃π1(G, A) and

x2
∈ (U2,A )⊂̃π2(G, A). For π1((U1, A) ∗ (U2, A)) =

{
π1((x1,x2)) : (x1,x2) ∈ ((U1, A) ∗ (U2, A))

}
={

x1 : x1
∈ (U1, A),x2

∈ (U2, A),
}
= (U1, A). Similarly π2((U1, A) ∗ (U2, A)) = (U2, A). (π1oℱ )(ỹ)

= (π1(ℱ (ỹ)) = π1((x1,x2)) = x1. Similarity, (π2oℱ )( ỹ) = (π2(ℱ (ỹ)) = π2((x1,x2)) = x2.
Thus, (π1oℱ )( ỹ) = x1, (π2oℱ )(y) = x2. From the above (π1oℱ )(ỹ) ∈ (U1, A)⊂̃π1((G, A)),
(π2oℱ )(ỹ) ∈ (U2, A)⊂̃π2((G, A)) this implies that (ỹ) ∈ (π1oℱ )

−1
(U1, A) and (ỹ) ∈ (π2oℱ )

−1
(U2, A)

implies that (ỹ) ∈
[
(π1oℱ )

−1
(U1, A)∩ (π2oℱ )

−1
(U2,A )

]
. Therefore, (π1oℱ )and (π2oℱ ) are given to

be soft continuous and hence (π1oℱ )
−1

(U1, A) and (π2oℱ )
−1

(U2, A) are soft s-open in (y1,T1,T2, E)

this implies that
[
(π1oℱ )

−1
(U1, A)

]
∩ [(π2oℱ )

−1
(U2, A)] is soft s-open in (y1,T1,T2, E) On taking

(π1oℱ )
−1

(U1, A) = (V2, A), (π1oℱ )
−1

(U2, A) = (V2, A). We have (V1, A) ∩ (V2, A) are soft s-open
in (y1,T1,T2, E) by the above result, ỹ ∈ (V1, A) ∩ (V2, A) = (V, A) (say). Any, ṽ ∈ (V, A) implies
that ṽ ∈ (V1, A) and ṽ ∈ (V2, A) implies that ṽ ∈ (π1oℱ )

−1
(U1, A), ṽ ∈ (π2oℱ )

−1
(U2, A) implies

that (π1oℱ )(ṽ) ∈ (U1, A), (π2oℱ )(ṽ) ∈ (U2, A) implies that (π1oℱ )(v) ∈ (U1, A)⊂̃π1((G, A)) and
(π2oℱ )(ṽ) ∈ (U2, A)⊂̃π2((G, A)) implies that ṽ ∈ (π1oℱ )

−1
[π1((G, A))] and ṽ ∈ (π2oℱ )

−1
[π2((G, A))]

implies that ṽ ∈ f−1(G, A) and ṽ ∈ f−1(G, A). Therefore, any ṽ ∈ (V, A) implies that ṽ ∈ f−1(G, A).
This implies that (V, A)⊂̃ f−1(G, A). Thus we have shown that any ỹ ∈ f−1(G, A) implies that there
exists a soft s-open set (V, A)⊂̃(y1,T1,T2, E) such that ỹ ∈ (V, A)⊂̃ f−1(G, A). This implies that y is a
soft interior point of f−1(G, A) and hence every point of f−1(G, A) is a soft interior point, showing
thereby f−1(G, A) is soft s-open in (y1,T1,T2, E). �

6. Attachment of Separation Axioms with Soft Connectedness and Soft Coordinate Spaces

In this section, the characterization of soft separation axioms with soft connectedness is addressed
with respect to semiopen sets in soft bitopological spaces. In addition to this, the product of two soft
topological spaces is ( S1 and S2) space if each coordinate space is soft (S1 and S2) space, a product of
two sot topological spaces is (S-regular and S-C regular) space if each coordinate space is (S-regular and
S-C regular), a product of two soft topological spaces is connected if each coordinate space is soft
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connected and the product of two soft topological +spaces is (first-countable, second-countable) if each
coordinate space is (first-countable, second-countable).

Theorem 10. Let
(
X1 , τ̃1, τ̃2, E

)
and

(
X2 , F̃1, F̃2, E

)
be two SBTSpaces on the crisp sets X1 and X2

respectively.
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
be the soft product space, then the product space

(
X1 , τ̃1, τ̃2, E

)
∗(

X2 , F̃1, F̃2, E
)

is soft S-connected if both
(
X1 , τ̃1, τ̃2, E

)
and

(
X2 , F̃1, F̃2, E

)
are soft S-connected.

Proof. Suppose
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
be a product space of soft bitopological

spaces
(
X1 , τ̃1, τ̃2, E

)
and

(
X2 , F̃1, F̃2, E

)
. If the soft product

(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
is

soft S-connected then we have to prove that
(
X1 , τ̃1, τ̃2, E

)
and

(
X2 , F̃1, F̃2, E

)
are soft

S-connected. Define soft maps π1 :
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
→

(
X1 , τ̃1, τ̃2, E

)
such that

π1
(
x1,x2

)
= x1 f or all

(
x1,x2

)
∈

(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
, π2 :

(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
→

(
X2 , F̃1, F̃2, E

)
such that π2

(
x1,x2

)
= x2 f or all

(
x1,x2

)
∈

(
X1 , τ̃1, τ̃2, E

)
∗(

X2 , F̃1, F̃2, E
)

then π1 and π2 are called soft projection maps. Also π1 and π1

Now π1 :
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
→

(
X1 , τ̃1, τ̃2, E

)
is soft continuous and

(
X1 , τ̃1, τ̃2, E

)
∗(

X2 , F̃1, F̃2, E
)

is soft S-connected.

This implies that π1
((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))
is soft S-connected that is

(
X1 , τ̃1, τ̃2, E

)
is soft

S-connected. Againπ2
((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))
is continuous and

(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
is soft S-connected. This impliesπ2

((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))
=

(
X2 , F̃1, F̃2, E

)
. For what we have

done, it follows that
(
X1 , τ̃1, τ̃2, E

)
is soft S-connected sets. Conversely, let

(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
be the product space of soft S-connected spaces

(
X1 , τ̃1, τ̃2, E

)
and

(
X2 , F̃1, F̃2, E

)
. We have to prove

that
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
is soft S-connected. Pick any point

(
x1,x2

)
∈

(
X1 , τ̃1, τ̃2, E

)
∗(

X2 , F̃1, F̃2, E
)

and consider the soft sets
(
x1, A

)
∗

(
X2 , F̃1, F̃2, E

)
and

(
X1 , τ̃1, τ̃2, E

)
∗

(
x2, A

)
. Define the

soft maps ℱ :
(
x1, A

)
∗

(
X1 , τ̃1, τ̃2, E

)
→

(
X2 , F̃1, F̃2, E

)
by requiring that ℱ :

((
x1,x2

))
= x2 for all

x2
∈

(
X2 , F̃1, F̃2, E

)
and ℊ :

(
X1 , τ̃1, τ̃2, E

)
∗

(
x2, A

)
→

(
X1 , τ̃1, τ̃2, E

)
by writing ℊ :

((
x1,x2

))
= x̃1

for all x1
∈

(
X1 , τ̃1, τ̃2, E

)
. Now ℱ −1 and ℊ−1 are continuous soft maps so that ℱ −1[

(
X2 , F̃1, F̃2, E

)
and

ℊ−1
[(

X1 , τ̃1, τ̃2, E
)]

are soft S-connected sets that are
(
x1, A

)
∗

(
X2 , F̃1, F̃2, E

)
and

(
X1 , τ̃1, τ̃2, E

)
∗

(
x2, A

)
are soft S-connected sets. WriteX crisp x1

=
(
x̃1,A

)
∗

(
X2 , F̃1, F̃2, E

)
, Xcrisp x2

=
(
X1 , τ̃1, τ̃2, E

)
∗

(
x̃2,A

)
,

Cx1x2
= Xcrisp x1

∪Xcrisp x2
. Then Xcrisp x1

and Xcrisp x2
are soft S-connected sets.

(
x1,x2

)
∈ X2

∪X2.

So that Xcrisp x1
∪ X x2

, ϕA . being a finite soft union of soft S-connected sets having non-empty
intersection. X crisp x1

∪X crisp x2
is soft S-connected that is, Cx1x2

is soft S-connected. Consider the
family of soft S-connected sets

{
Cx1x2

:
(
x1,x2

)
∈ X

}
that is ∪

{
Cx1x2

:
(
x1,x2

)
∈ X crisp

}
this implies

that
⋃

(x1,x2)∈X [Xcrisp x1
∪ Xcrisp x2

] =
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
. Finally,

⋃
(x1,x2)∈X [Xcrisp x1

∪

Xcrispx
2
] =

(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
. If we select fixed members of the above family, then their

soft intersection is not soft null. Hence,
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
is soft S-connected. �

Theorem 11. Let
(
X1 , τ̃1, τ̃2, E

)
and

(
X2 , F̃1, F̃2, E

)
be two SBTSpaces on the crisp set X1

and X2 respectively.
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
be the soft product space, then the product

space ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft S1 Space i f f each soft coordinate space{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft S1 Space.
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Proof. Suppose each coordinate space
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft S1 Space

and let 〈(κ, A ) ∂:∂∈∆
〉 be an element of ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
. Then,

(κ, A ) ∂ ∈
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
for each ∂ ∈ ∆. Since

((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂
is

soft S1 space, it follows that
{
(κ, A ) ∂

}
is soft (̃τ1, τ̃2)

(
F̃1, F̃2

)
− s closed for each ∂ ∈ ∆. Now, each soft

projectionmappingπα beingsoftcontinuous, it followsthat (π∂) −1
{
(κ, A ) ∂

}
issoft (̃τ1, τ̃2)

(
F̃1, F̃2

)
−s closed

is ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

for every ∂ ∈ ∆. Consequently,
⋂
∂(π

∂) −1
{
(κ, A ) ∂

}
=

(κ, A ) ∂. So, every singleton soft subspace of ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is

soft (̃τ1, τ̃2)
(
F̃1, F̃2

)
− s closed. Hence, ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft

S1 Space. Conversely, let ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft S1 Space

and let
(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

be an arbitrary soft coordinate space of

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
. Let

({
(κ, A)∂

})β
and

({
(ỹ,A )∂

})β
be any two soft

distinct points of
(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

. Choose (κ, A ) and (y, A) in

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

whose β-th coordinate is
({
(κ, A) ∂

})β
and

({
(y, A) ∂

})β
respectively. Since

({
(κ, A) ∂

})β
,

({
(y, A) ∂

})β
we have (κ, A) > (y, A) or (κ, A) < (y, A) or

(κ, A) � (y, A) or (κ, A) ≤ (y, A) But ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

being soft S1 Space,

corresponding to the soft distinct points (κ, A) and (y, A) of
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

there exists soft s-open sets (G, A) and (H, A) in ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

such that

(κ, A) ∈ (G, A)but (y, A) < (G, A)and (y, A) ∈ (H, A)but (κ, A) < (H, A). So, thereexistsbasicsoft s-open
sets (I, A) = ×

{
(G, A)α : α ∈ ∆

}
and (J, A) = ×

{
(H, A)α : α ∈ ∆

}
such that (κ, A) ∈ (I, A) ⊆ (G, A) and

(ỹ, A) ∈ (J, A) ⊆ (H, A). Clearly, (y, A) < (I, A) and (κ, A) < (J, A). Thus, (G, A)β is soft s-open set
containing (κ, A)β but not (y, A) β; and, (H, A)β is soft s-open set containing (y, A) β but not (κ, A) β. This

shows that
(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

is soft S1 Space. �

Theorem 12. Let
(
X1 , τ̃1, τ̃2, E

)
and

(
X2 , F̃1, F̃2, E

)
be two SBTSpaces such that they are soft S2 paces

on the crisp set X1 and X2 respectively.
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
be the soft product space, then the

product space ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft S2 Space i f f each soft coordinate space{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft S2 Space.

Proof. Suppose each soft coordinate space ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft S2 Space

and let 〈(κ, A)∂:∂∈∆
〉 and 〈(y, A)∂:∂∈∆

〉 be two points of ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

such that 〈(κ, A)∂:∂∈∆
〉 > 〈(y, A)∂:∂∈∆

〉 Then, (y, A)β > (y, A)β for some for each β ∈ ∆ where

(κ, A)β, (y, A)β ∈
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))β}
. Now,

((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))β
is soft

S2 Space and (κ, A)β > (y, A)β are points of
((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))β
, So there exists a soft

(̃τ1, τ̃2)
(
F̃1, F̃2

)
− s open sets (G, A)β and (H, A)β such that (κ, A)β ∈ (G, A)β and (y, A)β ∈ (H, A)β and

(G, A)β ∩ (H, A)β=ϕ. Since πβ
(
(κ, A)β

)
) = (κ, A)β ∈ (G, A)β and πβ

(
(y, A)β

)
) = (y, A)β ∈ (H, A)β

each soft projection mapping πβ being soft continuous, it follows that (κ, A) ∈
(
πβ) −1((G, A)β

)
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and (y, A) ∈
(
πβ) −1((H, A)β

)
and (πβ) −1

[
(G, A)β ∩ (H, A)β

]
= (πβ) −1[ϕ] = ∅. Moreover by

soft continuity of πβ , ( πβ) −1
(
(G, A)β

)
, ( πβ) −1

(
(H, A)β

)
are soft (̃τ1, τ̃2)

(
F̃1, F̃2

)
s-open

in ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
. Hence, ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is

soft S2 Space. Conversely, let ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft S2 Space

and let
(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

be an arbitrary soft coordinate space of

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
. We mustshow that

(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

is soft S2 Space. Let (̃z, A) = 〈(̃z, A)α:α∈∂
〉 be soft fixed point of ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
.

Let (K, A) be soft subset of ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
consisting of all points of the form

(κ, A) = 〈(κ, A) α:α∈∆
〉 such that (κ, A)α = (z, A) α if α > β and (κ, A)β may be any point of(

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

. Let π(̃z,A ) be the restriction of the soft projection mapping

π(z,A ) :
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
→

(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

to (z, A)

suchthat π(z,A ) : (z, A) →
(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

: π(z,A )(((κ, A)) = πβ(((κ, A))

= (z, A) β ∀(κ, A) ∈ (z, A) . Then, π(z,A ) is clearly soft one-one and soft onto. Also, the projection mapping
πβ being soft continuous, is a restriction π(z,A ) is therefore soft continuous. Now, let (G, A) be any soft
basic s-open set in the soft subspace (z, A). Then, (G,A ) = (z, A) ∩ (ℒ , A) for some soft basic s-open

set (ℒ , A) in ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
. Let (ℒ , A) = ×

{
(G, A)α : α ∈ ∧

}
, where, (G,A )α is

soft s-open in
(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )α

. Let (ℒ ,A ) = ×
{{
(G,A )α : α ∈ ∧

}}
, where

(G,A )α is soft s-open in
(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )

. Consequently, (G, A) = (z, A) ∩(
×

{{
(G, A)α : α ∈ ∧

}})
, Where (G, A)α is soft s-open in

(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )α

for

each α ∈ ∧. Thus, either (G,A ) = ∅ or (G,A ) ={(κ,A)∈(z,A): βth coordinate of (x,A) in (G,A)ˆβ}. Therefore
π(z,A )(((G,A )) = ∅ or (G, A)β , each one of which is soft s-open. This shows that the soft image under
π(̃z,A ) of every soft basic s-open set in (z, A) is soft s-open and therefore, π(z,A ) is soft s-open. Thus, π(κ,A),

is homeomorphism and therefore,
(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

is the soft homeomorphic

image of (z, A). Now, every soft subspace of a S2 Space being S2 Space, (z, A) is soft s-open and therefore,

π(z,A) is soft S2 Space and so its soft homeomorphic image
(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )

is soft S2 Space. Hence, each coordinate space is soft S2 Space. �

Theorem 13. Let
(
X1 , τ̃1, τ̃2, E

)
and

(
X2 , F̃1, F̃2, E

)
be two SBTSpaces on the crisp set X1 and X2

respectively.
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
be the soft product space, then the product space

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft S-regular space i f f each soft coordinate space{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft S-regular space.

Proof. Suppose each coordinate space ×
{
=

((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft S-regular space.

Let (κ, A) = 〈(κ, A)∂:∂∈∆
〉 be any point of the soft product space×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

and (G, A) be any soft s-open set in ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

such that (κ, A) ∈ (G, A).

Then there exists a soft basic s-open set (H, A) in ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

such
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that (κ, A) ∈ (H, A)⊆̃(G, A). Let, ×
{
((G,A ) )∂:∂∈∆

}
is the soft product space such that ((G, A) )∂ is

soft s-open in ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
. Since each

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft S-regular and ((G, A) )∂ is soft s-open in ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
containing

(κ, A)∂ there exists a soft s-open set ((K,A ) )∂ in ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
such

that (κ, A)∂ ∈ ((K, A) )∂ and ((K, A) )∂ ⊆̃(G, A)∂. Let ×
{
((K, A) )∂:∂∈∆

}
, then

{
((K, A) )∂:∂∈∆

}
is soft s-open set in ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

and contains (κ, A). Also,

×((K, A) )∂::∂∈∆ = ×

{
((K, A) )∂:∂∈∆ :∂ ∈ ∆

}
. Further, since ((K, A) )∂ ⊆̃(G, A)∂ for each ∂,

we have ×

{
((K, A) )∂:∂∈∆ :∂ ∈ ∆

}
⊆̃ ×

{
((G, A) )∂:∂∈∆

}
. this shows that for every soft point

(κ, A) ∈ ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

and every soft s-open set (G, A) containing (κ, A)

there exists a soft s-open set ×
{
((K,A ) )∂:∂∈∆ :∂ ∈ ∆

}
in ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

such that (κ, A) ∈ ×

{
((K, A) )∂:∂∈∆

}
and ×((K, A) )∂::∂∈∆

⊆̃ ×

{
((G, A) )∂:∂∈∆

}
. Hence,

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft S-regular. Conversely, let the non-empty

soft product space ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

be soft S-regular and let(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

be an arbitrary soft coordinate space. Then, we must show

that it is a soft S-regular. Let (κ̃,A )β be any soft point of
(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

and

let (G, A)β be any soft s-open in
(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

such that (κ, A)β ∈ (G, A)β.

now, choose, soft element (κ, A) in ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

whose βth coordinate in

(κ, A)β. Let (G, A) = πβ−1((κ, A)i. Then, (κ̃,A ) ∈ (G, A) and by soft continuity of πβ, (G, A) is soft

p-open in ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
. Since, ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is

soft S-regular space so there exists a soft basic s-open set ×
{
((K,A ) )∂:∂∈∆

}
, Where each ((K, A) )∂ is

soft s-open in
(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

such that (κ, A) ∈ ×
{
((K, A) )∂:∂∈∆

}
and{

((K, A) )∂:∂∈∆
}
⊆̃(G, A). Now (κ, A) ∈

{
((K, A) )∂:∂∈∆

}
⊆̃(G, A) this implies that (κ, A) ∈ (G, A) =

πβ−1
(
(G,A )β

)
implies that (κ, A)β ∈ (G, A). Moreover,

{
((K, A) )∂:∂∈∆

}
=

{
((K, A) )∂:∂∈∆

}
and{

((K, A) )∂:∂∈∆
}
⊆̃(G, A)β This shows that

(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

is soft S-regular

and hence, each coordinate space is soft S-regular. �

Theorem 14. Let
(
X1 , τ̃1, τ̃2, E

)
and

(
X2 , F̃1, F̃2, E

)
be two SBTSpaces on the crisp set X1 and X2

respectively.
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
be the soft product space, then the product space

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft S-completely regular space i f each soft coordinate space{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft completely S-regular space.

Proof. Let each soft coordinate space ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft S-completely regular.

Then, we must show that the soft product space ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
. Let (ℵ, A) be

any member of the usual soft subbase for the soft product topology and let (κ, A) = 〈(κ, A)∂:∂∈∆
〉 be any
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soft point in (ℵ, A). Then (ℵ, A) = πβ−1
(
(G, A)β

)
is soft s-open in

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))β}
and contains (κ, A)β). Since,

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))β}
is soft completely S-regular there

exists a soft mapping f :
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))β}
→

[̃
0, 1̃

]
such that f

(
(κ, A)β

)
= 0̃ and

f (y, A) = 1̃ ∀ y ∈
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))β}
− (G,A )β. Since πβ is soft continuous and f is soft

continuous, so the soft composite mapping
(

f oπβ
)

: ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
→

[̃
0, 1̃

]
is soft continuous. Now, if (κ, A) ∈ (ℵ,A ), then (κ, A) ∈ πβ−1

(
(G,A )β

)
implies

that πβ((κ, A)) ∈ (G, A)β implies that f
[
πβ((κ, A))

]
= f

(
(κ, A)β

)
= 0̃ implies

that
(

f oπβ
)
((κ, A)) = 0̃. Again, if (κ, A) ∈ ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
−

(ℵ, A), then, (κ, A) ∈ ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
− (ℵ, A) implies

that (κ, A) ∈ πβ−1(
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))β}
− πβ−1

(
(G, A)β

)
implies

that (κ, A) ∈ πβ−1
({((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))β}
− (G,A )β

)
implies that

πβ( (κ, A)) ∈

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))β}
− (G,A )β) implies that

f
[
πβ( (κ, A))

]
= 1̃ implies that

(
f oπβ

)
((κ̃,A )) = 1̃. Thus, f

[
πβ( (κ, A))

]
= 0̃ = i f (κ, A) ∈ (G,A )β)

0̃ = i f (κ, A) ∈ ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
− (ℵ, A).

Hence, ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft, completely S-regular. Conversely, let the

soft product space ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

be soft completely S-regular and let

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))β}
be an arbitrary soft coordinate space. Then, continuing on the

same lines, we can show that ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))β}
is the soft homeomorphic image of a

soft subspace of ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
. Now, every soft subspace of a soft completely

S-regular space being a soft completely regular and soft homeomorphic image of a soft completely

S-regular space being soft S-completely regular, it follows that ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))β}
is

soft completely S-regular. Hence, each coordinate space of ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is

soft S-completely regular. �

Theorem 15. Let
(
X1 , τ̃1, τ̃2, E

)
and

(
X2 , F̃1, F̃2, E

)
be two SBTSpaces on the crisp sets

X1 and X2 respectively.
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
be the soft product., then the product

space ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft S-connected i f each soft coordinate space{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
is S -soft connected space.

Proof. Suppose ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft S-connected for each ∂ ∈ ∆. Fix a soft point

(κ̃,A ) = 〈(κ̃,A )∂
:∂∈∆
〉 in soft product space ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

and let C̃

be the soft component to which (κ̃,A ) belongs. We shall show that every soft point

of ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
is in C̃. Let (G, A)∂

:∂∈∆
be any soft basic s-open

in ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
= ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
for all but a
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finite soft number of ∂. Let (G,A )∂
:∂∈∆

= ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
when ∂ >

∂1, ∂2, ∂1, ∂3, ∂4, ∂5, ∂6, ∂7, ∂8, . . . . . . . . . . . . ., ∂m, ∂ < ∂1, ∂2, ∂1, ∂3, ∂4, ∂5, ∂6, ∂7, ∂8, . . . . . . . . . . . . ., ∂m or when
∂� ∂1, ∂2, ∂1, ∂3, ∂4, ∂5, ∂6, ∂7, ∂8, . . . . . . . . . . . . ., ∂m, ∂� ∂1, ∂2, ∂1, ∂3, ∂4, ∂5, ∂6, ∂7, ∂8, . . . . . . . . . . . . .,
∂m. Then, we can construct
(i,A )∂

1
=

{{
(i,A )∂

1
= (κ̃,A ) = 〈(κ̃,A )∂

:∂∈∆
〉 : (κ̃,A )∂ = (̃z,A )∂i f ∂ > ∂1or ∂ < ∂1or ∂� ∂1or ∂� ∂1 and (κ̃,A ) ∂

1
∈ ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂1
}}}

and show that (i,A )∂
1

is soft homeomorphic to ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂1
}

. Similarly, we

can construct (i,A )∂
2
, (i,A )∂

3
, (i,A )∂

4
, (i,A )∂

5
, (i,A )∂

6
, (i,A )∂

7
, (i,A )∂

8
, (i,A )∂

9
, (i,A )∂

10

. . .. . . . . . .(i,A )∂
m

and as argued before, they are homeomorphic to

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂2
}

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂3
}
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂4
}

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂5
}
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂6
}

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂7
}
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂8
}

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂9
}

, . . . . . . . . . . . . . . . . . . , ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂m}
,

respectively. So (i,A )∂
2
∗ (i,A )∂

3
× (i,A )∂

4
∗ (i,A )∂

5
∗ (i,A )∂

6
∗ (i,A )∂

7
∗ (i,A )∂

8
∗ (i,A )∂

9

∗ (i,A )∂
10
∗ . . . . . . . . . . ∗ (i,A )∂

m
is soft homeomorphic to ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂2
}

*

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂3
}
× ∗

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂4
}

*

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂5
}
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂6
}

*

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂7
}
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂8
}

*

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂9
}

, . . . . ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂m}
. Now

each ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂i
}

being soft S-connected and finite

soft product of soft S-connected spaces being soft S-connected, it follows

that
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂2
}

* ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂3
}

×

∗

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂4
}

* ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂5
}

×{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂6
}

* ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂7
}

×{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂8
}

* ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂9
}

, . . .

* ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂m}
. Now each ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂m}
is soft

S-connected and therefore it is soft homeomorphic to image (i,A )∂
2
∗ (i,A )∂

3
× (i,A )∂

4
∗

(i,A )∂
5
∗ (i,A )∂

6
∗ (i,A )∂

7
∗ (i,A )∂

8
∗ (i,A )∂

9
∗ (i,A )∂

10
∗ . . . . . . . . . . ∗ (i,A )∂m = (i,A ) is

soft S -connected. Now, (i,A ) is ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

and C is a soft

maximal S-connected and therefore, its soft homeomorphic image (i,A )∂
2
∗ (i,A )∂

3
× (i,A )∂

4
∗

(i,A )∂
5
∗ (i,A )∂

6
∗ (i,A )∂

7
∗ (i,A )∂

8
∗ (i,A )∂

9
∗ (i,A )∂

10
∗ . . . . . . . . . . ∗ (i,A )∂

m
= ((i,A ))⊂̃ C.

But (i,A ) contains the soft points (t,A ) = 〈

(̃
t,A

)∂:∂∈∆

〉 for which
(̃
t,A

)∂
= (z,A )∂ if
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∂ > ∂1, ∂2, ∂1, ∂3, ∂4, ∂5, ∂6, ∂7, ∂8, . . . , ∂m, ∂ < ∂1, ∂2, ∂1, ∂3, ∂4, ∂5, ∂6, ∂7, ∂8, . . . , ∂m or when ∂ �

∂1, ∂2, ∂1, ∂3, ∂4, ∂5, ∂6, ∂7, ∂8, . . . , ∂m, ∂� ∂1, ∂2, ∂1, ∂3, ∂4, ∂5, ∂6, ∂7, ∂8, . . . , ∂m and
(̃
t,A

)∂
= (κ̃,A )∂ for

which ∂ = ∂1, ∂2, ∂1, ∂3, ∂4, ∂5, ∂6, ∂7, ∂8, . . . , ∂m. This soft point
(̃
t,A

)
lies in (G,A )∂

:∂∈∆
which was an

arbitrary soft basic s-open set containing (κ̃,A ). This shows that (κ̃,A ) is a soft adherent point of
C that is t(κ̃,A ) ∈ C. but C being a soft component, it is soft s-closed and therefore, C = C. Thus,

(κ̃,A ) ∈ C. So, it follows that every soft point of ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is in C, that

is ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
⊆̃ C. Hence, is ×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
=̃ C.

But, C being soft S-connected, so is, therefore, ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
.

Conversely, let the product space ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

be soft S-connected.

Since each soft projection mapping π(z,A ) :
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

→

(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

is soft continuous and the soft continuous image of each

soft S-connected set is soft S-connected, so it follows that
(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )β

is soft S-connected β ∈ ∆. That is, each soft coordinate space is soft S-connected. �

Theorem 16. Let
(
X1 , τ̃1, τ̃2, E

)
and

(
X2 , F̃1, F̃2, E

)
be two SBTSpaces on the crisp sets X1

and X2 respectively.
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
be the soft product, then the product space∏{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft locally S-connected i f each soft coordinate space

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft S-locally connected, and all but a finite soft number are soft

S-connected.

Proof. Suppose
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft S-connected for each ∂ ∈ ∆ and soft connected

for ∂ > i1,i2,i3,i4,i5,i6,i7,i8,i9, . . . ,im, ∂ < i1,i2,i3,i4,i5,i6,i7,i8,i9, . . . ,im when ∂ �
i1,i2,i3,i4,i5,i6,i7,i8,i9, . . . ,im, ∂ � i1,i2,i3,i4,i5,i6,i7,i8,i9, . . . ,im. Then we must

show that
∏
∂

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft S-locally connected. Let (κ̃,A ) = 〈(κ̃,A )∂:∂∈∆

〉

be any soft point of
∏
∂

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
contained in an arbitrary soft basic s-open

set
∏
∂

{
(G,A )∂

}
where (G,A ) soft s-open in is

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
and (G,A )∂ ={((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
for ∂ > i1/

,i2/
,i3/

,i4/
,i5/

,i6/
,i7/

,i8/
,i9/i10/

, . . . .im/
, ∂ <

i1/
,i2/

,i3/
,i4/

,i5/
,i6/

,i7/
,i8/

,i9/i10/
, . . . .im/

, when ∂� i1/
,i2/

,i3/
,i4/

,i5/
,i6/

,i7/
,i8/

,
i9/i10/

, . . . .im/
, , ∂ � i1/

,i2/
,i3/

,i4/
,i5/

,i6/
,i7/

,i8/
,i9/i10/

, . . . .im/
. Since each

×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft S-locally connected and (κ̃,A )∂ ∈ (G,A )∂ there exists a soft

connected s-open set (H,A )∂ in
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
such that (x,A )∂ ∈ (H,A )∂⊆̃(G,A )∂.

Now consider the soft subset ((H,A )) = u∂(H,A )∂ of
∏
∂

{
(G,A )∂

}
where (G,A ) soft s-open in is{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
and (H,A )∂ = (H,A )∂ if ∂ > i1/

,i2/
,i3/

,i4/
,i5/

,i6/
,i7/

,i8/
,

i9/i10/
, . . . . . . . . . . . . .im/

, ∂ < i1/
,i2/

,i3/
,i4/

,i5/
,i6/

,i7/
,i8/

,i9/i10/
, . . . .im/

, when
∂� i1/

,i2/
,

i3/
,i4/

,i5/
,i6/

,i7/
,i8/

,i9/i10/
, . . . .im/

, ∂� i1/
,i2/

,i3/
,i4/

,i5/
,i6/

,i7/
,i8/

,i9/i10/
, . . . .im/

and (H,A )∂ =
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
if ∂ = i1/

,i2/
,i3/

,i4/
,i5/

,i6/
, , . . . .im/

. Clearly,

each (H,A )∂ is soft S-connected and so is, therefore, their soft product (H,A ). Also, (H,A ) is
clearly a soft basic s-open set containing (κ̃,A ) and contained in

∏
∂

{
(G,A )∂

}
. Thus, to each
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(κ̃,A ) ∈ ×
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

and each soft basic s-open set
∏
∂

{
(G,A )∂

}
containing

(κ̃,A ) there exists a soft basic s-open connected set (H,A ) such that (κ̃,A ) ∈ (H,A )⊆̃
∏
∂

{
(G,A )∂

}
.

This shows that the soft product space
∏
∂

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft S-locally connected.

Conversely, let the soft product space
∏{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

be soft S-locally connected.

Then, we must show that each soft coordinate space
((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂
is soft S-locally

connected and all but a finite soft number are soft connected. Let
((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))i
be soft

and arbitrary soft coordinate space. Let (κ̃,A )i be any soft point of
((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))i
contained in some s-open set (G,A )i in

((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))i
. Consider the soft

point (ỹ,A ) = 〈(ỹ,A )∂:∂∈∆
〉 such that (ỹ,A )i = (κ̃,A )i. Then, clearly (ỹ,A ) ∈ πi

−1(
(G,A )i

)
.

Since (G,A )i) is soft s-open in
((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))i
and πi is soft continuous,

it follows that πi
−1(

(G,A )i
)

is soft s-open in
∏{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}
. So, by soft

S-locally connectedness of
∏{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

there exists soft S-connected

open set C such that (y,A ) ∈ C⊆̃πi
−1(

(G,A )i
)
. Therefore πi((ỹ,A )) ∈ πi(C)⊆̃

(
(G,A )i

)
or

πi((x̃,A )) ∈ πi(C)⊆̃
(
(G,A )i

)
. Since C is soft s-open and πi is soft s-open, so πi(C) is soft

s-open. Also, C is soft S-connected and πi is soft continuous, so, πi(C) is soft S-connected.

Thus, every soft s-open set (G,A )i) in
((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))i
containing an arbitrary

soft point (x,A )i ∈

(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )i

contains a soft connected

s-open set which contains (κ̃,A )i . this shows that
(
×

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
} )i

is soft locally S-connected. Thus, nothing is lost to say straight-forwardly that every soft
coordinate space is soft S-locally connected. Further let (κ̃,A ) be any point of the soft

product space
∏{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

. then, by soft S-locally connectedness

of
∏{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

there exists a soft connected s-open set C such that

(ỹ,A )) ∈ C. So there exists a soft basic s-open set
∏
∂

{
(G,A )∂:∂∈∆

}
such that (κ̃,A ) ∈

∏
∂

{
(G,A )∂

}
⊆̃C.

Now in
∏
∂

{
(G,A )∂:∂∈∆

}
(G,A )∂ is soft s-open in

((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
for every

(G,A )∂ =
((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂ f or all but f inite so f t number o f∂,s
. Clearly, πβ

(∏
∂

{
(G,A )∂

})
= in((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂ f or all but f inite so f t number o f∂,s
. But

∏
∂

{
(G,A )∂:∂∈∆

}
⊆̃C

implies that πi
(∏

∂

{
(G,A )∂:∂∈∆

})
⊆̃πv(C) this implies that πi(C) =((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂ f or all but f inite so f t number o f∂,s
. Moreover, C is soft S-connected

and πi is soft continuous; it follows that πi(C) is soft S-connected, that is((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂ f or all but f inite so f t number o f∂,s
. �

Theorem 17. Let
(
X1 , τ̃1, τ̃2, E

)
and

(
X2 , F̃1, F̃2, E

)
be two SBTSpaces on the crisp set X1

and X2 respectively.
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
be the soft product, then the product space∏{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft first-countable i f f each of the soft coordinate spaces is

soft first-countable and all but a soft-countable number are soft indiscrete.
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Proof. Let
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂ is countable f or each ∂∈∆
}
. Let all but a soft-countable

number of them be indiscrete. Let ∆/ =
{
∂ ∈ ∆ :

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂ is not so f t indiscrete
}}

.

Then the bu hypothesis ∆/ is soft-countable. Let (κ̃,A ) = 〈(κ̃,A )∂:∂∈∆
〉 be soft arbitrary point of∏{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

so that (κ̃,A )∂ ∈
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
for each

∂ ∈ ∆. Since each
((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂ is so f t f irst countable
so there exists a soft-countable local

base δ(κ̃,A ) at (κ̃,A ) for every ∂ ∈ ∆. Since for each ∂ ∈
(
∆ − ∆/

)
,
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂}
is soft indiscrete we have δ(κ̃,A ) =

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂}
for each ∂. For every ∂ ∈ ∆/,

Let C∂ =
{
πβ−1(B) : B ∈ δ(κ̃,A )

}
. Then, C∂ is clearly soft-countable collection of soft s-open sets,

each containing (κ̃,A ). Let C = ∪
{
C∂:∂∈∆/}

. Then, C being the soft union of soft-countable collection of
soft-countable sets, is soft-countable. So, there are only a soft-countable number of finite subcollections
of C. Let C/ be the soft collection of soft intersections of all finite soft subcollections of C. Then, C/ is

clearly soft-countable and is a soft local base at (κ̃,A ). Hence
∏{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft first-countable. Conversely, let
∏{((

X1 , τ̃1, τ̃2, E
)
∗

((
X2 , F̃1, F̃2, E

)))∂:∂∈∆
}

be soft first-countable

space. Let (κ̃,A )i ∈

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))i}
and let (κ̃,A ) = 〈(κ̃,A )∂:∂∈∆

〉 ∈∏{((
X1 , τ̃1, τ̃2, E

)
∗

((
X2 , F̃1, F̃2, E

)))∂:∂∈∆
}
. Since

∏{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft

first-countable there exists a soft-countable s-open base at (κ̃,A ). Let it be ℘ =
{
Bn:nℰN

}
.

Clearly, each Bn is soft s-open in
∏{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

and soft continuous

(κ̃,A ). Let ℘∗ =
{
π3(Bn ) : n ∈ N

}
, it follows that each member of ℘∗ is soft s-open subset of{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))i}
. Also ℘∗ is clearly soft-countable. More-over, (κ̃,A ) ∈ Bn

for each n ∈ N implies that πi((κ̃,A ) ∈ πβ(Bn) implies that (κ̃,A )i ∈ πi(Bn). Now,
let (N,A )i be soft arbitrary nbd of (κ̃,A )β. Then, there exists soft s-open set (G,A )β in{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))i}
such that (κ̃,A )i ∈ (G,A )i⊆̃(N,A )i. Consequently, (κ̃,A ) =

πi
−1(

(κ̃,A )i
)
∈ πi

−1(
(G,A )i

)
⊆̃πi

−1(
(N,A )i

)
. Since πi is soft continuous, π−i

(
(G,A )i

)
is soft

s-open neighbourhood (nbhd). So, there exists some member (G,A )i
0
∈ ℘ such that (κ̃,A ) ∈

(G,A )i
0
⊆̃πβ

−1(
(G,A )i

)
⊆̃πi

−1(
(N,A )i

)
. Therefore, πi ((κ̃,A )) ∈ πi

(
Bn 0

)
⊆̃

(
(N,A )i

)
. This shows

that ℘∗ is soft-countable local base at (κ̃,A )i and therefore
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))i}
is soft first-countable. Hence, each coordinate space is soft, first-countable. Further, let Let

∆/ =
{
∂ ∈ ∆ :

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))∂ is not so f t indiscrete
}}

. Then, we must show that ∆/

is soft-countable. We prove this result by contradiction that is we cotra-positively suppose
that ∆/ is uncountable. Now, for each α ∈ ∆/,

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))α}
is not

soft indiscrete. So, there exists a soft non-empty s-open proper soft subset (G,A )i of{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))α}
for each α ∈ ∆/. Let (ỹ,A )α ∈ (G,A )α and (̃z,A ) be soft

element of
∏{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

such that (̃z,A )α = (ỹ,A )α f or all α ∈ ∆/. Since

of
∏{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is soft first-countable so there exists a soft-countable

local base ℘∗ = (Bn ) : n ∈ N at (̃z,A ). Clearly, πα(Bn) =
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))α}
for all except at finite soft number of α, s. Let (Y,A )n bea finite soft subset of ∆ for which
πi(Bn) Q

{((
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

))α}
where the equality sign is ruled out because if it is

there then we can not proceed further more. Then, (Y,A ) =
⋃{

(Y,A )n:n∈N
}

being soft-countable
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cannot contain the soft uncountable set ∆/. so, there exists some i ∈ ∆/ such that i < (Y,A )n f or all n∈N

and hence πi(Bn) =
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))i}
for every n ∈ N. Now, there exists

a non-empty soft s-open proper subset (G,A )i of
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))i}
such that

(̃z,A )i = (ỹ,A )i ∈ (G,A )i and therefore (̃z,A ) = πi
−1(

(̃z,A )i
)
∈ πi

−1(
(G,A )i

)
. this shows

that πi
−1(

(G,A )i
)

is soft s-open nhd of (̃z,A ). But no soft member of ℘ is soft subset of πi
−1(

(G,A )i
)
,

since πi(Bn) =
{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))i}
for every Bn

∈ ℘. This is purely contradiction.

This contradiction is taking birth due to our wrong supposition, which we made at the start. Hence,
we are obliged that all but the soft-countable numbers of the coordinate spaces are soft indiscrete. �

Theorem 18. Let
(
X1 , τ̃1, τ̃2, E

)
and

(
X2 , F̃1, F̃2, E

)
be two SBTSpaces on the crisp set X1

and X2 respectively.
(
X1 , τ̃1, τ̃2, E

)
∗

(
X2 , F̃1, F̃2, E

)
be the soft product, then the product space∏{((

X1 , τ̃1, τ̃2, E
)
∗

(
X2 , F̃1, F̃2, E

))∂:∂∈∆
}

is second-countable if each of the soft coordinate spaces is soft

second-countable and all but a soft-countable soft number are soft indiscrete.

Proof. Similar to that of Theorem 17. �

7. Conclusions

In this article, the product of soft bitopological spaces in connection with different particular
structures with respect to crisp points under most soft generalized open sets that are soft s-open
sets is discussed. With the help of soft s-open sets, soft separation axioms are regenerated in soft
bitopological spaces with respect to crisp points and a little bit with soft points with all kinds of
possibilities. With the help of soft s-open sets, the soft products of different structures with respect to
crisp points are addressed. The soft base is connected with the soft product of soft bitopologies with
respect to soft s-open sets. In a similar fashion, soft subbases are engaged with soft product spaces
with respect to soft s-open sets. Soft projection over the soft product spaces of soft bitopologies is
defined, and their soft continuity is addressed. Soft product spaces relative to soft first and soft second
coordinate spaces are studied in soft bitopologies. The characterization of soft separation axioms with
soft connectedness is addressed with respect to semiopen sets in soft bitopological spaces. In addition
to this, the product of two soft topological spaces is (S1and S2) space if each coordinate space is soft
(S1 and S2) space, product of two sot topological spaces is (S regular and C regular) space if each
coordinate space is (S regular and C regular), the product of two soft topological spaces is connected if
each coordinate space is soft connected and the product of two soft topological spaces is (first countable,
second-countable) if each coordinate space is (first countable, second-countable). All the above results
are developed with respect to crisp (ordinary) points of the space. In the future, we will try to generate
the above structures with respect to the soft points of the space. In this study, the product was
limited to two structures. We will try to study the product of finite structures and infinite structures.
In the development of the structures, we will use the nearly soft open sets, soft generalized open sets
and soft most generalized open sets. After finishing this, we will try our hands to extend the soft
bitopological structures to soft tri-topological structures with respect to crisp points and soft points of
the spaces under nearly soft open sets, soft generalized open sets and soft most generalized open sets.
When studying something in soft topology, we will be very careful because our domain of soft topology
is not so strong. By extending the domain will extend the number of soft topologies. The more the
topologies, the more accurate the structures will be because soft topology is actually giving information
about soft structures. This article is just the beginning of the investigation of a new kind of structure.
Hence, it will be necessary to continue the study and carry out more theoretical research in order to
build a general framework for practical applications.
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