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Abstract: In this work, the generalized theory with dual-phase-lag of thermoelasticity is employed to
study the influences induced by absorbing a penetrating laser radiation inside a 2D thermoelastic
semi-infinite medium. The medium’s surface is presumed to be exposed to temperature-dependent
heat losses and is traction-free. The considered problem is solved using the integral transforms
technique by applying the double-transformation Laplace and Hankel. A numerical fashion is
applied to obtain the inverse of the Laplace transformation. The results of this problem are presented
graphically for some studied fields.

Keywords: generalized thermoelasticity with dual-phase-lag; heat losses; laser radiation; volumetric
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1. Introduction

One of the celebrated contributions to the field of thermoelasticity is the coupled theory, which was
formulated by Biot in 1956 [1], in which the author tackled one of the faults of the classical uncoupled
theory of thermoelasticity by modifying the energy equation to contain a term representing the strain
field. Since Biot’s model was based upon Fourier’s law, it failed to address the second defect of
the classical uncoupled theory, which means that the generated heat waves still propagate with an
infinite velocity. Hence, the behavior of Biot’s theory contradicts the laws of physics, especially for
some problems such as utilizing laser heat sources, where their pulse duration is extremely short,
and problems with large temperature gradients [2,3].

After Biot’s attempt, great efforts were made to obtain a generalization that addressed the
defect found in the coupled theory; this point became the focus of attention for those interested in
thermoelasticity. Authentic progress was made in 1967 when Lord and Shulman [4] formulated a
new model based on Cattaneo’s approach [5,6] instead of Fourier’s Law. This theory was followed
by several essential generalizations [7–9]; most of these theories were dependent on adjusting the
heat equation. The DPL model or the generalized theory with dual-phase-lag is one of the essential
generalizations developed by Tzou [10,11], where the energy equation was modified to contain two
distinct phase-lags: one symbolizes the temperature gradient, while the other symbolizes the heat
flux. Several authors have employed the DPL model to study thermoelastic waves under the effect of
different fields [12–19].

Since the discovery of lasers, many applications in physics, mechanics, and engineering have been
implemented based on their various properties, especially in materials processing, such as drilling
of holes, spot welding, glazing of materials, and surface-hardening scribing [20]. Several authors
have employed the generalized theories of thermoelasticity to study the thermoelastic interactions
induced by a pulsed laser, considering different aspects [21–24]. Zenkour and Aboelregal [25] studied
the fractional influences in a half-space solid exposed to non-Gaussian laser radiation by utilizing the
two-temperature generalized model with a fractional-order energy equation. Bassiouny et al. [26]
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investigated the thermoelastic conduct of an elastic semi-infinite solid under the influence of a pulsed
laser, by applying the theory of fractional-order strain thermoelasticity. Allam and Tayel [27] applied
five different theories to study the interaction caused by surface absorption of a pulsed laser in a
functionally graded thermoelastic semi-infinite medium. Abbas and Marin [28] employed the Lord
and Shulman model to study the effect of the relaxation time in a 2D thermoelastic semi-infinite solid
illuminated by a laser pulse. Abouelregal and Zenkour [29] employed the generalized two-temperature
thermoelastic theory to discuss thermoelastic responses in a half-space, whose pounding plane was
exposed to a laser pulse. Tayel and Hassan [30] and Tayel [31] studied the thermoelastic interaction
induced by both surface and volumetric absorption techniques, respectively, in a one-dimensional
semi-infinite medium, considering the absence and existence of cooling, by employing various
thermoelasticity theories.

Integral transforms have been effectively employed for solving many problems in physics,
applied mathematics, and engineering sciences. Although Laplace transform is considered one
of the most essential integral transformations applied to solve coupling problems in the theory of
thermoelasticity, its inverse is very difficult to obtain using the usual methods. This difficulty has
prompted those interested in thermoelasticity to apply numerical methods or to use asymptotic
expansion techniques that are adequate for short times. This technique was used in the context of the
coupled theory by Hetnarski [32,33] and applied by several authors to some generalized thermoelastic
problems [34–36].

The main goals of this work are to study the thermoelastic interaction induced by the volumetric
absorption technique of a laser pulse in a 2D semi-infinite medium and to investigate the effects of the
phase-lag parameters of the DPL theory of thermoelasticity on the existence and absence of a cooling
effect. The medium is studied under the influence of a laser beam, the spatial and temporal profiles of
which are considered Gaussian. The medium surface is exposed to temperature-dependent heat losses
and is considered traction-free.

2. Problem Formulation

A thermoelastic, isotropic, and homogeneous 2D semi-infinite medium (z ≥ 0) is considered under
the influence of a laser beam that is incident-normal to a small specified region of the medium’s surface.
The medium is initially at a uniform temperature T0 and its surface (z = 0) is taken as stress-free and
assumed to be exposed to temperature-dependent cooling. The cylindrical coordinate system (r, φ, z)
is utilized in the problem, with the z-axis oriented inward and vertically.

According to the heating process, which is considered axisymmetric, all quantities will depend on
r, z and t only and, thus, the displacement vector u will possess the following components:

ur = u(r, z, t), uφ = 0, uz = w(r, z, t). (1)

Consequently, the nonvanishing strain components are

err =
∂ u
∂ r

, ezz =
∂ w
∂ z

, eφφ =
u
r

, erz =
1
2

(
∂u
∂z

+
∂w
∂r

)
.

Thus, the dilatation e takes the form

e = err + eφφ + ezz =
1
r
∂
∂ r

(r u) +
∂ w
∂ z

. (2)
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Following [10,11], the linear heat equation for a homogeneous and isotropic body in the context
of the DPL model is given as

k
(
1 + τ1

∂
∂ t

)
∇

2T =
(
1 + τ2

∂
∂ t +

τ2
2

2
∂2

∂ t2

)(
ρ CE

∂T
∂ t + γ T0

∂e
∂ t −Q(r, z, t)

)
,

with ∇
2(•) =

(
∂2

∂ r2 +
1
r
∂
∂ r +

∂2

∂ z2

)
(•),

(3)

where k stands for thermal conductivity; ρ for density; T for the absolute temperature, CE, for the specific
heat at constant strain; T0 for the reference temperature, which is chosen such that

∣∣∣(T − T0)/T0
∣∣∣� 1

and τ1, τ2 for phase-lags of the temperature gradient and the heat flux, respectively, where (τ1, τ2 > 0).
Moreover, γ = (3λ+ 2µ)αT, in which λ and µ are lamé’s constants and αT is the thermal expansion.

For volumetric absorption in a 2D medium, Q (r, z, t) is given as

Q (r, z, t) = A0q0Q(t) e
−r2

ω2 β e−β z , (4)

where A0, q0, Q(t),ω, β denote the transition coefficient of the illuminated surface, the maximum value
of the laser intensity, the temporal laser pulse shape, a spatial constant, and the absorption coefficient
of the material, respectively.

The axially symmetric equations of motion in terms of displacements and absence of body
forces are

(λ+ µ)
∂ e
∂ r

+ µ
(
∇

2
−

1
r2

)
u− γ

∂T
∂ r

= ρ
∂2u
∂ t2 , (5)

(λ+ µ)
∂ e
∂ z

+ µ ∇2 w− γ
∂T
∂ z

= ρ
∂2w
∂ t2 . (6)

Furthermore, the nonvanishing stresses are determined by

σzz = 2µ
∂w
∂z

+ λe− γ θ, (7)

σrr = 2µ
∂u
∂r

+ λe− γ θ, (8)

σφφ = 2µ
u
r
+ λe− γ θ, (9)

σrz = µ

(
∂ u
∂ z

+
∂ w
∂ r

)
, (10)

where θ = T − T0 represents the increment of the temperature.
Due to the foregoing formulation, the boundary conditions will be

σzz|z=0 = σrz
∣∣
z=0 = 0,

k
(
1 + τ1

∂
∂ t

)
∂ θ
∂ z

∣∣∣
z=0 =

(
1 + τ2

∂
∂ t +

τ2
2

2
∂2

∂ t2

)
h θ(r, 0, t),

 (11)

where h represents the coefficient of the heat transfer responsible for cooling, and θ(r, 0, t) is the
surface temperature.

Additionally, the initial conditions are

θ(r, z, t)
∣∣∣
t=0 =

∂θ(r,z,t)
∂t

∣∣∣∣
t=0

= 0, u(r, z, t)
∣∣∣
t=0 =

∂u(r,z,t)
∂t

∣∣∣∣
t=0

= 0,

w(r, z, t)
∣∣∣
t=0 =

∂w(r,z,t)
∂t

∣∣∣∣
t=0

= 0.

 (12)
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Now, we introduce the following nondimensional variables

(u′, w′, r′, z′, ω′) = c η(u, w, r, z,ω) θ′ = γ θ
(λ+2µ) σ

′
i j =

σi j
µ

(t′, τ′1, τ′2) = c2η(t, τ1, τ2) h′ = h
c ρ CE

β′ =
β

c η
q′0 =

γq0
(λ+2µ)c ρ CE

(13)

where c2 =
λ+2µ
ρ , η = ρcE

k .
For seeking the simplicity primes will be dropped, and thus Equations (3), (5) and (6) in the

nondimensional forms will be(
1 + τ1

∂
∂ t

)
∇

2θ =

1 + τ2
∂
∂t

+
τ2

2

2
∂2

∂t2

(∂θ∂t
+ ε

∂e
∂t
−A0q0β Q(t)e−

r2

ω2 e−βz
)
, (14)

(g − 1)
∂e
∂r

+
(
∇

2
−

1
r2

)
u− g

∂θ
∂r

= g
∂2u
∂t2 , (15)

(g − 1)
∂e
∂z

+∇2w− g
∂θ
∂z

= g
∂2w
∂t2 , (16)

where g =
λ+2µ
µ , ε = T0γ

2

ρ CE(λ+2µ) .

Combining Equations (15) and (16) by applying the operators 1
r

(
∂
∂ r r.

)
for (15) and ∂

∂z for (16),
then adding them, one gets

∇
2e−∇2θ =

∂2e
∂ t2 . (17)

In the nondimensional form, the stress components become

σrr = 2
∂u
∂r

+ (g− 2)e− gθ, (18)

σzz = 2
∂w
∂z

+ (g− 2)e− gθ, (19)

σφφ = 2
u
r
+ (g− 2)e− gθ, (20)

σrz =
∂u
∂z

+
∂w
∂r

. (21)

In addition, Equation (11) will be written as

(σzz = σrz)
∣∣∣
z=0 = 0,(

1 + τ1
∂
∂ t

)
∂ θ
∂ z

∣∣∣
z=0 =

(
1 + τ2

∂
∂ t +

τ2
2

2
∂2

∂ t2

)
h θ(r, 0, t).

 (22)

3. Problem Solution

The specific conditions in Equation (12) and the basic Equations (14) and (17) predict that the
double-transformation Laplace and Hankel integral transforms [37] are more appropriate to be applied
for t and r, respectively, in which the transformation is given as

f̃ ( α, z, s) =
∞∫
0

∞∫
0

rJn(α r) f (r, z, t) e−stdr d t,

f (r, z, t) = 1
2πi

σ+i ∞∫
σ−i ∞

∞∫
0
αJn(α r) f̃ (α, z, s)estd α d s,

 (23)
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where s is the Laplace transform variable, the superscripts dash and tilde indicate the Laplace and
Hankel transformation of f (r, z, t), respectively, and Jn is the Bessel function of the first kind of order n
in which

n =

 0 for f (r, z, s) =
{
θ, w, e, σzz, σrr, σφφ

}
(r, z, s)

1 for f (r, z, s) =
{
u, σrz

}
(r, z, s)

.

Thus, Equations (14) and (17) become, respectively(
D2
− α2

− s Γ
)
θ̃− εs Γ ẽ = −A0q0β ΓQ(s)η̃(α)e−βz. (24)

(
D2
− α2

− s2
)̃
e−

(
D2
− α2

)
θ̃ = 0, (25)

where Γ =
1+τ2s+

τ2
2
2 s2

1+τ1s , Q(s) is the Laplace transform of Q(t), and η̃(α) = ω2

2 e−
1
4α

2ω2
is the Hankel

transform of order zero of e
−r2

ω2 .
The elimination of ẽ between Equations (24) and (25) gives(

D4
− b1(α, s)D2 + b2(α, s)

)
θ̃ = −A0q0β Γ

(
β2
− α2

− s2
)
Q(s)η̃(α)e−βz, (26)

where b1(α, s) = 2α2 + s2 + sΓ(1 + ε), b2(α, s) = α4 + α2s2 + sΓα2(1 + ε) + s3Γ.
Consequently, Equation (26) can be written as(

D2
− k2

1

)(
D2
− k2

2

)
θ̃ = −A0q0β Γ

(
β2
− α2

− s2
)
Q(s)η̃(α)e−βz. (27)

where k2
i are the roots of the following auxiliary equation:

k4
− b1(α, s)k2 + b2(α, s) = 0. (28)

The solution of Equation (27) after considering the behavior of θ̃ as z→∞ is given as

θ̃(α, z, s) =
2∑

i=1

Bi(α, s) e−kiz + M(α, s)e−βz, (29)

where M(α, s) represents the coefficient of the particular solution of Equation (27); using the
undetermined coefficients method, one gets

M(α, s) = −
A0q0Γβ

(
β2
− α2

− s2
)
Q(s)η̃(α)(

β2 − k2
1

)(
β2 − k2

2

) , (30)

and thus

θ̃(α, z, s) =
2∑

i=1

Bi(α, s) e−kiz −
A0q0Γβ

(
β2
− α2

− s2
)
Q(s)η̃(α)(

β2 − k2
1

)(
β2 − k2

2

) e−βz. (31)

In a similar fashion, the elimination of θ̃ between Equations (24) and (25) gives(
D2
− k2

1

)(
D2
− k2

2

)̃
e = −A0q0β Γ

(
β2
− α2

)
Q(s)η̃(α)e−βz. (32)
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Solving (32), one can obtain

ẽ(α, z, s) =
2∑

i=1

Eie−kiz + ep(α, s)e−βz, (33)

where ep is the coefficient of the particular solution of (32).

ep = −
A0q0Γβ

(
β2
− α2

)
Q(s)η̃(α)(

β2 − k2
1

)(
β2 − k2

2

) . (34)

Introducing Equations (29) and (33) into Equation (25) yields

Ei(α, s) =

 k2
i − α

2

k2
i − α

2 − s2

Bi(α, s), (35)

ep(α, s) =
(

β2
− α2

β2 − α2 − s2

)
M(α, s), (36)

So that

ẽ =
2∑

i=1

 k2
i − α

2

k2
i − α

2 − s2

Bie−kiz−
A0q0Γβ

(
β2
− α2

)
Q(s)η̃(α)(

β2 − k2
1

)(
β2 − k2

2

) e−βz. (37)

Applying (23) to Equation (16), one gets

(D2
− α2

− g s2) w̃ = gD θ̃− (g− 1)D ẽ. (38)

Substituting for θ̃ and ẽ in Equation (38), then solving the nonhomogeneous second-order ordinary
differential equation, this gives

w̃ = N(α, s)e−ξ z
−

2∑
i=1

 ki

k2
i − α

2 − s2

Bi(α, s)e−kiz +
A0q0Γβ2Q(s)η̃(α)(
β2 − k2

1

)(
β2 − k2

2

) e−βz, (39)

where ξ =
√
α2 + g s2.

Applying (23) on the nondimensional form of Equation (2) and making use of the relation
Hn

{
r−n−1 d

dr

(
r1+n f (r, z, s)

)}
= αHn+1

{
f (r, z, s)

}
for n = 0, it follows

ẽ = α ũ +
d w̃
d z

, (40)

where Hn
{
f (r)

}
represents the Hankel transform of f (r).

Now, in order to obtain ũ, we shall substitute Equations (37) and (39) into Equation (40); one gets

ũ =
1
α

ξ Ne−ξ z
−

2∑
i=1

 α2

k2
i − α

2 − s2

Bie−kiz +
A0q0Γβα2Q(s)η̃(α)(
β2 − k2

1

)(
β2 − k2

2

) e−βz

. (41)

The stress components of the problem can be obtained by applying (23) on (18), (19), (20) and (21);
this gives the following relations:

σ̃rr = −2α ũ + (g− 2)̃e− gθ̃, (42)
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σ̃zz = 2
d w̃
dz

+ (g− 2)̃e− gθ̃, (43)

σ̃φφ = 2α ũ + (g− 2)̃e− gθ̃, (44)

σ̃rz =
d ũ
dz
− α w̃. (45)

From the stresses above, only the stresses that related to the boundary conditions will be picked
out to be calculated; hence, introducing Equations (31), (37), (39), and (41) into (43) and (45), it follows

σ̃zz = −2ξ Ne−ξ z +
2∑

i=1

 Ω
k2

i − α
2 − s2

 Bie−kiz −
A0q0Γβ Ω Q(s)η̃(α)(
β2 − k2

1

)(
β2 − k2

2

) e−βz, (46)

σ̃rz =
1
α

−Ω Ne−ξ z +
2∑

i=1

 2α2ki

k2
i − α

2 − s2

 Bie−kiz −
2A0q0Γβ2α2 Q(s)η̃(α)(

β2 − k2
1

)(
β2 − k2

2

) e−βz

. (47)

where Ω = 2α2 + g s2.
Now making use of Equations (31), (46), and (47), Equations (22) can be written as

−

2∑
i=1

ki Bi(α, s) = M1 + Γ h θ̃(α, 0, s), (48)

2∑
i=1

Fi Bi(α, s) − 2 ξ N(α, s) =M2, (49)

2∑
i=1

Fi+2 Bi(α, s) − Ω N(α, s) = M3, (50)

where
M1 = β M, M2 = − Ω M

(β2−α2−s2)
, M3 = −

2β α2M
(β2−α2−s2)

,

Fi =
(

Ω
k2

i −α
2−s2

)
, Fi+2 =

(
2α2ki

k2
i −α

2−s2

)
, (i = 1, 2).

Solving (48), (49), and (50), one gets

B1 =

(
h Γθ̃(α, 0, s) + M1

)
(2ξ F4 − Ω F2) + (2 ξM3 −Ω M2)k2

(Ω F2 − 2ξ F4)k1 + (2ξ F3 −Ω F1)k2
, (51)

B2 =

(
h Γθ̃(α, 0, s) + M1

)
(Ω F1 − 2ξ F3) + (Ω M2 − 2 ξM3)k1

(Ω F2 − 2ξ F4)k1 + (2ξ F3 −Ω F1)k2
, (52)

N =
(F4k1 − F3k2)M2 +

(
h Γθ̃(α, 0, s) + M1

)
(F1F4 − F2F3) + (F1k2 − F2k1)M3

(Ω F2 − 2ξ F4)k1 + (2ξ F3 −Ω F1)k2
. (53)

Substituting Equations (51)–(53) into Equation (31) and setting (z = 0), this gives the surface

temperature θ̃(α, 0, s) as follows:

θ̃(α, 0, s) =
M1 ((2ξ F3 −Ω F1)(β+ k2) + (Ω F2 − 2ξF4)(β+ k1)) + β(k1 − k2)(−Ω M2 + 2 ξM3)

β((2F4 ξ− F2 Ω)(hΓ + k1) + (F1 Ω − 2F3 ξ)(hΓ + k2))
. (54)
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4. Small Time Approximation

The above calculations and the roots of the auxiliary Equation (28) foretell that converting the
solution to the physical domain is too difficult to be performed using the usual methods. So, a small
time approximation will be adapted for the roots, conforming to great s-values; this technique was
used in [36] according to [38,39].

The roots of Equation (28) are given as

k1 =

√
2α2 + s2 + sΓ (ε+ 1) + s

√
s2 + 2sΓ (ε− 1) + Γ2(ε+ 1)2

√
2

, (55)

k2 =

√
2α2 + s2 + sΓ (ε+ 1) − s

√
s2 + 2sΓ (ε− 1) + Γ2(ε+ 1)2

√
2

. (56)

Rewrite Equations (55) and (56) by setting p = s−1 in the form ki = p−1
√

fi(p), where

f1 =
2α2p2+1+pΓ(ε+1)+

√
1+2pΓ(ε−1)+p2Γ2(ε+1)2

2 ,

f2 =
2α2p2+1+pΓ(ε+1)−

√
1+2pΓ(ε−1)+p2Γ2(ε+1)2

2 ,

 (57)

and Γ becomes Γ =

(
p2+ p τ2+

τ2
2
2

)
p (p+τ1)

.
Expanding fi(p), (i = 1, 2) in a Taylors series and considering the first four terms only, one gets

fi(p) = di0 + di1p + di2p2 + di3p3, (58)

where the coefficients are listed in the Appendix A.

Again, expand [ fi(p)]
1
2 in a Taylor series, considering only the first three terms; this gives the

expressions for k1 and k2 as
ki = p−1(bi0 + bi1p + bi2p2), (i = 1, 2) (59)

where
bi0 =

√
di0,

bi1 = di1

2
√

di0
,

bi2 =
(4di2 di0−di1

2)
8di0

3/2 .
Finally, ki can be written in the form

ki = bi0s + bi1. (i = 1, 2) (60)

5. Inversion of the Transformation

Owing to the extreme intricacy of obtaining the studied fields in the physical domain, the inverse

formula of the double transformation will be used separately. To do that, let f̃ (α, z, s) be a function
in the transformed domain first; the inverse Hankel transform will be performed by utilizing the
following formula:

f (r, z, s) =

∞∫
0

α Jn(r α) f̃ (α, z, s)d α, (61)

where f (r, z, s) is a function in the Laplace domain.
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Second, the function f (r, z, s) will be returned to the time domain by applying the Riemann–Sum
approximation method using the formula

f (t) =
eζ t

t

1
2

f (ζ) + (−1)nRe
N∑

n=1

(
f
(
ζ +

inπ
t

)), (62)

where N is an integer that indicates the number of terms and should be taken as adequately large.
The numerical experiments show that as ζ ≈ 4.7/t, the relation (62) convergences faster [40].

6. Application and Computation

As an example, the computations were implemented on a copper half-space subjected to a laser
pulse, the intensity of which is q0 = 104 W/m2, assuming that τ2 = 75 × 10−5 s and β = 106 m−1.
To ensure the validity of the obtained solution, θ(r, 0, t), θ, w and σzz were calculated for some values
of h. The radial and temporal shapes considered in the computations are chosen to be Gaussian
distributions, and thus

Q(t) = e−(
t−a
b )

2
, (63)

where a and b denote the times at which Q(t) becomes maximum and reduces to e−1, respectively.
The mechanical constants of the considered medium are taken as (see [22])

T0 = 293 K ρ = 8954 kg m−3 αT = 1.78× 10−5 K−1

cE = 383.1 J(kg)−1 K−1

ω = 10−3 m k = 386 W m−1 K−1 λ = 7.76× 1010 kg m−1 s−2

a = 3× 10−3 s b = 1× 10−3 s A0 = 0.01 µ = 3.86× 1010 kg m−1 s−2

7. Results and Discussion

Figure 1 represents the surface temperature θ(r, 0, t) calculated for τ1 = 0.6 τ2 in the absence
of cooling. The figure shows that the surface temperature increases until it reaches its maximum,
which clearly shifted to a greater time than that of the maximum of Q(t)

(
3× 10−3

)
. After θ(r, 0, t)

reaches its maximum, it begins to decrease and does not reach the zero-value even after the pulse
is switched off. Moreover, in the radial direction, θ(r, 0, t) has a weak gradient near the surface;
this gradient becomes stronger as r-increases until the temperature vanishes. The behavior of the
temperature depends on two main occurrences, namely, the conductivity of the material and the
absorbed energy, where at the beginning of the illumination process and due to the increased pulse,
the absorbed energy will be greater than the conductivity of the material, so θ(r, 0, t) increases;
this behavior lasts up to when the absorbed energy is matched to the conducted energy; exactly at
this time, the surface temperature attains its maximum. After that, and according to the chosen pulse
shape, the absorbed energy begins to decrease, and the conductivity of the material gains the upper
hand; this leads to a decrease in the surface temperature. After the pulse is switched off, the gradient
of the temperature becomes smaller than that during the pulse, which is due to the absence of the laser
radiation; this leads to a small gradient and, consequently, small conduction of the heat energy.

Figure 2 represents the time-dependent surface temperature, with h as a parameter, calculated for
τ1 = 0.6 τ2 and r = 5× 10− 4. As expected, the surface temperature clearly decreases with increasing
values of the cooling coefficient; moreover, as the cooling coefficient takes small values, the maximum
value of the surface temperature is shifted towards greater time than that of the maximum of Q(t).
Beside the general decrease in surface temperature with increasing h, its behavior after it reaches its
maximum, and at the times where the laser is switched off, decreases until the surface temperature
approximately takes the shape of Q(t). This behavior is due to the contribution of the cooling effect
together with the conductivity of the material, especially after the laser is switched off and the absorbed
energy is stopped.
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Figure 2. The time-dependent surface temperature vs. t with h as a parameter.

Figure 3 represents the time-dependent laser pulse shape and the surface temperature, with τ1 as
a parameter in the absence of cooling, calculated for r = 5× 10− 4. The figure shows that compared to
the chosen temporal pulse shape, Q(t), for τ1 > τ2, the maximum surface temperature becomes smaller
and shifts evidently towards greater time than that for τ1 < τ2. This means that the surface temperature
for τ1 > τ2 needs more time and consumes more energy to reach its maximum; this behavior is similar
to the behavior that appears in [31] for the classical coupled theory.

Figure 4 represents the time-dependent laser pulse shape and the surface temperature, with τ1

as a parameter in the presence of heat losses, calculated for h = 100, r = 5× 10− 4, and t = 4× 10− 3.
As seen, the effect of cooling is very pronounced, where the values of the surface temperature are
decreased and its maximum is slightly shifted from the time of the maximum of Q(t). Moreover,
after the laser is switched off, the temperature approximately reaches zero, which does not occur in
the absence of cooling; these behaviors are due to the cooling and the conductivity of the material.
The behavior of this figure is slightly similar to the behavior of the previous figure, where the time
needed to reach the peak is slightely shifted towards greater time for τ1 > τ2 than for τ1 < τ2.
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Figure 4. The time-dependent surface temperature vs. t with τ1 as a parameter for h = 0.

Figure 5 represents the temperature θ as a function of z and t in the absence of cooling, calculated
for τ1 = 0.6 τ2 and r = 5× 10− 4. The finite velocity that distinguishes the DPL model appears evidently
through the strong gradient at all locations, especially before the pulse is switched off. After the
temperature reaches its maximum, a small temperature gradient begins to appear near the surface.
The figure shows that the temperature is fully compatible with the time pulse profile, where the
temperature increases until it reaches its maximum and then begins to decline. The temperature shows
its highest value at the irradiated surface; this value decreases as z increases until it vanishes.

Figure 6 represents the temperature of the medium as a function of z and r in the absence of cooling,
calculated for τ1 = 0.6 τ2 and t = 4× 10− 3. It is evident that the maximum temperature occurs at the
illuminated surface and the temperature has a weak gradient in a small region adjacent to the target
surface, as z and r increases; the gradient becomes strong until the temperature vanishes. This figure
agrees with the previous figure, for which the finite velocity of the employed model evidently appears.
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Figure 6. The temperature θ as a function of z and r in the absence of cooling.

Figure 7 represents the temperature versus z, with h as a parameter, calculated for τ1 = 0.6 τ2 and
r = 5× 10− 4. As expected, the temperature decreases as h increases; moreover, a weak gradient near
the surface is observed; this gradient moves deeper into the medium as h increases. The maximum
temperature is slightly shifted, nearer to the surface; this behavior can be observed from the value
h = 20.

Figure 8 represents the temperature versus z in the absence of cooling, with τ1 as a parameter,
calculated for r = 5× 10− 4 and t = 4× 10− 3. The figure shows that, near the surface, the temperature
gradients in the case of τ1 > τ2 are stronger than that of τ1 < τ2, which has lower gradients; this behavior
is evident for the curve of τ1 = 0.3 τ2. Additionally, the penetration of temperature into the medium
increases as τ1 increases and becomes greater as τ1 > τ2; this behavior is clearly shown for τ1 = 2 τ2,
demonstrated by comparison with the other values of τ1. Again, the behavior of the temperature when
τ1 > τ2 is similar to the behavior of the classical coupled theory of thermoelasticity in [31].
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Figure 8. The temperature θ versus z, with τ1 as a parameter in the absence of cooling.

Figure 9 represents the temperature distribution versus z, with τ1 as a parameter, calculated for
h = 100, r = 5 × 10− 4 and t = 4 × 10− 3. The main behavior of the previous figure is observed here
for both the gradient of the temperature and the penetration into the medium. The figure shows a
pronounced contribution to the cooling, where for τ1 ≤ τ2 it is clear that the maximum does not occur
at the illuminated surface but is shifted to greater z values and the temperature at the surface decreases
as τ1 decreases.

Figure 10 represents the component of the displacement w of the medium as a function of z
and t in the absence of cooling, calculated for τ1 = 0.6τ2 and r = 5 × 10− 4. The negative sign of
the displacement refers to its direction, where it occurs in the direction of the free surface. As seen,
the displacement does not show a behavior before the time t = 0.002; this behavior is attributed
to the small temperature at this time; moreover, the displacement increases with increased time.
The maximum displacement appears at the surface and decreases as z takes greater values until it
vanishes; this behavior is due to temperature behavior.
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Figure 10. The displacement w as a function of z and t in the absence of cooling.

Figure 11 represents the component of the displacement w of the medium as a function of z
and r in the absence of cooling, calculated for τ1 = 0.6τ2 and t = 4× 10− 3. This figure agrees with
the previous figure, where the maximum displacement is observed at the surface and decreases by
increasing both z and r. The figure also shows a negative sign for the displacement in the r-direction;
this behavior is due to a decrease in the distance between the particles in the r-direction.

Figure 12 represents the distribution of the displacement w, with h as a parameter, calculated for
τ1 = 0.6 τ2 and r = 5× 10− 4. As seen from the figure, the displacement decreases with an increase in
h; this behavior is owed to the decrease in the corresponding temperature (see Figure 7).

Figure 13 represents the displacement w in the absence of cooling, with τ1 as a parameter,
calculated for r = 5× 10− 4 and t = 4× 10− 3. The figure shows that as τ1 takes values greater than
τ2, the displacement decreases, and vice versa. Observing the behaviors of both the temperature
and the displacement, one can note that the smallest and deeper temperatures produce the smallest
displacements; this conduct can be explained from Figure 8, where for τ1 > τ2, the gradient of the
temperature in the vicinity of the surface and the penetration into the medium is greater than in the
case of τ1 < τ2; this means that the first case consumes more energy in heating the surrounding and to
penetrate than the second case and, thus, its temperature and displacement is the smallest.
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Figure 14 represents the displacement w with the existence of cooling, with τ1 as a parameter,
calculated for r = 5× 10− 4 and t = 4× 10− 3. The figure shows a clear influence for the heat losses,
where the difference between the three curves becomes approximately slight; this is despite the
compatibility of the behavior of this figure with the previous figure.
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Figure 14. The displacement w versus z, with τ1 as a parameter in the presence of cooling.

Figure 15 represents the stress component σzz as a function of z and t in the absence of cooling,
calculated for τ1 = 0.6 τ2 and r = 5× 10− 4. The general behavior of σzz depends on the behavior of
both the gradient of the displacement and the temperature (see equation 7); hence, as seen, before the
laser pulse reaches its peak, the temperature and the displacement increase, but the temperature has the
superiority; this explains the negative values of σzz. After the laser pulse reaches its peak, the absorbed
energy decreases, and then the temperature decreases while the displacement and its gradient are
still increasing; this explains the positive values of σzz near the surface. One can observe that this
behavior is clear after the temperature reaches its maximum. By increasing z-values, the influence of
the gradient of the displacement begins to decay to permit the temperature to gain the upper hand
again; this gives σzz negative values until the stress vanishes.
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Figure 16 represents the stress component σzz as a function of z and r in the absence of cooling,
calculated for τ1 = 0.6 τ2 and t = 4 × 10− 3. It is clear that the stress σzz at the surface satisfies the
boundary condition for all values of r. Near the surface, σzz begins to increase until it reaches a
maximum value, then it decreases with increasing z until the stress vanishes (this will be seen in a later
figure). The figure also shows that except at the surface (z = 0), the stress begins with a maximum
value in the r-direction, then decreases until it vanishes.
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Figure 16. The stress σzz as a function of z and r in the absence of cooling.

Figure 17 represents the stress component σzz versus z, with h as a parameter, calculated for
τ1 = 0.6 τ2 and r = 5× 10− 4. As seen for different h values, the stresses in the vicinity of the surface
are almost identical in their gradients. As z increases, the performance of the temperature with cooling
appears evident, as in Figure 7.

Mathematics 2020, 8, x FOR PEER REVIEW 18 of 22 

 

seen in a later figure). The figure also shows that except at the surface  0z  , the stress begins with 

a maximum value in the r-direction, then decreases until it vanishes. 

 

Figure 16. The stress 
zz  as a function of z  and r  in the absence of cooling. 

Figure 17 represents the stress component zz  versus z, with h  as a parameter, calculated for 

1 20.6   and 
45 10r   . As seen for different h  values, the stresses in the vicinity of the 

surface are almost identical in their gradients. As z increases, the performance of the temperature 

with cooling appears evident, as in Figure 7. 

 

Figure 17. The stress 
zz  versus z , with h  as a parameter for 1 20.6 .   

Figure 18 represents the stress component zz  versus z in the absence of cooling, with 1  as a 

parameter, calculated for 
45 10r    and 

34 10t   . The figure shows that the stress in the 

vicinity of the surface is slightly affected by 1 ; as z increases, a pronounced effect for 1  is observed, 

where the behavior of the temperature appears with 1  (see Figure 8). 

Figure 17. The stress σzz versus z, with h as a parameter for τ1 = 0.6 τ2.

Figure 18 represents the stress component σzz versus z in the absence of cooling, with τ1 as a
parameter, calculated for r = 5× 10− 4 and t = 4× 10− 3. The figure shows that the stress in the vicinity
of the surface is slightly affected by τ1; as z increases, a pronounced effect for τ1 is observed, where the
behavior of the temperature appears with τ1 (see Figure 8).
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Figure 18. The stress σzz versus z with τ1 as a parameter in the absence of cooling.

Figure 19 represents the stress component σzz versus z, with τ1 as a parameter in the existence
of cooling, calculated for r = 5 × 10− 4 and t = 4 × 10− 3. As seen, the behavior of σzz at the surface
coincides for the three curves; as z increases, the effect of the temperature is clear (see Figure 9).
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8. Conclusions

In this paper, the response generated by the volumetric absorption technique of laser pulse in
a 2D generalized thermoelastic semi-infinite medium is discussed in the absence and presence of
temperature-dependent heat losses by employing the DPL model. From the above discussion, it can be
deduced that

1. The results obtained in the absence and presence of cooling are not in conflict with well-known
physical conduct, especially for τ1 < τ2.

2. The translation times show clear effects on the behavior of all the studied fields in the absence of
cooling and on some studied fields in the presence of cooling.
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3. For τ1 > τ2, the thermoelastic response of the DPL model behaves similar to the thermoelastic
response of the classical coupled theory of thermoelasticity.

4. The heat losses show a pronounced effect, especially on the temperature, in which its maximum
shifted into the medium.
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Appendix A
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