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Abstract: We consider accumulative defined contribution pension schemes with a lump sum payment
on retirement. These schemes differ in relation to inheritance and provide various decrement factors.
For each scheme, we construct the balance equation and obtain an expression for calculation of gross
premium. Payments are made at the end of the insurance event period (survival to retirement age
or death or retirement for disability within the accumulation interval). A simulation model was
developed to analyze the constructed schemes.
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1. Introduction

At present, the accumulative pension schemes with a lump sum payment are not used in the
Russian Federation. Such schemes may be of interest to many people for many reasons. For example,
the pensioner plans to make large purchases, such as purchase of housing, purchase of household
appliances and/or purchase of expensive treatment. In addition, such schemes allow elderly parents
to ensure the future of their minor children.

At the end of October 2019, the Central Bank and the Ministry of Finance of the Russian Federation
announced a draft law for a new system of voluntary retirement savings, called Guaranteed Retirement
Plan. This draft law inspired the authors to write this article.

Pension schemes with the possibility of inheritance are popular in many countries. For example,
in the United Kingdom, in many circumstances, one can inherit a pension. Examples of such pension
schemes are defined contribution pension funds, joint life annuities and annuities with guarantee
periods. In the UK, it has now become easier to inherit a pension thanks to the 2015 pension freedoms
and the introduction of flexi-access drawdown, which is a newer, more flexible version of pension
drawdown (see [1–4]).

In this work, we used standard methods of actuarial calculations. However, the authors would
like to emphasize that since the actuarial calculations associated with a specific insurance contract are
made by the actuaries of the insurance companies and pension funds; the details of these calculations
are confidential.

Let us now describe the main results of this work. In this work, we consider accumulative defined
contribution pension schemes with a lump sum payment on retirement. These schemes differ in
relation to inheritance and provide various decrement factors: mortality or mortality and disability
(recall that the disability retirement is a plan of retirement which is invoked when person covered is
disabled from working to normal retirement age). It is assumed that contributions are paid regularly
at the beginning of each period (monthly, quarterly, yearly, etc.). In other words, the contributions
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(without premium load) form an annuity due (for more details about basic actuarial definitions and
terminology, see [5,6]). Recall that the premium load is a percentage of insurance premium deducted
from the premium payments to cover policy administrative expenses, including the agent’s sales
commissions and a return on investment.

For each scheme, we construct the balance equation and obtain an expression for calculation
of gross premium (Propositions 1–4). The balance equation is based on the equivalence principle of
financial liabilities of the pension fund and the insured person. In general, the equivalence principle
states that the (expected) present values of premiums and benefits should be equal. In other words,
the equivalence principle ensures that, at any time, the net contributions (i.e., the contributions balance
after taking into account the premium load) in the past provide precisely the amount needed to meet
net liabilities in the future. Note that the premium load leads to a decrease of contributions when
applying the principle of equivalence.

For all schemes with the possibility of inheritance (see Sections 2.2, 2.3 and 3), we assume that
if the death or disability of the insured person occurs before reaching the retirement age then the
payments will be made not at the time of death or disability, but at the end of the last contribution
period in which the death or disability occurs (in other words, we consider the so-called discrete
models of pension insurance). It is assumed that the net contributions are not refunded if the death
occurs within the last period of the insurance contract. In the event of disability within the last period
of the insurance contract, the insured receives the lump sum payment at the end of this period.

Note that for long-term insurance, the investment income of the collected premiums should be
taken into account in the balance equation. This income is related to the changing value of money over
time. In particular, when deriving the balance equation, it is necessary to find the (present) value of
liabilities of the pension fund and the insured person (i.e., the value of contributions and payments)
relative to one time point [5,6]. For our schemes, we derive the balance equation relative to the moment
of concluding the pension insurance contract.

To analyze the constructed schemes, in Section 4 we discuss the results of a simulation model
developed by the authors for calculating the gross premium.

This work is dedicated to Zolotarev V.M. the founder of the International Seminar on Stability
Problems for Stochastic Models and to Kalashnikov V.V., whose works have important applications in
actuarial mathematics and mathematical risk theory (see [7–11]. See also [12]).

Some results of this work were announced in Russian in [13,14].

2. Cumulative Models of Pension Insurance Based on one Decrement Factor (Mortality)

In this section, we consider accumulative defined contribution pension schemes with a lump sum
payment on retirement. These schemes differ in relation to inheritance and provide one decrement
factor (mortality). It is assumed that contributions are paid regularly at the beginning of each period
(monthly, quarterly, yearly, etc.).

In this section, we use the following notation:

• x is the age of the insured person at the time of concluding the pension insurance contract.
• y is the retirement age (for example, y = 55, 60 or 65).
• B is the gross premium paid by the policyholder at the beginning of each period (monthly,

quarterly, yearly, etc.) until retirement.
• Pl is the lump sum payment on retirement if the insured person survives to the retirement age.
• α1, . . . , αy−x are the annual premium loads under the insurance pension contract.
• i is the effective annual interest rate, ν = 1

1+i is the annual discount factor and a = 1 + i is the
annual growth rate.

• Pr is the present value of the net contributions refunded to the inheritors if the insured dies before
surviving to the retirement age. It is assumed that the net contributions are not refunded if the
death occurs within the last period of the insurance contract.
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Let us recall the definitions of some actuarial symbols (life table notation) that are used in this
section (for more details see [5,6]).

With a starting group of l0 newborns lz denotes the expected number of survivors at age z from
the original group.

Some definitions and relationships involving life table functions are:

• dz = lz − lz+1 is the number of deaths between ages z and z + 1.
• The number of deaths between ages z and z + t is

tdz = lz − lz+t.

If t = n is an integer, then
ndz = dz + dz+1 + . . . + dz+n−1.

Note that 1dz = dz.
• The notation (z) refers to an individual alive at age z.
• tqz = tdz

lz
is the probability that (z) will die within the next t years (by age z + t).

• The complement of tqz is denoted by t pz = 1− tqz =
lz+t
lz

which is the probability that (z) survives
at least to time t (and dies some time after t).

• Recall that for discrete n-year temporary life annuity due the first payment (contribution) is made
at age z and the latest possible payment is made at age z + n− 1 (a maximum of n payments,
with last occurring at the beginning of the n-th year). The actuarial present value of this annuity
is denoted by äz:n|. We have (see [5,6]).

äz:n| =
n−1

∑
k=0

νk
k pz.

2.1. Scheme 1. Accumulative Pension Scheme with Annual Contributions and a Lump Sum Payment on
Retirement and without the Possibility of Inheritance

Consider an accumulative defined contribution pension scheme with a lump sum payment on
retirement and without the possibility of inheritance (i.e., Pr = 0). Suppose that a group of individuals
at age x start to pay the pension contributions of size B at the beginning of each year until retirement,
i.e., until the age y. A schematic drawing of this pension model is presented in Figure 1.

Figure 1. Schematic drawing of the accumulative pension scheme with annual contributions and a
lump sum payment on retirement and without the possibility of inheritance.
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Proposition 1. Consider the pension Scheme 1. Then, the balance equation has the form

Bäx:y−x| = B
y−x−1

∑
k=0

αk+1νk
k px + Pl y−x px νy−x. (1)

In particular, the annual gross premium B is equal to

B =
Pl y−x px νy−x

äx:y−x| −
y−x−1

∑
k=0

αk+1νk
k px

. (2)

The proof of Proposition 1 will be given in Section 2.3 as a special case of more general pension
scheme (Scheme 3).

2.2. Scheme 2. Accumulative Pension Scheme with Annual Contributions and a Lump Sum Payment on
Retirement and with Possibility of Inheritance

Consider Scheme 1 with possibility of inheritance. In other words, assume that if the insured dies
before surviving to the retirement age, then all the net contributions are paid before the deaths are
refunded to the inheritors at the end of the death year.

Recall that Pr is the present value of the net contributions refunded to the inheritors and Pl is the
lump sum payment on retirement. Recall also that the net contributions are not refunded if the death
occurs within the last period of the insurance contract (i.e., within (y− 1, y)). A schematic drawing of
this pension model is presented in Figure 2.

Figure 2. Schematic drawing of the accumulative pension scheme with annual contributions and a
lump sum payment on retirement and with the possibility of inheritance.

Proposition 2. Consider the pension Scheme 2. Then, the balance equation has the form

Bäx:y−x| = B
y−x−1

∑
k=0

αk+1νk
k px + Pl y−x px νy−x + P′r , (3)

where

P′r =
Pr

lx
= B

y−x−1

∑
j=1

j−1|qx

j

∑
k=1

(1− αk)ν
k−1 (4)
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and

s|qx =
lx+s − lx+s+1

lx
(5)

is the probability that (x) will die in a year, deferred s years; that is, that he will die in the (s + 1)th year
(see [5,6] for more details about this actuarial symbol).

In particular, the annual gross premium B is equal to

B =
Pl y−x px νy−x

äx:y−x| −
y−x−1

∑
k=0

αk+1νk
k px −

y−x−1
∑

j=1
j−1|qx

j
∑

k=1
(1− αk)νk−1

. (6)

The proof of Proposition 2 will be given in Section 2.3 as a special case of a more general pension
scheme (Scheme 3).

2.3. Scheme 3. Accumulative Pension Scheme with m-thly Payable Contributions and a Lump Sum Payment on
Retirement and with Possibility of Inheritance

Assume in Scheme 2 that the contributions form an m-thly payable annuity due, in which each
year is broken into m equal fractions, and the annuity pays B at the start of each fraction of a year,
as long as the annuitant survives. The first payment is made at age x. If the insured dies before
surviving to the retirement age, then all the net contributions paid before the death are refunded to the
inheritors at the end of the death period. Recall that the net contributions are not refunded if the death
occurs within the last period of the insurance contract (i.e., within (y− 1/m, y)). A schematic drawing
of this pension model is presented in Figure 3.

Figure 3. Schematic drawing of the accumulative pension scheme with m-thly payable contributions
and a lump sum payment on retirement and with possibility of inheritance. The cross indicates the
moment of death.

Since the life table functions in the published mortality tables are given for exact integer
ages, actuaries make fractional age assumptions when insurance event occurs at non-integer ages.
A fractional age assumption is an interpolation of life table functions between integer age values
which are accepted as given. Three fractional age assumptions have been widely used by actuaries:
the uniform distribution of death (UDD) assumption, the constant force assumption and the hyperbolic
or Balducci assumption (see [5,6]). For Scheme 3, we apply the uniform distribution of death
assumption. UDD assumption is equivalent to the linear interpolation of lz:

lz+t = (1− t)lz + tlz+1 for integer z and t ∈ [0, 1]. (7)
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Proposition 3. Consider the pension Scheme 3. Then, under UDD assumption, the balance equation has
the form

B
y−x−1

∑
k=0

(1− αk+1)
m−1

∑
j=0

νk+ j
m

(
k px −

j
m k|qx

)
= P′r + Pl y−x pxνy−x, (8)

where

P′r =
Pr

lx
=

B
m

m(y−x)−1

∑
k=1

b k−1
m c |

qx

k

∑
j=1

(
1− αb j−1

m c+1

)
νb

j−1
m c+

(j−1) mod m
m (9)

and b·c is the floor function.
In particular, the m-thly payable gross premium B is equal to

B =
Pl y−x pxνy−x

y−x−1
∑

k=0
(1− αk+1)

m−1
∑

j=0
νk+ j

m

(
k px − j

m k|qx

)
− P′′r

, (10)

where P′′r = P′r/B.

Proof of Proposition 3. For the convenience of calculation of the balance equation, we give in Table 1
the present values of net contributions (PVNCs) and payments (PVPs) to the inheritors for each period.
The last line consists of the present value of the lump sum payments (PVLS).

Denote respectively by

PVNC = ∑ PVNCs, PVP = ∑ PVPs

the present values of all net contributions and payments to the inheritors. Then, the balance equation
has the form

PVNC = PVP + PVLS. (11)

According to Table 1, the present value of the net contributions is

PVNC = lxB(1− α1)ν
0 + lx+ 1

m
B(1− α1)ν

1
m + lx+ 2

m
B(1− α1)ν

2
m + . . . + lx+1B(1− α2)ν

1+

+lx+1+ 1
m

B(1− α2)ν
1+ 1

m + . . . + ly−1+ 1
m

B(1− αy−x)ν
y−x−1+ 1

m + . . .+

+ ly−1+ m−1
m

B(1− αy−x)ν
y−x−1+ m−1

m . (12)

According to Table 1, the present value of the payments is

PVP =
(

lx − lx+ 1
m

)
B(1− α1)ν

0 +
(

lx+ 1
m
− lx+ 2

m

)
B
[
(1− α1)ν

0 + (1− α1)ν
1
m

]
+ . . .+

+
(

lx+ m−1
m
− lx+1

)
B
[
(1− α1)ν

0 + (1− α1)ν
1
m + (1− α1)ν

2
m + . . . + (1− α1)ν

m−1
m

]
+ . . .+

+
(

ly−1 − ly−1+ 1
m

)
B
[
(1− αy−x)ν

y−x−1 + (1− αy−x−1)ν
y−x−1− 1

m + . . .+

+(1− α1)ν
0 ] + . . . +

(
ly−1+ m−2

m
− ly−1+ m−1

m

)
B
[
(1− αy−x)ν

y−x−1+ 2
m +

+(1− αy−x)ν
y−x−1+ 1

m + (1− αy−x)ν
y−x−1 + . . . + (1− α1)ν

0
]

. (13)
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Table 1. Present values of individual net contributions and payments to the inheritors by period
(except the last line). The last line consists of the present value of the lump sum payments.

Age PVNCs PVPs

x lxB(1− α1)ν
0 0

x + 1
m lx+ 1

m
B(1− α1)ν

1
m

(
lx − lx+ 1

m

)
B(1− α1)(i + 1)

1
m ν

1
m =

=
(

lx − lx+ 1
m

)
B(1− α1)ν

0

x + 2
m lx+ 2

m
B (1− α1) ν

2
m

(
lx+ 1

m
− lx+ 2

m

)
B
[
(1− α1) (i + 1)

1
m +

+ (1− α1) (i + 1)
2
m

]
ν

2
m =

=
(

lx+ 1
m
− lx+ 2

m

)
B
[
(1− α1) ν0 + (1− α1) ν

1
m

]
...

...
...

x + 1 lx+1B (1− α2) ν1
(

lx+ m−1
m
− lx+1

)
B
[
(1− α1) (i + 1)

1
m +

+ (1− α1) (i + 1)
2
m + . . .+

+ (1− α1) (i + 1)
m−1

m + (1− α1) (i + 1)1
]

ν1 =

=
(

lx+ m−1
m
− lx+1

)
B
[
(1− α1) ν0 + (1− α1) ν

1
m +

+ (1− α1) ν
2
m + . . . + (1− α1) ν

m−1
m

]
x + 1 + 1

m lx+1+ 1
m

B (1− α2) ν1+ 1
m

(
lx+1 − lx+1+ 1

m

)
B
[
(1− α2) (i + 1)

1
m +

+ (1− α1) (i + 1)
2
m + . . . (1− α1) (i + 1)

m−1
m +

+ (1− α1) (i + 1)1 + (1− α1) (i + 1)1+ 1
m

]
ν1+ 1

m =

=
(

lx+1 − lx+1+ 1
m

)
B
[
(1− α2) ν1+

+ (1− α1) ν
m−1

m + . . . + (1− α1) ν
2
m +

+ (1− α1) ν
1
m + (1− α1) ν0

]
...

...
...

y− 1 + 1
m ly−1+ 1

m
B
(
1− αy−x

)
νy−x−1+ 1

m

(
ly−1 − ly−1+ 1

m

)
B
[(

1− αy−x
)
(i + 1)

1
m +

+
(
1− αy−x−1

)
(i + 1)

2
m + . . .+

+
(
1− αy−x−1

)
(i + 1)1+ 1

m +

+ . . . + (1− α1) (i + 1)y−x−2+ 1
m + . . .+

+ . . . + (1− α1) (i + 1)y−x−1+ 1
m

]
νy−x−1+ 1

m =

=
(

ly−1 − ly−1+ 1
m

)
B
[(

1− αy−x
)

νy−x−1+(
1− αy−x−1

)
νy−x−1− 1

m + . . . + (1− α1) ν0
]

...
...

...
y− 1 + m−1

m ly−1+ m−1
m

B
(
1− αy−x

)
νy−x−1+ m−1

m

(
ly−1+ m−2

m
− ly−1+ m−1

m

)
B
[(

1− αy−x
)
(i + 1)

1
m +

+
(
1− αy−x

)
(i + 1)

2
m + . . . +

(
1− αy−x

)
(i + 1)

m−1
m +

+ . . . + (1− α1) (i + 1)y−x−1 + . . .+
+ (1− α1) (i + 1)y−x−1+ m−1

m

]
νy−x−1+ m−1

m =

=
(

ly−1+ m−2
m
− ly−1+ m−1

m

)
B
[(

1− αy−x
)

νy−x−1+ 2
m +

+
(
1− αy−x

)
νy−x−1+ 1

m +
+
(
1− αy−x

)
νy−x−1 + . . . + (1− α1) ν0]

PVLS

y 0 Pl lyνy−x

The present value of the lump sum payments (PVLS) is

PVLS = Pl lyνy−x. (14)

Under the assumption of uniform distribution of deaths, we have (see (7))

l
x+k+ j

m
=

(
1− j

m

)
lx+k +

j
m

lx+k+1 = lx+k −
j

m
(lx+k − lx+k+1) , (15)
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where x, k are integers and j/m ∈ [0, 1]. Hence, PVNC can be rewritten as

PVNC = B
[
(1− α1)

{
lxν0 +

(
lx −

1
m

(lx − lx+1)

)
ν

1
m +

(
lx −

2
m

(lx − lx+1)

)
ν

2
m +

+ . . . +
(

lx −
m− 1

m
(lx − lx+1)

)
ν

m−1
m

}
+

+ (1− α2)

{
lx+1ν1 +

(
lx+1 −

1
m

(lx+1 − lx+2)

)
ν1+ 1

m + . . .+

+

(
lx+1 −

m− 1
m

(lx+1 − lx+2)

)
ν1+ m−1

m

}
+ . . . +

(
1− αy−x

) {
ly−1νy−x−1+

+

(
ly−1 −

1
m
(
ly−1 − ly

))
νy−x−1+ 1

m + . . . +
(

ly−1 −
m− 1

m
(
ly−1 − ly

))
νy−x−1+ m−1

m

}]
. (16)

Consider now PVP. From (15), it follows that

l
x+k+ j

m
− l

x+k+ j+1
m

=
1
m

(lx+k − lx+k+1) , (17)

where x, k are integers and j/m, (j + 1)/m ∈ [0, 1]. Hence, PVP can be rewritten as

PVP =
1
m

(lx − lx+1) B (1− α1) ν0 +
1
m

(lx − lx+1) B
[
(1− α1) ν0 + (1− α1) ν

1
m

]
+ . . .+

+
1
m

(lx − lx+1) B
[
(1− α1) ν0 + (1− α1) ν

1
m + (1− α1) ν

2
m + . . . + (1− α1) ν

m−1
m

]
+

+ . . . +
1
m
(
ly−1 − ly

)
B
[(

1− αy−x
)

νy−x−1+

+
(
1− αy−x−1

)
νy−x−1− 1

m + . . . + (1− α1) ν0
]
+

+
1
m
(
ly−1 − ly

)
B
[(

1− αy−x
)

νy−x−1+ 2
m +

(
1− αy−x

)
νy−x−1+ 1

m +

+
(
1− αy−x

)
νy−x−1 + . . . + (1− α1) ν0

]
. (18)

Multiplying both sides of the balance Equation (11) by 1/lx and taking into account (14), (16)
and (18), we obtain

1
lx

PVNC = B
[
(1− α1)

{
0 pxν0 +

(
0 px −

1
m 0|qx

)
ν

1
m +

(
0 px −

2
m 0|qx

)
ν

2
m + . . .+

+

(
0 px −

m− 1
m 0|qx

)
ν

m−1
m

}
+ (1− α2)

{
1 pxν1 +

(
1 px −

1
m 1|qx

)
ν1+ 1

m + . . .+

+

(
1 px −

m− 1
m 1|qx

)
ν1+ m−1

m

}
+ . . . +

(
1− αy−x

) {
y−x−1 pxνy−x−1+

+

(
y−x−1 px −

1
m y−x−1|qx

)
νy−x−1+ 1

m + . . .+

+

(
y−x−1 px −

m− 1
m y−x−1|qx

)
νy−x−1+ m−1

m

}]
=

= B
y−x−1

∑
k=0

(1− αk+1)
m−1

∑
j=0

νk+ j
m

(
k px −

j
m k|qx

)
, (19)
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1
lx

PVP =
1
m 0|qxB (1− α1) ν0 +

1
m 0|qxB

[
(1− α1) ν0 + (1− α1) ν

1
m

]
+ . . .+

+
1
m 0|qxB

[
(1− α1) ν0 + (1− α1) ν

1
m + (1− α1) ν

2
m + . . .+

+ (1− α1) ν
m−1

m

]
+ . . . +

1
m y−x−1|qxB

[(
1− αy−x

)
νy−x−1+

+
(
1− αy−x−1

)
νy−x−1− 1

m + . . . + (1− α1) ν0
]
+

1
m y−x−1|qxB

[(
1− αy−x

)
νy−x−1+ 2

m +

+
(
1− αy−x

)
νy−x−1+ 1

m +
(
1− αy−x

)
νy−x−1 + . . . + (1− α1) ν0

]
=

=
B
m

m(y−x)−1

∑
k=1

b k−1
m c|qx

k

∑
j=1

(
1− αb j−1

m c+1

)
νb

j−1
m c+

(j−1) mod m
m , (20)

1
lx

PVLS = Pl y−x pxνy−x. (21)

Relations (19)–(21) prove Proposition 3.

Proof of Proposition 1. Relations (1), (2) can be obtained from Proposition 3 if we set in (8)–(10) Pr = 0
and m = 1.

Proof of Proposition 2. Relations (3), (4), (6) can be obtained from Proposition 3 if we set in (8)–(10)
m = 1.

3. Scheme 4. Cumulative Model of Pension Insurance with Possibility of Inheritance Based on
Two Decrement Factors (Mortality and Disability) and with Annual Contributions and a Lump
Sum Payment on Retirement

This scheme differs from Scheme 2 (Section 2.2) in that it provides for exit from the pension fund
for reasons of death, old-age retirement or disability. A schematic drawing of this pension model is
presented in Figure 4.

Figure 4. Schematic drawing of the accumulative pension scheme with possibility of inheritance based
on two decrement factors and with annual contributions and a lump sum payment on retirement.
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For this scheme, some of the actuarial symbols introduced in Section 2 may have another
interpretation (the symbols x, y and dz have the same meaning as in Section 2):

• lz is the expected number of active insured persons of the pension scheme at age z.
• Pr is the present value of the net contributions refunded to the inheritors/insured if the

death/disability occurs before the retirement age. The net contributions are not refunded if
the death occurs within the last period of the insurance contract (i.e., within (y− 1, y)). If the
insured person has become disabled within (y− 1, y) and reaches the retirement age y, then the
pension fund pays him the lump sum at age y.

• iz is the number of insured persons who leave the pension scheme due to disability between ages
z and z + 1.

• n pz is the probability for an active insured aged z, of being active at age z + n. This probability is
equal to

n pz =
lz+n

lz
= 1−

n−1
∑

j=0

(
dz+j + iz+j

)
lz

.

If z = x and n = y− x, then according to our assumptions, we have

y−x px =
ly
lx

= 1−

y−x−2
∑

j=0

(
dx+j + ix+j

)
+ dy−1

lx
.

• n|qz is the probability for an active insured aged z, of being active at age z + n and leaving the
pension scheme during the next year (i.e., between ages z + n and z + n + 1). This probability is
equal to

n|qz =
lz+n − lz+n+1

lz
=

dz+n + iz+n

lz
. (22)

Proposition 4. Consider the pension scheme 4. Then, the balance equation has the form

Bäx:y−x| = B
y−x−1

∑
k=0

αk+1νk
k px + Pl y−x px νy−x + P′r , (23)

where

P′r =
Pr

lx
= B

y−x−1

∑
j=1

j−1|qx

j

∑
k=1

(1− αk)ν
k−1. (24)

In particular, the annual gross premium B is equal to

B =
Pl y−x px νy−x

äx:y−x| −
y−x−1

∑
k=0

αk+1νk
k px −

y−x−1
∑

j=1
j−1|qx

j
∑

k=1
(1− αk)νk−1

. (25)

Remark 1. Although the relations in Propositions 2 and 4 seem to coincide, they have different meanings,
since the relations in Proposition 4 contain decrement functions and probabilities. In particular, äx:n| is the
decrement n-year temporary life annuity due.

The proof of this proposition is similar to the proof of Proposition 3 with m = 1. One can do this
with the help of Table 2.
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Table 2. Present values of individual net contributions and payments to the inheritors by period
(except the last line). The last line consists of the present value of the lump sum payments.

Age PVNCs PVPs

x lxB (1− α1) ν0 0
x + 1 lx+1B (1− α2) ν1 (dx + ix) B (1− α1) (i + 1) ν1 =

= (dx + ix) B (1− α1) ν0

x + 2 lx+2B (1− α3) ν2 (dx+1 + ix+1) B
[
(1− α1) (i + 1)2+

+ (1− α2) (i + 1)] ν2 =
= (dx+1 + ix+1) B

[
(1− α1) ν0 + (1− α2) ν1]

...
...

...
y− 1 ly−1B

(
1− αy−x

)
νy−x−1 (

dy−2 + iy−2
)

B
[
(1− α1) ν0 + (1− α2) ν1+

+ . . . +
(
1− αy−x−1

)
νy−x−2]

PVLS

y 0 Pl lyνy−x

4. Simulation Results and Discussion

A simulation model was developed to analyze the constructed schemes. The annual gross
premium was calculated on the base of this simulation model for the schemes with one decrement
factor (Sections 2.1–2.3) and for the scheme with two decrement factors (Section 3). In the calculations,
the authors used the male/female mortality table of the Russian Federation for schemes with one
decrement factor and the decrement table for the scheme with two factors. A comparative analysis of
these four schemes was also carried out.

For calculation purposes, an Excel macro code was written in the VBA programming language
(Visual Basic for Applications).

In our calculations, we assumed (we keep the notation of Sections 2 and 3)

1. The retirement age y = 55 or 60 for females and 60 or 65 for males.
2. The age x of the insured person ranges from 18 to y.
3. The annual premium loads α1, . . . , αy−x are selected by two rules (deterministic and random

rules). Under the deterministic rule, the premium load increases every year by a fixed value,
for example by 1%: αk+1 = αk + 0.01, k = 1, . . . , y− x− 1 for a given α1 (for example α1 = 0.05).
Under the random rule, the premium loads are generated by the Excel built-in function RAND.
Recall that RAND returns an evenly distributed random real number greater than or equal to 0
and less than 1.

4. The effective annual interest rate i = 3%, 4% or 5%.
5. The lump sum payment may take any non-negative value.

The calculation results show that all the constructed schemes are qualitatively adequate, namely:

• All other things equal, when the accumulation period decreases, the contribution size B increases.
The results of some scenarios are shown in Figure 5. In particular, since females reach retirement
age earlier than males, the possible accumulation period for females is always shorter. Hence,
the contribution size for females is always higher than for males (see Figure 6).

• All other things equal, when the interest rate i increases, the contribution size B decreases.
The results of some scenarios are shown in Figure 7.
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Figure 5. Gross premium size as a function of the accumulation period.

Figure 6. Gross premium size for males and females.

Figure 7. Gross premium size as a function of the interest rate.
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• All other things equal, when the lump sum payment Pl decreases the contribution size B also
decreases. Namely if we replace Pl by rPl then B is replaced by rB and vice versa. This immediately
follows from (2), (6), (10) and (25). The results of some scenarios are shown in Figure 8.

• For Scheme 3: the lower number of contributions m per year, the higher contribution size B.

Let us now give a comparative analysis of the constructed schemes (see Figure 9).

• Consider schemes with one decrement factor (mortality) and annual contributions (Schemes 1
and 2). Then for both genders, all other things equal, the scheme without inheritance (Scheme 1)
is the cheapest. This immediately follows from (2) and (6).

• Consider schemes with inheritance and one decrement factor (Schemes 2 and 3). Then for both
genders the scheme with at least two contributions per year is more expensive than the scheme
with annual contributions (Scheme 2).

• Consider schemes with inheritance and annual contributions (Schemes 2 and 4). Then the scheme
with two decrement factors (Scheme 4) is the cheapest.

Figure 8. Gross premium size as a function of the lump sum payment.

Figure 9. Comparative analysis of Schemes 1–4.
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5. Conclusions

In this work, four accumulative defined contribution pension schemes with a lump sum payment
on retirement are proposed. These schemes differ in relation to inheritance and provide various
decrement factors. The availability of various schemes allows the insured to choose the most suitable
scheme depending on the size of the contribution or the size of the lump sum payment. When choosing
a pension scheme, the insured person may have health or family reasons, for example, elderly parents
would like to ensure the future of their minor children.

The results of this work are directly related to the Russian draft law of a new system of voluntary
retirement savings, called Guaranteed Retirement Plan. In particular, these results are of practical
importance for the Pension Fund of the Russian Federation, as well as for private pension funds and
pension actuaries in general.

Let us summarize the main results of this work. For each scheme, we use standard methods
of actuarial calculations to construct the balance equation and to obtain an expression for the gross
premium. A simulation model was developed to analyze the constructed schemes. The gross premium
was calculated on the base of this simulation model. A comparative analysis of various schemes was
also carried out. According to our calculation, we obtained

• Scheme 1 is the cheapest for the insured person, since it does not provide for the possibility of
inheritance and takes into account only one decrement factor (mortality).

• For schemes with inheritance and annual contributions, the scheme with the two decrement
factors is the cheapest.

• Consider schemes with one decrement factor (mortality). Then, Scheme 3 with m > 1 is the most
expensive in terms of total annual contribution.

This work can be developed in two directions. It is interesting to consider schemes with a limited
inheritance period. This allows one to reduce the size of the gross premium as well as the obligations
of the insurer. Since some policyholders may lose jobs and/or do not have funds to pay contributions
in full and on time for a certain period, it is interesting to consider schemes that take this into account.
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The following abbreviations are used in this manuscript:
PVNCs Present value of individual net contributions (by period)
PVNC Present value of all net contributions
PVPs Present value of individual payments (by period)
PVP Present value of all payments
PVLS Present value of the lump sum payments
UDD Uniform distribution of death
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