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Abstract: The kriging methodology can be applied to predict the value of a spatial variable at
an unsampled location, from the available spatial data. Furthermore, additional information from
secondary variables, correlated with the target one, can be included in the resulting predictor by using
the cokriging techniques. The latter procedures require a previous specification of the multivariate
dependence structure, difficult to characterize in practice in an appropriate way. To simplify this
task, the current work introduces a nonparametric kernel approach for prediction, which satisfies
good properties, such as asymptotic unbiasedness or the convergence to zero of the mean squared
prediction error. The selection of the bandwidth parameters involved is also addressed, as well as
the estimation of the remaining unknown terms in the kernel predictor. The performance of the new
methodology is illustrated through numerical studies with simulated data, carried out in different
scenarios. In addition, the proposed nonparametric approach is applied to predict the concentrations
of a pollutant that represents a risk to human health, the cadmium, in the floodplain of the Meuse
river (Netherlands), by incorporating the lead level as an auxiliary variable.

Keywords: bandwidth parameter; cokriging; covariogram; kernel method; prediction

1. Introduction

A major challenge for the World Health Organization (WHO) is to protect human health. With this
aim, the WHO promotes a variety of strategies and plans, such as those addressed to provide scientific
information about the harmful effects of certain chemicals on the population and recommendations for
their management. Cadmium (Cd) is one of the elements included in the group of pollutants under
control, whose toxicity can provoke renal or respiratory dysfunctions to humans and affect the skeleton
system, as well as it is linked to cancer [1].

The presence of Cd in nature is scarce, mainly associated with zinc and lead. The wide industrial
use of this metal releases Cd to the air, which may cause pollution in air, water and soil [2], even on
areas far from the sources of emission, by the atmosphere or the river transport. This contaminant
is absorbed by certain plants and aquatic organisms, so it can easily enter the food chain. Indeed,
some research has been developed to predict the Cd concentrations in crops by taking into account
the Cd content in soil, as well as other factors [3]. Thus, periodic assessments to check the soil levels
of this variable would be advisable, since they would allow the authorities to detect those zones at
risk and to adopt the necessary strategies to alleviate it. This task can be accomplished by collecting
data of the target pollutant at some spatial locations in the corresponding domain and then applying
appropriate tools to predict its values at a number of unsampled sites, so as to map the concentrations
achieved in the whole region.
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In geostatistics, prediction of one variable at an unsampled location is usually obtained by
applying the kriging methodology on the data collected for the target variable [4,5]. Furthermore,
when secondary variables have also been measured at a number of spatial locations and they present a
significant correlation with the main variable, the whole data set can be used to improve the results.
This is the key idea of the cokriging procedures [6], whose application may vary depending on
whether or not the variables share the set of sampled sites, leading to the isotopic or heterotopic cases,
respectively.

To solve a cokriging equation system, estimation of the multivariate dependence structure is
needed, which is a complex task, since it demands the use of valid functions that must satisfy some
relation constraints between each pair of variables. The linear coregionalization model (LCM) was one
of the first proposals suggested to simplify the characterization of the multivariate dependence [7].
This approach is based on the idea that the required functions can be derived as a linear combination of
a number of theoretical valid models [8]. Then, an appropriate selection of parameters and models is
needed, which can be obtained in an iterative way, as developed in [9]. However, the LCM mechanism
becomes limited for a large number of secondary variables, thus prompting alternative methods,
such as the one presented in [10], derived from Bochner’s theorem. Other approaches have been
designed to provide more flexible models, based on considering moving averages [11] or multivariate
Matérn functions [12]. The work presented in [13] offers a widespread review of procedures for
multivariate dependence estimation, including the aforementioned proposals and their extension to
the nonstationary setting.

The use of an auxiliary variable can be advisable, for instance, when it has been observed at
more sites than the target one and both variables exhibit a strong dependence. Even, sometimes,
the measurement of the secondary information is less time consuming and/or expensive than the
main one. Thus, the incorporation of the resulting data can be advantageous and it provides a larger
sample than the one derived from the principal variable, on which the cokriging approaches can be
applied. This methodology has been widely used to solve a variety of problems, specially to assess
the contamination level by any pollutant, whose concentration can be influenced by the presence of
other variables (chemical elements, atmospheric variables, etc.). This way of proceeding has proved
to result in an efficiency gain to determine the air pollution levels [14,15], the groundwater quality
parameters [16,17] or the soil concentrations of different contaminants [18,19], among other examples.
In addition, some research has been developed to extend the cokriging techniques for its application to
functional random fields, taken as main or secondary variables [20,21], although the current work is
restricted to the scalar case.

Next, a scheme of the universal cokriging approach is presented. Let {Z(s) =

(Z1(s), ..., Zp(s))/s ∈ D ⊂ IRd} be a p-variate random process, where s represents a spatial location
in the observation region D. The more general case (heterotopy) is considered here, so that data
from the different variables are not necessarily collected at the same sampling sites, leading us to
assume that Zi is observed on the set Si = {si1, ..., sini} of ni locations, for ni > 0 and i = 1, 2, ..., p.
Let {(siji , Zi(siji ))/1 ≤ ji ≤ ni, 1 ≤ i ≤ p} denote the whole set of data. Since only one incomplete
realization of the multivariate process is available, it is necessary to assume some kind of stationarity
on Z for developing inference on this process.

Suppose that Zi can be modeled as

Zi(s) = µi(s) + Yi(s), (1)

for i = 1, 2, ..., p, where µi(·) is the deterministic trend and Yi(·) is a second-order stationary random
process with zero mean. Then, it follows that:

(i) E[Zi(s)] = µi(s), for all s ∈ D and i = 1, 2, ..., p.
(ii) Cov[Zi(s), Zi′(s′)] = Cii′(s− s′), for all s, s′ ∈ D and i, i′ = 1, 2, ..., p.

Functions Cii′ are referred to as cross-covariograms or cross-covariances.
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From (ii), one has that

Cov[Zi(s), Zi′(s)] = Cii′(0), Var[Zi(s)] = Cii(0) = σ2
i ,

for all s and i, i′ = 1, 2, ..., p.
If we assumed instead intrinsic stationarity from the random processes Yi, condition (ii) would be

replaced by:

(ii’) Cov[Zi(s)− Zi(s′), Zi′(s)− Zi′(s′)] = 2γii′(s− s′), for all s, s′ ∈ D and i, i′ = 1, 2, ..., p.

The cross-semivariograms γii′ are symmetric functions, although this property does not
necessarily follow for the cross-covariograms, when i 6= i′. Under second-order stationarity,
the relationship between γii′ and Cii′ is given by

γii′(t) = 2Cii′(0)− Cii′(t)− Cii′(−t), (2)

for t ∈ IRd.
Without loss of generality, we take Z1 as the main variable, while the remaining ones are

considered as secondary variables. Then, a kriging predictor for Z1 at an unobserved location s
can be constructed as follows

Ẑ1(s) = ∑
i,ji

λiji Zi(siji ), (3)

where the parameters λiji would be obtained by minimizing

E
[(

Ẑ1(s)− Z1(s)
)2
]

,

subject to the unbiasedness condition, namely,

µ1(s) = E
[
Ẑ1(s)

]
= ∑

i,ji

λiji E
[
Zi(siji )

]
. (4)

For equality (4) to hold, it is sufficient to require that ∑1,j1 λ1j1 = 1 and ∑i,ji λiji = 0, for all i 6= 1.
This would lead to the following objective function

E
[(

Ẑ1(s)− Z1(s)
)2
]
− l1

(
∑
j1

λ1j1 − 1

)
−∑

i
li ∑

ji

λiji , (5)

with li denoting the Lagrange multipliers.
By deriving function (5) with respect to each λiji and li, for each i and ji, as well as equaling

the result to zero, an equation system is obtained, whose solution provides the values of the
unknown parameters λiji . They would be expressed in terms of the cross-covariograms Cii′ or
cross-semivariograms γii′ , difficult to be characterized in practice [6]. Indeed, the number of functions

to be estimated amounts to p2+p
2 and they must satisfy the positive definiteness property or the

conditionally negative definiteness property, respectively, to guarantee the existence of a solution of
the cokriging system. Besides, the different functions cannot be derived in an independent way, due to
the underlying dependence among them.

Furthermore, the accuracy of the cokriging methodology is conditioned by different factors.
A remarkable feature is related to the selection of models needed to estimate the dependence structure
and the limitations of the cross-validation techniques to check the adequateness of the resulting
functions [22]. Also, a low correlation level between the target and the secondary variables may
discourage from applying cokriging on them [23] over univariate kriging, due to the increase in
the uncertainty when the dimension augments. On the other hand, the quality of the data may
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have an effect on the results, which is particularly negative for samples of small sizes or unevenly
distributed [24].

To avoid the aforementioned problems, the current research provides a nonparametric alternative
for prediction in this setting, derived by extending the univariate approach without covariables that
was proposed in [25]. The current work is organized as follows. Section 2 introduces the main
hypotheses to be required. The proposed nonparametric predictor is described in Section 3, as well
as its properties, whose proofs are outlined in Appendix A and B. Section 4 presents the results
of the numerical studies with simulated data, carried out to illustrate the performance of the new
methodology. Section 5 shows the application of our proposal to map the cadmium concentrations on
the floodplain soil of the Meuse river (Netherlands), by incorporating data of the lead content, due to
the correlation between both variables.

2. Hypotheses

To derive our proposal, the following conditions are required:

Hypothesis 1 (H1). {Z(s) = (Z1(s), ..., Zp(s))/s ∈ D ⊂ IRd} is a p-variate random process,
with E[Zi(s)2] < +∞, for all s ∈ D and i = 1, ..., p.

Hypothesis 2 (H2). D is a bounded region, with positive d-dimensional volume.

Hypothesis 3 (H3). Zi(·) can be modeled as given in (1), for all i = 1, ..., p.

Hypothesis 4 (H4). µ1 is twice continuously differentiable in a neighborhood of s, for all s ∈ D.

Hypothesis 5 (H5). C1i is twice continuously differentiable in a neighborhood of 0, for all i = 1, ..., p.

Hypothesis 6 (H6). A random design is assumed for the spatial locations, which follow a density function f on
D that is bounded and twice continuously differentiable in a neighborhood of s, for all s ∈ D.

Hypothesis 7 (H7). Kd is a d-variate, compactly supported and symmetric kernel function.

Hypothesis 8 (H8). L is a univariate, compactly supported and symmetric kernel function.

3. Nonparametric Predictor

In the univariate setting, the nonparametric prediction of variable Z1 at an unsampled location
s can be addressed by only considering the data collected for the target variable, together with the
application of the methodology developed in [25], yielding

Ẑ1(s) =
∑j Kd

(
s−s1j

h

)
Z1(s1j)

∑j Kd

(
s−s1j

h

) ,

where h represents a bandwidth parameter.
Based on this idea, a new nonparametric predictor can be designed so as to incorporate the whole

observed values, provided either by the main variable (Z1) or the correlated secondary ones, through a
weighted average, in the following manner

Ẑ1(s) = ∑
i,ji

piji (s)
(

µ1(siji ) +
α1iσ1

σi

(
Zi(siji )− µi(siji )

))
, (6)



Mathematics 2020, 8, 2077 5 of 20

with

piji (s) =
wiji (s)

∑i,ji wiji (s)
and wiji (s) = L

(
C1i(0)2 − σ2

1 σ2
i

hi

)
Kd

(
s− siji

h

)
,

where h and hi represent bandwidth parameters and αii′ equals -1, 0 or 1, depending on whether Cii′(0)
is negative, zero or positive, respectively. Each weight piji (s) has been defined to account for the
correlation between Z1(s) and Zi(siji ). To avoid the border effects in predictor (6), boundary kernels
could be used instead of symmetric ones.

Predictor (6) satisfies good properties, under appropriate hypotheses, which include conditions
(H1)–(H8), as well as the convergence to 0 of hi and h, as ni and n = ∑i ni diverge to +∞, respectively,
with ni denoting the number of observations collected for Zi, for i = 1, ..., p. On the one hand,
the nonparametric predictor is asymptotically unbiased, so that

B(s) = Bias(s) = E[Ẑ1(s)− Z1(s)]→ 0. (7)

On the other, its mean squared prediction error (MSPE) converges to zero, namely,

M(s) = MSPE(s) = E
[(

Ẑ1(s)− Z1(s)
)2
]
→ 0. (8)

The proofs of these properties are outlined in Appendix A and B. Also, a proposal for
approximation of M(s) in practice is included in Appendix B, given by (A13) and defined in terms of
the cross-covariances C1i. It is important to notice that both properties, (7) and (8), are checked under
the assumption of a random design for the spatial sampling locations, although they also follow for
predictor (6) when deterministic designs are considered instead.

Next, we deal with the selection of the bandwidth parameters needed for implementation of
predictor (6). Starting with hi, write ai for some sequence of positive values converging to 1, as ni tends
to +∞, with ai < 1. Suppose that the correlation between Z1(s) and Zi(s) is considered significant if
Corr[Z1(s), Zi(s)]2 > ai. Seeking to meet this requirement for the data used to compute (6), hi can be
taken as

hi = b−1σ2
1 σ2

i (1− ai), (9)

where b stands for the support of L.
Regarding the bandwidth h, global or local selectors can be considered. An option of the former

group may be derived from the traditional cross-validation method [26], adapted to this setting.
To proceed in this way, for each j1 and a given h, we would leave the observation Z1(s1j1) out and use

the remaining data to predict Z1 at s1j1 , through (6). Denote by Ẑ−(j1)
1h (s1j1) the resulting value and

repeat this scheme for different choices of h ∈ H, where H represents an appropriate set of positive
values. A global bandwidth h can be obtained as

hglo = argminh∈H

{
1
n1

∑
j1

(
Z1(s1j1)− Ẑ−(j1)

1h (s1j1)
)2
}

.

More generally, the set of sampling locations S1 can be divided into two disjoint subsets,
S1t and S1v, to be employed for training and validation, respectively. By omitting the data Z1(s1j1),
with s1j1 ∈ S1v, we can predict them from the values of the process at the training set S1t and some h,

through (6). Write Ẑ−(v)1h (s1j1) for the predictions attained and obtain a global selector h as follows

hglo = argminh∈H

 1
|S1v| ∑

j1/s1j1
∈S1v

(
Z1(s1j1)− Ẑ−(v)1h (s1j1)

)2

 , (10)
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with |A| denoting the cardinal of the set A.
If a local bandwidth h = h(s) is preferred instead, a simple idea to derive it can be based on

applying the balloon approach [27]. With this aim, bear in mind that the kernel density Kd is compactly
supported, so that Kd(y) = 0, for all y ∈ IRd such that ‖y‖ ≥ cd and some cd > 0. Then, h can be taken
to equal the m-th percentile (for instance, m equal to 10% or 20%) of the values c−1

d ‖s− siji‖, for each
s ∈ D. More complex alternatives for acquiring local bandwidths can be derived from the bootstrap
techniques, as the one introduced in [25] for univariate prediction without covariables.

In addition to the bandwidth parameters, implementation of predictor (6) also requires estimation
of other unknown terms, dependent on the trend and the covariogram functions. These issues can be
addressed in a variety of ways, according to the conditions satisfied by the underlying random
processes. Furthermore, parametric or nonparametric approaches can be selected to derive the
necessary estimates.

Starting with the trend function µi(·), the sample mean could be applied, under the assumption
of constant trend,

µ̂i =
1
ni

∑
ji

Zi(siji ).

However, when the constant condition fails for the trend, this function can be approximated
through a parametric model (e.g. a polynomial function), although misspecification of the selected
model is an important problem that may arise with the parametric procedures and it could affect
the accuracy of the results derived from it. Nonparametric alternatives for trend estimation include,
for instance, the Nadaraya-Watson approach

µ̃i(s) =
∑ji Kd

( s−siji
gi

)
Zi(siji )

∑ji Kd

( s−siji
gi

) ,

where gi is a bandwidth parameter, or the local linear trend [28].
The conditions required in the current work lead us to assume constant variance from each

process Zi. Thus, a natural estimator of σ2
i is provided by the sample variance

σ̂2
i =

1
ni

∑
ji

(
Zi(siji )− µ̃i(siji )

)2 .

In addition, we could apply a kernel-based approach for approximation of the variance, as the
one given by

σ̃2
i =

∑j1,j2 Kd

( sij1
−sij2
gi

) (
Zi(sij1)− µ̃i(sij1)

) (
Zi(sij2)− µ̃i(sij2)

)
∑j1,j2 Kd

( sij1
−sij2
gi

) ,

with gi representing a bandwidth parameter and µ̃i denoting an estimator of the trend µi.
Estimation of function C1i can be addressed through a parametric fit, which would be also strongly

dependent on an adequate selection of the parametric model. A nonparametric mechanism for the
latter issue is provided in [13], based on the method of moments, which can be written as follows

Ĉ1i(t) =
1

|N1i(t)| ∑
j1,ji∈N1i(t)

(
Z1(s1j1)− µ̃1(s1j1)

) (
Zi(siji )− µ̃i(siji )

)
,

for t∈ IRd, with N1i(t) = {(j1, ji)/s1j1 − siji ≈ t} and µ̃i denoting an estimator of the trend function µi.
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A smoothed version of the cross-covariance C1i can be derived from the kernel method, proposed
in [29], as

Ĉ1i(t) =
∑j1,ji Kd

( s1j1
−siji

−t
gi

) (
Z1(s1j1)− µ̃1(s1j1)

) (
Zi(siji )− µ̃i(siji )

)
∑j1,ji Kd

( s1j1
−siji

−t
gi

) ,

for some bandwidth parameter gi and estimator µ̃i of µi.

Remark 1. The new prediction methodology must perform adequately for Gaussian data, similarly to what
might be expected for the cokriging predictor (3). However, the latter one demands an appropriate characterization
of the whole cross-covariograms Cii′ (or cross-semivariograms), which should additionally satisfy a number
of restrictions so as to be valid for prediction, due to the underlying dependence among them, unlike what is
needed to develop our proposal. Indeed, predictor (6) and its approximated error (A13) only involve terms
dependent on the functions C1i, whose estimators are not required to accomplish the aforementioned conditions,
thus simplifying the practical implementation of the nonparametric approach.

Remark 2. For construction of a prediction map, implementation of (6) is not so computationally demanding
for each site as the cokriging predictor, since the terms Kd

( s−siji
h

)
are the unique ones that involve the target

location.

Remark 3. Under isotopy, the new approach for prediction can be adapted in a simple way. With this aim,
suppose that Zi is observed on the set Si = S = {sj}n

j=1 of n locations, for all i = 1, ..., p. The kernel-type
predictor of Z1 at location s would then be given by

Ẑ1(s) = ∑
j

p1j(s)

(
µ1(sj) + ∑

i
p2i

(
α1iσ1

σi

(
Zi(sj)− µi(sj)

)))
,

where

p1j(s) =
Kd

(
s−sj

h

)
∑j Kd

(
s−sj

h

) and p2i =

L
(

C1i(0)2−σ2
1 σ2

i
hi

)
∑i L

(
C1i(0)2−σ2

1 σ2
i

hi

) ,

with h and hi denoting the bandwidth parameters, for i = 1, . . . , p.

4. Numerical Studies

This section presents the results of the numerical studies with simulated data, developed to
illustrate the behavior of the proposed nonparametric predictor (np). For the sake of comparison,
the cokriging (cokr) and the kriging (kr) approaches were also implemented.

The samples used in the analyses were generated from bivariate random processes, modeled as
given in (1), for D = [0, 1]× [0, 1] and p = 2. To derive correlated variables Z1 and Z2, we took Y1 and Y2

to follow a linear model of coregionalization [9], so that Yi(s) = Mt
i (V1(s), V2(s))

t, where Vi represent
univariate and independent stationary processes, with zero mean and unit variance, and vectors
Mi = (m1i, m2i)

t, for some real values mij and i, j = 1, 2. Equivalently, the bivariate random process
was obtained as

Z(s) =

(
Z1(s)
Z2(s)

)
=

(
µ1(s)
µ2(s)

)
+ M

(
V1(s)
V2(s)

)
, (11)

with function µi denoting the trend of Zi and M = (mij) being a 2× 2 matrix, whose i-th column
equals Mi, for i = 1, 2.

Various semivariogram models γi were considered to characterize the dependence structure of Vi,
with different values for the nugget effect τ2

i and the range (or the asymptotic range) φi, which are
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specified in each analysis. Under this configuration, one has the following cross-covariograms for
process Z:

C11(t) = m2
11 (1− γ1(t)) + m2

21 (1− γ2(t)),

C22(t) = m2
21 (1− γ1(t)) + m2

22 (1− γ2(t)),

C12(t) = m11m12 (1− γ1(t)) + m21m22 (1− γ2(t)).

The cross-semivariograms are given by:

γ11(t) = m2
11γ1(t) + m2

21γ2(t),

γ22(t) = m2
21γ1(t) + m2

22γ2(t), (12)

γ12(t) = m11m12γ1(t) + m21m22γ2(t).

The correlation function between Z1 and Z2 amounts to

ρ12(t) = Corr [Z1(s), Z2(s + t)] =
m11m12 (1− γ1(t)) + m21m22 (1− γ2(t))√(

m2
11 + m2

21
) (

m2
12 + m2

22
)

and, therefore:

ρ12(0) =
m11m12 + m21m22√(

m2
11 + m2

21
) (

m2
12 + m2

22
) .

We focused on prediction with heterotopic data. Thus, the sampling locations for Z1 and Z2 were
respectively selected as random sites s1j1 drawn from the uniform distribution on D, for j1 = 1, ..., n1,
and equispaced sites s2j2 within D, for j2 = 1, ..., n2. In addition, we took a fixed regular grid of 10× 10
locations s0k in D, with k = 1, ..., 100, for the prediction points. Then, for each model, 500 samples were
generated from Z1 at locations s1j1 and s0k, as well as from Z2 at sites s2j2 , for different sizes n1 and n2.
To assess the results derived for each prediction method, the corresponding averaged mean squared
prediction error (AMSPE) was approximated as follows:

AMSPE= 100−1
100

∑
k=1

MSPE (s0k) = (100 · 500)−1
100

∑
k=1

500

∑
m=1

(
Ẑ(m)

1 (s0k)− Z(m)
1 (s0k)

)2
,

where Z(m)
1 (s0k) denotes the value assigned to Z1(s0k) in the m-sample and Ẑ(m)

1 (s0k) stands for the
prediction of Z1(s0k) obtained through the m-sample, for m = 1, ..., 500.

Implementation of the three predictors was developed by using different packages of the R
library. The kriging and the cokriging predictors were computed with the gstat [30] and the
RandomFields [31] packages. The npsp package [32] was employed to obtain predictor (6), combined
with the locpol package [33], to yield the nonparametric (local-linear) trend estimates. Regarding the
bandwidths needed to derive (6), hi was chosen as given in (9) and selector h was attained through (10),
by considering S1t as the set of sampling locations for Z1 and S1v as the set of prediction sites.

For the first analysis, constant trends µ1 and µ2 were taken, as well as Gaussian random fields
V1 and V2, with zero mean, unit variance and isotropic semivariograms following a pure nugget
model and a spherical model, respectively, where τ2

1 = 1, τ2
2 = 0 and φ2 = 0.5. We checked

the performance of the nonparametric predictor for distinct choices of vectors M1 and M2, given
by M1 = (

√
0.1,
√

0.2)t and M2 = (
√

0.9,
√

0.8)t, M1 = (0,
√

0.2)t and M2 = (
√

0.9,
√

0.25)t and
M1 = (0,

√
0.2)t and M2 = (

√
0.9,
√

0.1)t, so that ρ12(0) approximately equals 0.99, 0.74 and 0.57,
respectively. For implementation of the kriging and cokriging, constant trends were assumed and
the estimation of the dependence structure was addressed parametrically in both cases, through the
theoretical models. Table 1 summarizes the values achieved for the AMSPE with different sample sizes,
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where the values of ρ12(0) have been included in the table to allow the identification of the models.
However, it is important to notice that the relationship among the values of ρ12(0) for the different
models does not necessarily hold for the cross-correlation at other lags.

Table 1. AMSPE values obtained for several sample sizes n1 and n2 and correlations ρ12, for data drawn
from random fields Z1 and Z2 with constant trends, derived from Gaussian processes V1 and V2 with
nugget and spherical semivariograms, respectively. For implementation of the kriging and cokriging
approaches, the dependence structures of V1 and V2 were estimated through the theoretical models.

ρ12(0) = 0.99 ρ12(0) = 0.74 ρ12(0) = 0.57

(n1, n2) cokr np kr cokr np kr cokr np kr

(100,100) 0.26 0.31 0.38 0.19 0.23 0.28 0.21 0.25 0.29
(400,400) 0.17 0.19 0.27 0.10 0.12 0.20 0.10 0.14 0.18
(900,900) 0.13 0.15 0.24 0.07 0.09 0.15 0.07 0.11 0.15
(100,625) 0.18 0.20 0.38 0.14 0.17 0.29 0.17 0.21 0.30
(625,100) 0.17 0.20 0.26 0.08 0.10 0.17 0.08 0.09 0.14

The kriging technique does not incorporate the information provided by the secondary variable,
giving rise to the largest errors, as shown in Table 1. The best performance is exhibited by the cokriging
predictor, for all sample sizes and correlation functions. An intermediate behavior is observed for the
nonparametric approach, with values close to the cokriging predictions, specially for greater sizes.
Another remarkable feature is the reduction in the errors achieved for the same size n1, with the
cokriging method and the new predictor, under an increment of the secondary sample size. Anyway,
the results obtained with the proposed methodology are appealing, if we bear in mind the advantages
given to the kriging and cokriging procedures. Indeed, the latter methods are optimal under gaussianity
and their application was accomplished by a correct specification of the trend and the semivariogram
functions, parametrically estimated through the theoretical models.

A deeper analysis was carried out for the bivariate data generated with vectors M1 =

(
√

0.1,
√

0.2)t and M2 = (
√

0.9,
√

0.8)t that provide the highest cross-correlation at lag 0, namely,
ρ12(0) = 0.99. Table 2 and Figure 1 display the results achieved for the AMSPE, with several sizes n1

and n2, where a similar pattern to the one previously described is shown. Indeed, those methods that
make use of the auxiliary data (cokriging and nonparametric predictors) yield the smallest errors and
they decrease for larger sizes n1 and n2, with a slight outperformance of the cokriging approach over
the nonparametric one. This fact may again be due to the favorable scenario designed for the cokriging
technique, although the difference between both procedures tends to diminish as n1 and n2 increase.

Table 2. AMSPE values obtained for several sample sizes n1 and n2 and correlation ρ12(0) = 0.99,
for data drawn from random fields Z1 and Z2 with constant trends, derived from Gaussian processes
V1 and V2 with nugget and spherical semivariograms, respectively. For implementation of the kriging
and cokriging approaches, the dependence structures of V1 and V2 were estimated through the
theoretical models.

n2 = 100 n2 = 225 n2 = 400 n2 = 625 n2 = 900

n1 cokr np kr cokr np kr cokr np kr cokr np kr cokr np kr

100 0.26 0.31 0.39 0.22 0.25 0.37 0.20 0.22 0.37 0.18 0.21 0.38 0.17 0.18 0.39
225 0.21 0.26 0.30 0.19 0.22 0.29 0.18 0.21 0.30 0.16 0.19 0.30 0.16 0.18 0.32
400 0.19 0.21 0.28 0.18 0.19 0.28 0.17 0.19 0.27 0.15 0.18 0.27 0.15 0.17 0.28
625 0.17 0.20 0.26 0.17 0.18 0.25 0.16 0.17 0.25 0.15 0.17 0.26 0.14 0.16 0.25
900 0.16 0.18 0.24 0.16 0.17 0.24 0.15 0.16 0.25 0.14 0.16 0.23 0.13 0.15 0.24
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n1 = 100 n1 = 225 n1 = 400 n1 = 625 n1 = 900
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Figure 1. Plots of the AMSPE values obtained for several sample sizes n1 and n2 and correlation
ρ12(0) = 0.99, for data drawn from random fields Z1 and Z2 with constant trends, derived
from Gaussian processes V1 and V2 with nugget and spherical semivariograms, respectively.
For implementation of the kriging and cokriging approaches, the dependence structures of V1 and V2

were estimated through the theoretical models.

Thus, the first study confirms some benefits of using the cokriging technique, when Gaussian
processes are considered, with a correct specification of the estimated trend and spatial dependence.
Then, a further step in our research is addressed to analyze the development of the new methodology
for prediction, under deviations from the aforementioned features.

We started by checking the effect of misspecification in the parametric estimation of the
semivariogram functions. For the latter purpose, in the second study, bivariate data were drawn
from independent Gaussian processes V1 and V2, with isotropic exponential (Exp) and Matérn (Mat)
semivariograms, respectively. The Matérn model involves an additional parameter ν and the particular
choice of ν = 0.5 provides the exponential model. To generate the samples in our analyses, we
considered constant trends µ1 and µ2, as well as the semivariogram parameters τ2

i = 0 and φi = 0.5,
for i = 1, 2, together with ν = 2 for the Matérn function. The cross-semivariograms γii′ were
obtained as given in (12), through several combinations of semivariogram models selected for V1 and
V2, which include the theoretical ones (Exp-Mat), as well as misspecified alternatives obtained by
considering the spherical (Sph) family for V1 or the Gaussian (Gau) family for V2. Figure 2 depicts
the form of the cross-semivariograms employed in the current study, so that the functions derived
under a correct specification of the theoretical model are compared with their counterparts, achieved
with a partially misspecified model (Figure 2(a)) and a totally misspecified one (Figure 2(b)) . These
plots show that the wrong selection of the parametric families leads to inaccurate estimates of the
semivariograms at small distances, with the largest deviations observed for the totally misspecified
scenario, as expected, for which the resulting nuggets clearly differ from the corresponding values
attained through the theoretical model. These variations of the semivariograms estimates at lags close to
zero should have a noticeable effect on prediction, which was checked in the analysis described below.
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Figure 2. (a) Plots of γii′ under a correct characterization of γ1 and γ2 (Exp-Mat, black solid line) and a
misspecified combination (Exp-Gau, blue dashed line). (b) Plots of γii′ under a correct characterization
of γ1 and γ2 (Exp-Mat, black solid line) and a misspecified combination (Sph-Gau, blue dashed line).

Table 3 presents the results of the second numerical study, addressed to compare the performance
of the three prediction approaches, under different specifications of the dependence structure.
As expected, the use of the theoretical models (Exp-Mat) gives rise to the best results, with the
smallest errors attained through the cokriging and the nonparametric methods, showing some distance
to the corresponding values provided by the kriging predictor. On the other hand, the misspecification
does not have an effect on the new methodology for prediction, unlike what happens to the other
procedures. Indeed, the wrong selection of one of the semivariogram models (Exp-Gau) leads to an
augment in the errors derived through the kriging and cokriging techniques. This trend is even more
evident when using a totally misspecified model (Sph-Gau), which results in an additional increment
of the AMSPE values obtained.

Table 3. AMSPE values obtained for several sample sizes n1 and n2, for data drawn from random fields
Z1 and Z2 with constant trends, derived from Gaussian processes V1 and V2 with exponential and
Matérn semivariograms, respectively. For implementation of the kriging and cokriging approaches,
the dependence structures of V1 and V2 were estimated through the theoretical models (Exp-Mat),
together with misspecified alternatives either for the second process (Exp-Gau) or for both processes
(Sph-Gau).

Exp-Mat Exp-Gau Sph-Gau

(n1, n2) cokr np kr cokr np kr cokr np kr

(100,100) 0.16 0.20 0.27 0.33 0.21 0.40 0.43 0.29 0.48
(225,225) 0.10 0.11 0.20 0.25 0.18 0.33 0.35 0.24 0.40
(400,400) 0.08 0.08 0.18 0.21 0.16 0.29 0.31 0.22 0.37
(625,625) 0.06 0.08 0.16 0.18 0.14 0.26 0.28 0.21 0.34
(900,900) 0.06 0.07 0.15 0.17 0.14 0.24 0.28 0.20 0.34

In the previous studies, the trends µ1 and µ2 were taken as constant values, so the third
analysis is focused on exploring the performance of the three methods considered for prediction
under non-constant trend. With this aim, data were generated from model (11), with the same
characteristics as in the second study, except that now linear trends were selected, given by
µi(s) = 1 + (−1)i+1(s1 + s2), for s = (s1, s2) and i = 1, 2. Table 4 shows the errors achieved with the
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proposed nonparametric predictor and the cokriging approach. In the former case, the trend was
nonparametrically estimated, whereas for the cokriging predictor, the approximation of the trend was
developed through a constant and a linear models.

Table 4. AMSPE values obtained for several sample sizes n1 and n2, for data drawn from random
fields Z1 and Z2 with linear trends, derived from Gaussian processes V1 and V2 with exponential and
Matérn semivariograms, respectively. For implementation of the cokriging approach, the dependence
structures of V1 and V2 were estimated through the theoretical models and the trend estimation was
addressed either by considering a constant model (cm) or a linear model (lm).

(n1, n2) np cokr-lm cokr-cm

(100,100) 0.20 0.19 0.23
(225,225) 0.11 0.10 0.15
(400,400) 0.08 0.08 0.11
(625,625) 0.07 0.06 0.09
(900,900) 0.06 0.05 0.09

The results in Table 4 reflect that the misspecification of the trend models yields the largest errors,
even though the cokriging approach was implemented with the right models for the semivariograms.
On the other hand, under a correct characterization of the trend, the cokriging and the nonparametric
predictors have a similar performance, with a slight superiority of the former one. In this respect,
recall the advantages given to the cokriging prediction in this scenario, since this technique is optimal
under gaussianity from the random processes, together with the fact that the dependence structures
and trends involved in this approach were correctly specified.

In the final numerical study, our aim was to analyze the effects that the deviations from gaussianity
might have on the results achieved with the three predictors considered in the current research. Thus,
to simulate a non-Gaussian bivariate process, modeled as in (11), we drew non-Gaussian processes
V1 and V2, by taking them as Vi(s) = Wi(s)2, for some Gaussian processes Wi, with zero mean and
unit variance, for i = 1, 2. This way of proceeding led to non-Gaussian but stationary random fields
Vi, with mean 1, variance 2 and semivariogram γi(t) = 2γWi (t)(2− γWi (t)), where γWi stands for
the semivariogram of Wi. In particular, for data generation in the current analysis, W1 and W2 were
selected to have the same characteristics as Vi in the second study, so their semivariograms followed
the isotropic exponential and Matérn models, respectively, with parameters ν = 2, τ2

i = 0 and φi = 0.5,
for i = 1, 2. The results are summarized in Table 5.

Table 5. AMSPE values obtained for several sample sizes n1 and n2, for data drawn form random fields
Z1 and Z2 with constant trends, derived from V1 = W2

1 and V2 = W2
2 , where W1 and W2 are zero mean

Gaussian processes, with exponential and Matérn semivariograms, respectively. For implementation of
the cokriging approach, the dependence structures of V1 and V2 were estimated through the exponential
and Matérn models, respectively.

(n1, n2) cokr np kr

(100,100) 0.34 0.09 0.43
(225,225) 0.24 0.08 0.35
(400,400) 0.23 0.08 0.31
(625,625) 0.20 0.06 0.28
(900,900) 0.12 0.04 0.21

The errors displayed in Table 5 give account of the best performance of the nonparametric
predictor over the kriging and cokriging techniques, when the underlying distribution of the random
processes V1 and V2 departs from gaussianity. Indeed, several problems arise in this scenario with the
application of the kriging and cokriging methods. On the one hand, these approaches are no longer
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optimal for non-Gaussian processes and, on the other, their behavior is highly dependent on the use of
proper specifications of the trend and the semivariogram functions.

5. Assessment of Cd Concentrations in the Floodplain of the Meuse River

Now, we describe the application of the proposed methodology to assess the contamination by
Cd in the geographical area associated to the Meuse data set. These data, presented in [34], contain
measurements of different pollutants (zinc, cadmium, lead, copper or organic matter, among others),
taken on alluvial soils in the floodplain of the Meuse river, close to Stein (Netherlands). A map
of the zone is displayed in Figure 3, designed with the RgoogleMaps package [35] of the R library,
which shows the 155 sampling locations considered for data collection.

Figure 3. Area in the floodplain of the Meuse river considered for measurement of different pollutants
at 155 sampling locations. The 132 points marked on the map display those sites taken for training,
by using the values of cadmium and lead respectively collected at the 52 red points and 80 green points.
The 23 crosses represent those locations used for validation.

The aforementioned sample has been studied with different aims and methods, which include
the application of the cokriging techniques. An example can be found in [36], where cokriging was
employed with lead (Pb) as target variable and organic matter or zinc as separate auxiliary variables.
In the current research, we focused our attention on Cd, since it represents a risk to human health,
with the aim of mapping the concentrations of this pollutant on the whole area of interest. This task
was accomplished by using the collected Cd and Pb values, due to the association between both
elements, whose correlation coefficient with the available data amounted to 0.7989.

A preliminary analysis of the Cd and Pb data depicted asymmetry, thus they were log-transformed
to continue the study, where we applied the universal cokriging and the proposed nonparametric tool.
The former approach was implemented by fitting a linear model of coregionalization with isotropic
exponential semivariograms.

For the choice of bandwidth h in (6), as given in (10), we randomly divided the set of sampling sites
into two disjoint subsets, one for training (with 132 sites) and the other for validation (with 23 sites),
marked on Figure 3 as points and crosses, respectively. To proceed in this way, we first selected the
spatial locations for the training set from the whole set of sampling sites and the remaining locations
formed the validation set. In addition, aiming to solely use the value of one variable at each site,
the training set was again split into two separate groups, so that we just considered the values of Cd
collected at one of them (with 52 sites) and those of Pb at the other (with 80 sites), represented by
red and green points on Figure 3, respectively. The resulting training data set was used to compute
predictor (6) with different bandwidths and then we selected the one that best approximated the



Mathematics 2020, 8, 2077 14 of 20

log-values of the Cd concentrations at the validation set. The bandwidth hglo achieved was employed
to proceed with the new methodology.

Finally, the predictions derived with the data in the log-scale and both procedures were
back-transformed to the original scale. The results attained for the Cd concentrations (in mg/kg soil),
on the geographical area associated to the Meuse data set, are represented in Figure 4. To measure
the accuracy of each mechanism, the AMSPE values were computed at the validation set and they
amounted to 2.2737 and 0.8189 for the cokriging and the nonparametric approaches, respectively,
thus giving advantage to the latter one.
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Figure 4. (a): Prediction map obtained for the Cd concentrations (in mg/kg soil), with Pb as auxiliary
variable, through the universal cokriging. (b): Prediction map obtained for the Cd concentrations
(in mg/kg soil), with Pb as auxiliary variable, through the nonparametric predictor.

The maps displayed in Figure 4 give evidence of the differences between the two prediction
methods considered in the current study, although they also exhibit some common patterns. On the
one hand, the area with the smallest levels of Cd, identified with the dark blue color, is located in
each case on the central part of the region, towards the eastern border, being of larger size the one
achieved with the universal cokriging. Then, as we move away from each of the aforementioned
areas, the predicted Cd content increases and the highest values are mainly concentrated on the
western border of each domain and its vicinity. Nevertheless, the resulting hot spots range in different
magnitudes for the two prediction approaches, so that the universal cokriging provides the largest
Cd accumulations, even surpassing the green color scale and reaching values above 3 mg/kg soil,
unlike what happens to the non-parametric method.

In summary, both ways of proceeding allow the identification of those zones that pose a threat
to the population health for their pollutant content. However, the smaller error (AMSPE) achieved
by the nonparameric procedure and its good theoretical properties present this predictor as a better
candidate for assessment of the points at risk and the consequent decision-making.

6. Conclusions

The current work deals with the construction of a prediction map that shows the concentrations
of a pollutant, the cadmium, in the whole region of interest. This issue may be addressed by using the
available data of the target variable (Cd) and also incorporating information of a secondary correlated
one (Pb), collected at various spatial sites. In geostatistics, problems of this kind are typically solved
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through the kriging or the cokriging techniques, depending on whether data of one or more variables
are employed, respectively. These methods are optimal for Gaussian processes, although their practical
implementation requires an appropriate characterization of the underlying dependence structure.
This is not an easy task to be accomplished, specially when cokriging is applied, due to the number
of functions to be approximated and the properties that the resulting estimates must satisfy. Thus,
our research introduces an alternative kernel-type approach for spatial prediction with covariables,
which was designed to overcome the previous drawbacks. Indeed, the new methodology just involves

p cross-covariances (or cross-semivariograms), for a p-variate random process, instead of the p2+p
2

functions of more complex estimation that are needed for cokriging. To characterize the aforementioned
p functions, as well as other unknown terms in our proposal, such as those dependent on the trends,
we recommend proceeding through nonparametric procedures, to avoid the misspecification problem
present in the parametric estimation. The choice of bandwidths, required to implement the kernel
predictor, is also addressed in the current work. In particular, we propose a cross-validation method to
derive a global bandwidth h, based on considering random training and validation sets. However,
further research should be developed to analyze alternative mechanisms for the selection of sites to be
included in each set and, even, to provide additional approaches for bandwidth selection, which could
be derived from the application of the bootstrap methodology. The numerical studies carried out
in the current study give account of the sensitivity of the kriging and the cokriging techniques to
the proper specification of the trend and the cross-semivariograms, unlike what happens to the
nonparametric predictor. In addition, deviations from gaussianity in the data are less noticeable when
prediction is developed with the new methodology than with the other approaches. Then, the use of the
nonparametric proposal is recommended over the cokriging to obtain more accurate predictions of the
Cd concentrations, with Pb as auxiliary variable, so as to detect those areas with highest accumulation
of Cd, which is crucial for health protection.
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Appendix A. Proof of Property (7)

In this appendix, we check that relation (7) holds or, equivalently, that Ẑ1(s) is asymptotically
unbiased. With this aim, bear in mind that

B(s) = E
[
Ẑ1(s)− Z1(s)

]
= E

[
E
[

Ẑ1(s)− Z1(s)
/

siji , ∀i, ji
]]

= (A1)

= E

[
∑i,ji wiji (s)E

[
A1iji (s)

/
siji , ∀i, ji

]
∑i,ji wiji (s)

]
= E

[
A2(s)
A3(s)

]
,
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with

wiji (s) = L

(
C1i(0)2 − σ2

1 σ2
i

hi

)
Kd

(
s− siji

h

)
,

A1iji (s) = µ1(siji ) +
α1iσ1

σi

(
Zi(siji )− µi(siji )

)
− Z1(s),

A2(s) = ∑
i,ji

wiji (s)
(
µ1(siji )− µ1(s)

)
,

A3(s) = ∑
i,ji

wiji (s). (A2)

It follows that

A2(s) = ∑
i

niL

(
C1i(0)2 − σ2

1 σ2
i

hi

) ∫ +∞

−∞
· · ·

∫ +∞

−∞
Kd

(
s− u

h

)
(µ1(u)− µ1(s)) f (u) du a.s.

A3(s) = ∑
i

niL

(
C1i(0)2 − σ2

1 σ2
i

hi

) ∫ +∞

−∞
· · ·

∫ +∞

−∞
Kd

(
s− u

h

)
f (u) du a.s.

By making the change of variable y = s−u
h in the previous integrals, one has that

A2(s) = ∑
i

nihdL

(
C1i(0)2 − σ2

1 σ2
i

hi

) ∫
supp(Kd)

Kd (y) (µ1(s− hy)− µ1(s)) f (s− hy) dy a.s.

A3(s) = ∑
i

nihdL

(
C1i(0)2 − σ2

1 σ2
i

hi

) ∫
supp(Kd)

Kd (y) f (s− hy) dy a.s.

with supp(Kd) denoting the support of Kd. Then, we can form the Taylor expansions for µ1(s− hy)
and f (s− hy) about s, to obtain that

A2(s) = ∑
i

niL

(
C1i(0)2 − σ2

1 σ2
i

hi

)
O
(

hd+2
)
= O

(
hd+2 ∑

i
ni

)
a.s. (A3)

A3(s) = ∑
i

niL

(
C1i(0)2 − σ2

1 σ2
i

hi

)(
hd f (s) + O

(
hd+2

))
= O

(
hd ∑

i
ni

)
a.s. (A4)

Relation (A1) and the orders achieved in (A3) and (A4), as well as the application of the Slutsky’s
theorem, lead us to B(s) = O

(
h2). Therefore, predictor (6) is asymptotically unbiased.

Appendix B. Proof of Property (8)

This appendix outlines the proof of relation (8), which establishes the convergence to zero of the
mean squared prediction error.
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To start, one has that

M(s) = E
[(

Ẑ1(s)− Z1(s)
)2
]
= E

[
E
[ (

Ẑ1(s)− Z1(s)
)2
/

siji , ∀i, ji
]]

= E

∑i1,ji1
∑i2 ji2

E
[

A4i1 ji1 i2 ji2
(s)
/

sik jik
, ∀ik, jik , k

]
A3(s)2


= E

[
∑i1,ji1

∑i2 ji2
A5i1 ji1 i2 ji2

(s)

A3(s)2

]
+ E

[
A2(s)2

A3(s)2

]
= E

[
∑i1,ji1

∑i2 ji2
A5i1 ji1 i2 ji2

(s)

A3(s)2

]
+ O

(
h4
)

, (A5)

by using in the latter equality the orders established in (A3) and (A4), together with

A4i1 ji1 i2 ji2
(s) = ∏

k
wik jik

(s)A1ik jik
(s),

A5i1 ji1 i2 ji2
(s) = wi1 ji1

(s)wi2 ji2
(s)

(
α1i1 α1i2 σ2

1
σi1 σi2

Ci1i2

(
si1 ji1
− si2 ji2

)
−

α1i1 σ1

σi1
Ci11

(
si1 ji1
− s
)
−

α1i2 σ1

σi2
C1i2

(
s− si2 ji2

)
+ C11(0)

)
.

Later, we will prove that

A5i1 ji1 i2 ji2
(s) = O

(
h2dhi1 + h2dhi2 + h2d+2

)
a.s. (A6)

Thus, by considering (A4)–(A6), as well as applying Slutsky’s theorem, we obtain that the mean
squared prediction error of Ẑ1(s) tends to zero, since M(s) = o (1).

Then, it only remains to state the validity of (A6). This relation follows straightforwardly if

L
(

C1i1
(0)2−σ2

1 σ2
i1

hi1

)
= 0 or L

(
C1i2 (0)

2−σ2
1 σ2

i2
hi2

)
= 0, which yields A5i1 ji1 i2 ji2

(s) = 0. On the other hand,

when L
(

C1ik
(0)2−σ2

1 σ2
ik

hik

)
differs from 0, for k = 1, 2, we will see that the order established in (A6) holds,

due to the properties indicated below, whose demonstration will be provided later,

α1ik C1ik (0) = σ1σik + O
(
hik
)

, for k = 1, 2, (A7)

Ci1i2(t) =
α1i2 σi2 Ci11(t)

σ1
+ O

(
hi2
)

, for all t ∈ IRd. (A8)
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Indeed, the use of (A7) and (A8) leads us to

A5i1 ji1 i2 ji2
(s) = wi1 ji1

(s)wi2 ji2
(s)
(

α1i1 σ1

σi1
Ci11

(
si1 ji1
− si2 ji2

)
(A9)

−
α1i1 σ1

σi1
Ci11

(
si1 ji1
− s
)
−

α1i2 σ1

σi2
C1i2

(
s− si1 ji1

)
+ σ2

1

)
+ O

(
hi2
)

= L

(
C1i1(0)

2 − σ2
1 σ2

i1
hi1

)
L

(
C1i2(0)

2 − σ2
1 σ2

i2
hi2

)
h2d f (s)2

·
(

α1i1 σ1

σi1
Ci11 (0)−

α1i1 σ1

σi1
Ci11 (0)−

α1i2 σ1

σi2
C1i2 (0) + σ2

1

)
+ O

(
h2dhi2 + h2d+2

)
= L

(
C1i1(0)

2 − σ2
1 σ2

i1
hi1

)
L

(
C1i2(0)

2 − σ2
1 σ2

i2
hi2

)
h2d f (s)2

·
(

α2
1i1

σ2
1 σi1

σi1
−

α2
1i1

σ2
1 σi1

σi1
−

α2
1i2

σ2
1 σi2

σi2
+ σ2

1

)
+ O

(
h2dhi1 + h2dhi2 + h2d+2

)
= O

(
h2dhi1 + h2dhi2 + h2d+2

)
a.s.

which yields relation (A6).
Now, to complete this proof, we check that properties (A7) and (A8) follow, when

L
(

C1ik
(0)2−σ2

1 σ2
ik

hik

)
6= 0, for k = 1, 2. With this aim, bear in mind that L is compactly supported and

that the previous terms differ from zero, to obtain that ‖C1ik (0)
2 − σ2

1 σ2
ik
‖ ≤ hik supp(L), for k = 1, 2,

with supp(L) denoting the support of function L. The latter inequality directly leads to the relation
established in (A7).

On the other hand, for t ∈ IRd, one has

Ci1i2 (t) = Cov
[
Zi1 (s), Zi2 (s− t)

]
= Cov

[
Zi1 (s), Zi2 (s− t)−

C1i2 (0)
σ2

1
Z1(s− t) +

C1i2 (0)
σ2

1
Z1(s− t)

]

=
C1i2 (0)

σ2
1

Cov
[
Zi1 (s), Z1(s− t)

]
+ Cov

[
Zi1 (s), Zi2 (s− t)−

C1i2 (0)
σ2

1
Z1(s− t)

]
= (I) + (II). (A10)

We first deal with (I), to achieve that

(I) =
C1i2(0)Ci11(t)

σ2
1

=
α1i2 σi2 Ci11(t)

σ1
+ O

(
hi2
)

, (A11)

where relation (A7) has been used to obtain the last term.
Secondly, the application of Hölder’s inequality on (II) yields

|(II)| ≤
(
Var

[
Zi1 (s)

])1/2
(

Var

[
Zi2 (s− t)−

C1i2 (0)
σ2

1
Z1(s− t)

])1/2

= σi1

(
Var

[
Zi2 (s− t)

]
+

C1i2 (0)
2

σ4
1

Var [Z1(s− t)]−
2C1i2 (0)

σ2
1

Cov
[
Zi2 (s− t), Z1(s− t)

])1/2

= σi1

(
σ2

i2
+

C1i2 (0)
2σ2

1
σ4

1
−

2C1i2 (0)
2

σ2
1

)1/2

= σi1

(
σ2

i2
−

C1i2 (0)
2

σ2
1

)1/2

= σi1

(
σ2

i2
−

σ2
1 σ2

i2

σ2
1

+ O
(
hi2

))1/2

= O
(
hi2

)
, (A12)
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where the penultimate term was derived from (A7). Then, combination of (A10)–(A12) allows us to
conclude the proof of property (A8).

The final comment in this appendix is related to the practical implementation of the mean squared
prediction error M(s), for a given data set. By taking into account (A5), as well as (A2) and (A9), we
propose approximating M(s) through

M̂(s) =
1(

∑i,ji wiji (s)
)2 ∑

i1,ji1

∑
i2 ji2

wi1 ji1
(s)wi2 ji2

(s)
(

α1i1 σ1

σi1
C1i1

(
si2 ji2
− si1 ji1

)

−
α1i1 σ1

σi1
C1i1

(
si1 ji1
− s
)
−

α1i2 σ1

σi2
C1i2

(
s− si2 ji2

)
+ σ2

1

)
. (A13)
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