
mathematics

Article

Two-Agent Pareto-Scheduling of Minimizing Total
Weighted Completion Time and Total Weighted
Late Work

Yuan Zhang †, Zhichao Geng *,† and Jinjiang Yuan †

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China;
zy2020@gs.zzu.edu.cn (Y.Z.); yuanjj@zzu.edu.cn (J.Y.)
* Correspondence: zcgeng@zzu.edu.cn
† These authors contributed equally to this work.

Received: 26 October 2020; Accepted: 16 November 2020; Published: 20 November 2020
����������
�������

Abstract: We investigate the Pareto-scheduling problem with two competing agents on a single machine
to minimize the total weighted completion time of agent A’s jobs and the total weighted late work of agent
B’s jobs, the B-jobs having a common due date. Since this problem is known to be NP-hard, we present
two pseudo-polynomial-time exact algorithms to generate the Pareto frontier and an approximation
algorithm to generate a (1 + ε)-approximate Pareto frontier. In addition, some numerical tests are
undertaken to evaluate the effectiveness of our algorithms.

Keywords: scheduling; two agents; pareto frontier; approximation algorithms

1. Introduction

Problem description and motivation: Multi-agent scheduling has attracted an ever-increasing
research interest due to its extensive applications (see the book of Agnetis et al. [1]). Among the common
four problem-versions (including lexical-, positive-combination-, constrained-, and Pareto-scheduling,
as shown in Li and Yuan [2]) for a given group of criteria for multiple agents, Pareto-scheduling has the
most important practical value, since it reflects the effective tradeoff between the actual and (usually)
conflicting requirements of different agents.

Our considered problem is formally stated as follows. Assume that two agents (A and B) compete to
process their own sets of independent and non-preemptive jobs on a single machine. The set of the nX jobs
from agent X ∈ {A, B} is JX = {JX

1 , JX
2 , · · · , JX

nX
} with JA ∩ JB = φ. For convenience, we call a job from

agent X an X-job. All jobs are available at time zero, and are scheduled consecutively without idle time
due to the regularity of the objective functions as shown later. Each job JX

j has a processing time pX
j and a

weight wX
j . In addition, each B-job JB

j has also a common due date d. We assume that all parameters pX
j ,

wX
j and d are known integers.

Let σ be a schedule. We use CX
j (σ) to denote the completion time of job JX

j in σ. The objective function

of agent A is the total weighted completion time, denoted by ∑ wA
j CA

j (σ), while the objective function

Mathematics 2020, 8, 2070; doi:10.3390/math8112070 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/8/11/2070?type=check_update&version=1
http://dx.doi.org/10.3390/math8112070
http://www.mdpi.com/journal/mathematics

Mathematics 2020, 8, 2070 2 of 17

of agent B is the total weighted late work, denoted by ∑ wB
j YB

j (σ). Here, the late work YB
j (σ) of job JB

j
indicates the amount processed after the due date d, specifically,

YB
j (σ) =


0, if Cj(σ) ≤ d,

CB
j (σ)− d, if d < CB

j (σ) ≤ d + pB
j ,

pB
j , if CB

j (σ) > d + pB
j .

(1)

Following Hariri et al. (1995) [3], job JB
j is said to be early, partially early, and late in σ, if YB

j (σ) = 0,

0 < YB
j (σ) < pB

j , and YB
j (σ) = pB

j , respectively.
Falling into the category of Pareto-scheduling, the problem studied in this paper aims at

generating all Pareto-optimal points (PoPs) and the corresponding Pareto-optimal schedules (PoSs)
(the definitions of PoPs and PoSs will be given in Section 2) of all jobs with regard to ∑ wA

j CA
j and

∑ wB
j YB

j). Using the notations in Agnetis et al. [1], our studied scheduling problem can be denoted by

1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j). For this problem, we will devise some efficient approximate algorithms.

Our considered scheduling model arises from many practical scenarios. For example, in a factory,
two‘concurrent projects (A and B), each containing a certain amount of activities with distinct importance,
have to share a limited resource. The former focuses on the mean completion time of its activities.
In contrast, the latter requires its activities to be completed before the due date as much as possible,
since, otherwise, the shortcomings of some key technical forces after the due date will occur and result
in irretrievable loss. It is necessary to model the goal of project B as the weighted late work, that is,
minimizing the parts left unprocessed before the due date. In addition, two projects naturally have to
negotiate to seek a trade-off method of utilizing the common resource.

For another example, in a distribution center, two categories (A- and B-) goods are stored in a
warehouse, in which the former comprises common goods and the latter comprises fresh goods with a
shelf life. It is hoped that the shipping preparations for the A-goods will be completed as soon as possible.
However, due to their limited shelf life, if they are transported after a certain time, the B-goods will not be
fresh enough when they reach the customers. Therefore, it is reasonable to respectively model the goals of
A-goods and B-goods by minimizing the total weighted completion time and the total weighted late work,
and seek an efficient transportation method.

Related works and our contribution: Numerous works have addressed multi-agent scheduling
problems in the literature. With the aim of this paper, we only summarize briefly some related results.
Wan et al. [4] provided a strongly polynomial-time algorithm for the two-agent Pareto-scheduling problem
on a single machine to minimize the number of the tardy A-jobs and the maximum cost of the B-jobs.
Later, Wan et al. [5] investigated two Pareto-scheduling problems on a single machine with two competing
agents and a linear-deterioration processing time: 1||#(EA

max, EB
max) and 1||#(∑ EA

j , EB
max), where ∑ EA

j is

the total earliness of the A-jobs and EX
max is the maximum earliness of the X-jobs. For these two problems,

they respectively proposed a polynomial-time algorithm. Gao and Yuan [6] showed that the following two
Pareto-scheduling problems with a positional due index and precedence constraints are both polynomially
solvable: 1||#(∑ CA

j , f B
max) and 1||#(f A

max, f B
max), where f X

max indicates the maximum cost of the X-jobs. He
et al. [7] extensively considered the versions of the problems in Gao and Yuan [6] with deteriorating
or shortening processing times and without positional due indices and precedence constraints, and
devised polynomial-time algorithms. Yuan et al. [8] showed the single-machine preemptive problem
1|rj, pmtn|#(La

max : Lb
max) can be solved in a polynomial time, where LX

max indicates the maximum lateness
of the X-jobs. Wan [9] investigated the single-machine two-agent scheduling problem to minimize the
maximum costs with position-dependent jobs, and developed a polynomial-time algorithm.

Mathematics 2020, 8, 2070 3 of 17

While most results on Pareto-scheduling concentrate on devising exact algorithms to obtain the
Pareto frontier, there are also some methods (such as [10–14]) of developing approximate algorithms
to generate the approximate Pareto frontier. Dabia et al. [10] adopted the trimming technique to derive
the approximate Pareto frontier for some multi-objective scheduling problems. Yin et al. [15] considered
two just-in-time (JIT) scheduling problems with two competing agents on unrelated parallel machines,
in which the one agent’s criterion is to maximize the weighted number of its JIT jobs, and another agent’s
criterion is either to maximize its maximum gains from its JIT jobs or to maximize the weighted number of
its JIT jobs. They showed that the two problems are both unary NP-hard when the machine number is not
fixed, and proposed either a polynomial-time algorithm or a fully polynomial-time approximation scheme
(FPTAS) when the machine number is a constant. Yin et al. [16] also considered similar problems in the
setting of a two-machine flow shop, and provided two pseudo-polynomial-time exact algorithms to find
the Pareto frontier. Chen et al. [17] studied a multi-agent Pareto-scheduling problem in a no-wait flow shop
setting, in which each agent’s criterion is to maximize its own weighted number of JIT jobs. They showed
that it is unary NP-hard when the number of agents is arbitrary, and presented pseudo-polynomial time
algorithms and an (1, 1− ε, . . . , 1− ε)-approximation algorithm when the number of agents is fixed.

From the perspective of methodology, as a type of optimization problem, the multi-agent scheduling
problem’s solution algorithms potentially allow for exploiting the optimal robot path planning by a
gravitational search algorithm (Purcaru et al. [18]) and optimization based on phylogram analysis
(Soares et al. [19]).

In the prophase work (Zhang and Yuan [20]), we proved that the constrained scheduling problem of
minimizing the total late work of agent A’s jobs with equal due dates subject to the makespan of agent
B’s jobs not exceeding a given upper bound, is NP-hard even if agent B has only one job. It implies
the NP-hardness of our considered problem in this paper. Thus we limit the investigation to devising
pseudo-polynomial-time exact algorithms and an approximation algorithm to generate the approximate
Pareto frontier.

In addition, in our recent work (Zhang et al. [21]), we considered several three-agent scheduling
problems under different constraints on a single machine, in which the three agents’ criteria are to minimize
the total weighted completion time, the weighted number of tardy jobs, and the total weighted late work.
Among those problems, there are two questions related to this paper: 1|pA

j ↑↓ wA
j |#(ΣwA

j CA
j , ΣwB

j YB
j),

which is solved in O(nAn2
BUAUB), and 1|pA

j ↑↓ wA
j , dB

j ↑↓ wB
j |#(ΣwA

j CA
j , ΣwB

j YB
j), which is solved in

O(nAnBUAUB). The notation pA
j ↑↓ wA

j represents that the jobs of the first agent have inversely agreeable
processing times and weights, i.e., the smaller the processing time for a job, the greater its weight,
and the notation dB

j ↑↓ wB
j represents that the jobs of agent B have inversely agreeable due dates and

weights. UA and UB are the upper bounds on the criteria ΣwA
j CA

j and ΣwB
j YB

j , respectively. In contrast to

Zhang et al. [21], in this article we remove the constraint pA
j ↑↓ wA

j and turn to the optimization problem
of B-jobs having a common due date.

The remainder of the paper is organized as follows. In Section 2, some preliminaries are provided.
In Sections 3 and 4, we present two dynamic programming algorithms and an FPTAS. In Section 5,
some numeral tests are undertaken to show the algorithms’ efficiency. Section 6 concludes the paper and
suggests the future research direction.

2. Preliminaries

For self-consistency, in this section we describe some notions and properties related to Pareto-scheduling,
and we present other useful notations in the description of the algorithms in the following sections.

Definition 1. Consider two m-vectors u = (u1, u2, . . . , um) and v = (v1, v2, . . . , vm).

Mathematics 2020, 8, 2070 4 of 17

(i) We say that u dominates v, denoted by u � v, if ui ≤ vi for i = 1, 2, . . . , m.
(ii) We say that u strictly dominates v, denoted by u ≺ v, if u � v and u 6= v.
(iii) Given a constant ε > 0, we say that u ε-dominates v, denoted by u �ε v, if and only if ui ≤ (1 + ε)vi for
i = 1, 2, . . . , m.

Definition 2. Given two agents’ criteria γA(σ) and γB(σ), a feasible schedule σ is called Pareto-optimal and
the corresponding objective vector (γA(σ), γB(σ)) is called a Pareto-optimal point, if no other feasible schedule
π satisfies (γA(π), γB(π)) ≺ (γA(σ), γB(σ)). All the Pareto-optimal points form the Pareto frontier, denoted
by P.

Let R be the set of the objective vectors of all feasible schedules, and Q be a subset of R.

Definition 3. A vector u ∈ Q is called non-dominated in Q, if there exists no other vector v ∈ Q such that
v ≺ u.

It is not difficult to see that, for the above definitions, the latter is an extension of the former, and
especially when Q is exactly equal to R, all the non-dominated vectors in Q compose the Pareto-optimal
frontier. The following lemma establishes the relationship between sets P and a subset Q ⊆ R.

Lemma 1. For any set Q with P ⊆ Q ⊆ R, if O is the set including all the non-dominated vectors in Q,
then O = P.

Proof. By Definition 2, for each Pareto-optimal point u ∈ P, there is no other vector v ∈ R such that v ≺ u,
and naturally, such a fact also holds for the set Q, since Q ⊆ R. Then, it follows that P ⊆ O by the definition
of the set O. Next we show that O ⊆ P. If not, we pick up one vector w from O \ P. Again by Definition 2,
there is some vector w ∈ P such that w ≺ u. Nevertheless, this is impossible, since w ∈ P ⊆ Q leads to no
existence of such a vector w in Q by the assumption of w and Definition 3. Thus O = P.

From Lemma 1, to generate the Pareto frontier P, an alternative is to first determine a set Q with
P ⊆ Q ⊆ R, and then delete the dominated vectors in Q. Throughout the reminder of this paper, such a
subset Q is called an intermediate set. Obviously, R is also an intermediate set.

Definition 4. For a given constant ε > 0, a (1 + ε)-approximate Pareto frontier, denoted by Pε, is a
set of the objective vectors satisfying, for any (γA(σ), γB(σ)) ∈ P, there exists at least one objective vector
(γA(σ′), γB(σ′)) ∈ Pε such that (γA(σ′), γB(σ′)) �ε (γA(σ), γB(σ)).

Definition 5. A family of algorithms {Aε : ε > 0} is called a fully polynomial-time approximation scheme
(FPTAS) if, for each ε > 0, Aε generates a (1 + ε)-approximate Pareto frontier with a running time in the
polynomial in the instance size and 1/ε.

Besides those already mentioned in Section 1, the following notations will also be used later:

• J X
j : indicates the set of the first j jobs in J X , namely, J X

j = {JX
1 , JX

2 , · · · , JX
j }.

• JX
i ≺σ JX′

j indicates that job JX
i immediately precedes JX′

j in schedule σ, where X, X′ ∈ {A, B}.
• sX

j (σ) indicates the starting time of job JX
j in σ.

• PX
sum = ∑nX

j=1 pX
j indicates the total processing time of all X-jobs.

• Psum indicates the total processing time of all jobs, and Psum = PA
sum + PB

sum.
• WX

sum = ∑nX
j=1 wX

j indicates the total weight of all X-jobs.

Mathematics 2020, 8, 2070 5 of 17

• Wsum indicates the total weight of all jobs, and Wsum = WA
sum + WB

sum.
• pX

max indicates the maximum processing time of the X-jobs, namely, pX
max = max{pX

j : 1 ≤ j ≤ nX}.
• wX

max indicates the maximum weight of the X-jobs, namely, wX
max = max{wX

j : 1 ≤ j ≤ nX}.

3. An Exact Algorithm

In this section a dynamic programming algorithm for problem 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j) is

presented. For description convenience, for a given schedule σ, the job set J is divided into the following
four subsets: J A1(σ) = {JA

j : CA
j (σ) ≤ d}, J A2(σ) = {JA

j : CA
j (σ) > d}, J B1(σ) = {JB

j : sB
j (σ) < d},

and J B2(σ) = {JB
j : sB

j (σ) ≥ d}. Obviously, such a partition of the job set is well defined for a given
schedule.

The following lemma establishes the structural properties of the Pareto-optimal schedule.

Lemma 2. For each Pareto-optimal point (C, Y) of problem 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j), there is a

Pareto-optimal schedule σ such that
(i) J A1(σ) ≺σ J B1(σ) ≺σ J A2(σ) ≺σ J B2(σ).
(ii) the jobs in J B1(σ) are sequenced in the non-increasing order of their weights and the jobs in J B2(σ) are
sequenced arbitrarily.
(iii) the jobs in J A1(σ) and J A2(σ) are sequenced according to the weighted shortest processing time (WSPT) rule.

Proof. In Lemma 2, statement (i) can easily be observed, since the jobs in J B2(σ) are late and this will not
result in any increase in their total late work when moving them to the end of the schedule, and as many
A-jobs as possible can be positioned before the B-jobs in J B1(σ), provided that the last job in J B1(σ) is not
late. The left two statements in Lemma 2 can easily be proved by an interchange argument and the detail
is omitted here.

Lemma 2 allows us only to consider the feasible schedules simultaneously satisfying the conditions
(i)-(iii). To this end, we re-number the nA jobs in J A in the WSPT order and the nB B-jobs in the maximum
weight first (MW) order so that

pA
1

wA
1
≤

pA
2

wA
2
≤ · · · ≤

pA
nA

wA
nA

. (2)

wB
1 ≥ wB

2 ≥ · · · ≥ wB
nB

. (3)

Such a sorting takes O(n log n) time.
According to Lemma 1, the algorithm to be described adopts the strategy of first finding the

intermediate set dynamically and then deleting the dominated points in it. It is necessary to mention that
in the proposed algorithm we appropriately relax the conditions to find a modestly larger intermediate set.
For briefly describing the dynamic programming algorithm, we introduce the following terminologies
and notations.

• an ABAB-schedule is defined to be a schedule π for I ⊆ J satisfying (i) π = π1 ≺ π2 ≺ π3 ≺ π4,
where among the four mutually disjointed subschedules π1, π2, π3, andπ4, the A-jobs are included
in π1 and π3, and the B-jobs are included in π2 and π4; (ii) no idle time exists between the jobs in
each subschedule, but this is not necessarily so between two subschedules. Moreover, the idle time
between π3 and π4 is supposed to be long enough; (iii) the jobs in each subschedule are sequenced in
the increasing order of their indices.

• an (−→x ,←−y)-schedule is defined to be an ABAB-schedule π for J A
x ∪ (J B \ J B

y−1) with no idle time
existing between subschedules π2 and π3, where x ∈ {1, 2, . . . , nA} and y ∈ {1, 2, . . . , nB}.

Mathematics 2020, 8, 2070 6 of 17

• a vector (t1, t2, t3, C, Y) is introduced to denote a state of (−→x ,←−y), in which t1, t2, t3, C, and Y,
respectively, stand for the end point of π1, the start point of π2, the end point of π3, the total
weighted completion time of the A-jobs of J A

x , and the total weighted late work of the B-jobs of
J B \ {J B

y−1}. Note that a state of (−→x ,←−y) at least corresponds to some (−→x ,←−y)-schedule.
• Γ(−→x ,←−y) denotes the set of all the states of (−→x ,←−y).
• Γ̃(−→x ,←−y) denotes the set obtained from Γ(−→x ,←−y) by deleting the vectors (t1, t2, t3, C, Y), for which

there is another vector (t1, t2, t3, C, Y) with t1 ≤ t1, t2 ≥ t2, t3 ≤ t3, C ≤ C, and Y ≤ Y.
• Let Q1 = {(C, Y) : (t1, t2, t3, C, Y) ∈ Γ̃(−→nA,

←−
1)}, and let Q̃1 be the set of the non-dominated vectors

in Q1.

To solve problem 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j), we have to first compute Γ̃(−→nA,

←−
1) and then obtain

the Pareto-frontier Q̃1. This can be realized by dynamically computing the sets Γ(−→x ,←−y) for all the possible
choices of the tuple (x, y). Note that each (−→x ,←−y)-schedule can be obtained either by adding job JA

x to
some (

−−→
x− 1,←−y)-schedule, or by adding job JB

y to some (−→x ,
←−−
y + 1)-schedule. Therefore, we can informally

describe our dynamic programming algorithm as follows.
Initially, set Γ(

−→
0 ,
←−−−
nB + 1) = {(0, t0, t0, 0, 0) : d− pA

max + 1 ≤ t0 ≤ d + pB
max − 1} and Γ(−→x ,←−y) = ∅ if

(x, y) 6= (0, nB + 1). Then we recursively generate all the state sets Γ(−→x ,←−y) from the previously-generated
sets Γ(

−−→
x− 1,←−y) and Γ(−→x ,

←−−
y + 1). Specifically,

• For each state (t1, t2, t3, C, Y) ∈ Γ(
−−→
x− 1,←−y) with Γ(

−−→
x− 1,←−y) 6= φ, add two states (t′1, t′2, t′3, C′, Y′)

and (t′′1 , t′′2 , t′′3 , C′′, Y′′) to the set Γ(−→x ,←−y), with

(t′1, t′2, t′3, C′, Y′) = (t1 + pA
x , t2, t3, C + wA

x (t1 + pA
x), Y),

and
(t′′1 , t′′2 , t′′3 , C′′, Y′′) = (t1, t2, t3 + pA

x , C + wA
x (t3 + pA

x), Y).

These two states respectively correspond to the newly obtained (−→x ,←−y)-schedules by scheduling job
JA
x immediately following the subschedule π1 and immediately following the subschedule π3, in some
(
−−→
x− 1,←−y) schedule π that corresponds to the state (t1, t2, t3, C, Y). Note that the first case occurs only

when t1 + pA
x ≤ t2 is satisfied.

• For each state (t1, t2, t3, C, Y) ∈ Γ(−→x ,
←−−
y + 1), also add two two states (t′1, t′2, t′3, C′, Y′) and

(t′′1 , t′′2 , t′′3 , C′′, Y′′) to the set Γ(−→x ,←−y), with

(t′1, t′2, t′3, C′, Y′) = (t1, t2 − pB
y , t3, C, Y + wB

y max{t2 − dB, 0}),

and
(t′′1 , t′′2 , t′′3 , C′′, Y′′) = (t1, t2, t3, C, Y + wB

y pB
y).

These two states respectively correspond to the newly obtained (−→x ,←−y)-schedules by scheduling job
JB
y immediately preceding the subschedule π2 and immediately following the subschedule π4, in some

(−→x ,
←−−
y + 1) schedule π that corresponds to the state (t1, t2, t3, C, Y). Note that the first case occurs only

when t1 ≤ t2 − pB
y < dB is satisfied.

Note that, if in the above state-generation procedures we replace sets Γ(
−−→
x− 1,←−y) and Γ(−→x ,

←−−
y + 1)

with sets Γ̃(
−−→
x− 1,←−y) and Γ̃(−→x ,

←−−
y + 1), then the resulting set of new states, denoted by Γ′(−→x ,←−y), may be

different from Γ(−→x ,←−y). Recall that, when deleting those dominated vectors in the sets Γ(−→x ,←−y) and
Γ′(−→x ,←−y), the newly obtained sets are respectively denoted by Γ̃(−→x ,←−y) and Γ̃′(−→x ,←−y), which will be
shown to be identical in the following lemma.

Mathematics 2020, 8, 2070 7 of 17

Lemma 3. Γ̃(−→x ,←−y) = Γ̃′(−→x ,←−y).

Proof. Since Γ̃(
−−→
x− 1,←−y) ⊆ Γ(

−−→
x− 1,←−y) and Γ̃(−→x ,

←−−
y + 1) ⊆ Γ(−→x ,

←−−
y + 1), it follows that Γ′(−→x ,←−y) ⊆

Γ(−→x ,←−y) by the generation procedure of the new states as described previously. If Γ(−→x ,←−y) = Γ′(−→x ,←−y),
then naturally Γ̃(−→x ,←−y) = Γ̃′(−→x ,←−y). In the following, suppose that Γ(−→x ,←−y) \ Γ′(−→x ,←−y) 6= ∅. We next
show that each state (t′1, t′2, t′3, C′, Y′) ∈ Γ(−→x ,←−y) \ Γ′(−→x ,←−y) is dominated by a state (t1, t2, t3, C, Y) ∈
Γ′(−→x ,←−y), namely, t1 ≤ t′1, t2 ≥ t′2, t3 ≤ t′3, C ≤ C′, Y ≤ Y′.

Let π′ be an (−→x ,←−y)-schedule corresponding to (t′1, t′2, t′3, C′, Y′). According to the above discussion,
there are four possibilities of deriving π′ from some schedule π, which is assumed to correspond to the
state (t1, t2, t3, C, Y) in Γ(

−−→
x− 1,←−y) or Γ(−→x ,

←−−
y + 1).

Case 1. π′ is obtained from π by scheduling job JA
x directly after subschedule π1.

Then (t1, t2, t3, C, Y) ∈ Γ(
−−→
x− 1,←−y) with t1 + pA

x ≤ t2, and there is a state (t̃1, t̃2, t̃3, C̃, Ỹ) ∈ Γ̃(
−−→
x− 1,←−y)

such that t̃1 ≤ t1, t̃2 ≥ t2, t̃3 ≤ t3, C̃ ≤ C, and Ỹ ≤ Y. Let π̃ be an (
−−→
x− 1,←−y)-schedule corresponding to

(t̃1, t̃2, t̃3, C̃, Ỹ), and let π be the (−→x ,←−y)-schedule obtained from π̃ by scheduling JA
x directly after schedule

π̃1. Let (t1, t2, t3, C, Y) be the state corresponding to π. Note that the above operation to get π is feasible
since t̃1 + pA

x ≤ t1 + pA
x ≤ t2 ≤ t̃2. Then we have (t1, t2, t3, C, Y) = (t̃1 + pA

x , t̃2, t̃3, C̃ + wA
x (t̃1 + pA

x), Ỹ).
Combining with the fact that (t′1, t′2, t′3, C′, Y′) = (t1 + pA

x , t2, t3, C + wA
x (t1 + pA

x), Y), we have

t1 = t̃1 + pA
x ≤ t1 + pA

x = t′1,

t2 = t̃2 ≥ t2 = t′2,

t3 = t̃3 ≤ t3 = t′3,

C = C̃ + wA
x (t̃1 + pA

x) ≤ C + wA
x (t1 + pA

x) = C′,

Y = Ỹ ≤ Y = Y′.

(4)

Case 2. π′ is obtained from π by scheduling JA
x directly after schedule π3. Then (t1, t2, t3, C, Y) ∈

Γ(
−−→
x− 1,←−y), and there is a state (t̃1, t̃2, t̃3, C̃, Ỹ) ∈ Γ̃(

−−→
x− 1,←−y) such that t̃1 ≤ t1, t̃2 ≥ t2, t̃3 ≤ t3, C̃ ≤

C, and Ỹ ≤ Y. Let π̃ be an (
−−→
x− 1,←−y)-schedule corresponding to (t̃1, t̃2, t̃3, C̃, Ỹ), and let π be the

(−→x ,←−y)-schedule obtained from π̃ by scheduling JA
x directly after schedule π̃3. Let (t1, t2, t3, C, Y) be the

state corresponding to π. Then we have (t1, t2, t3, C, Y) = (t̃1, t̃2, t̃3 + pA
x , C̃ + wA

x (t̃3 + pA
x), Ỹ). Combining

with the fact that (t′1, t′2, t′3, C′, Y′) = (t1, t2, t3 + pA
x , C + wA

x (t3 + pA
x), Y), we have

t1 = t̃1 ≤ t1 = t′1,

t2 = t̃2 ≥ t2 = t′2,

t3 = t̃3 + pA
x ≤ t3 + pA

x = t′3,

C = C̃ + wA
x (t̃3 + pA

x) ≤ C + wA
x (t3 + pA

x) = C′,

Y = Ỹ ≤ Y = Y′.

(5)

Case 3. π′ is obtained from π by scheduling JB
y directly before schedule π2. Note that in this case,

the condition t1 ≤ t2 − pB
y < dB must be satisfied. Then (t1, t2, t3, C, Y) ∈ Γ(−→x ,

←−−
y + 1), and there is a

state (t̃1, t̃2, t̃3, C̃, Ỹ) ∈ Γ̃(−→x ,
←−−
y + 1) such that t̃1 ≤ t1, t̃2 ≥ t2, t̃3 ≤ t3, C̃ ≤ C, and Ỹ ≤ Y. Let π̃ be an

(−→x ,
←−−
y + 1)-schedule corresponding to (t̃1, t̃2, t̃3, C̃, Ỹ), and let π be the (−→x ,←−y)-schedule obtained from π̃

by scheduling JB
y directly before schedule π2. Let (t1, t2, t3, C, Y) be the state corresponding to π. The above

Mathematics 2020, 8, 2070 8 of 17

operation to obtain π is feasible. In fact, t̃1 ≤ t1 ≤ t2 − pB
y , which means there are enough spaces for JB

y to
be scheduled in. In the following we will illustrate that the condition t̃2 − pB

y < d is satisfied.
Claim 1. If t̃2 6= t2, then t̃2 ≤ d.
Suppose to the contrary that t̃2 > d, then JB

y is partially early or late in π, implying
that JB

y+1, JB
y+2, . . . , JB

nB
are all late in π̃, i.e., there is no job in π̃2, which further suggests that

∑x
j=1 pA

j = t̃1 + t̃3 − t̃2. What is more, since Ỹ ≤ Y, the jobs JB
y+1, JB

y+2, . . . , JB
nB

are also late in π, which also

indicates that Ỹ = Y and ∑x
j=1 pA

j = t1 + t3 − t2. From t̃1 + t̃3 − t̃2 = t1 + t3 − t2, t̃1 ≤ t1, t̃2 ≥ t2, and

t̃3 ≤ t3 we know that t̃2 = t2 contradicts t̃2 6= t2. Thus, t̃2 ≤ dB. Claim 1 follows.
If t̃2 − pB

y ≥ dB, then t̃2 6= t2. From Claim 1 we have t̃2 ≤ d < d + pB
y , i.e., t̃2 − pB

y < d, which
is a contradiction. Thus the condition t̃2 − pB

y < dB is satisfied and the operation to get π is feasible.
Then we have (t1, t2, t3, C, Y) = (t̃1, t̃2 − pB

y , t̃3, C̃, Ỹ + wB
y max{t̃2 − d, 0}). Combining with the fact that

(t′1, t′2, t′3, C′, Y′) = (t1, t2 − pB
y , t3, C, Y + wB

y max{t2 − d, 0}), we have

t1 = t̃1 ≤ t1 = t′1,

t2 = t̃2 − pB
y ≥ t2 − pB

y = t′2,

t3 = t̃3 ≤ t3 = t′3,

C = C̃ ≤ C = C′.

(6)

Next we prove that Y ≤ Y′. In fact, if t̃2 = t2, then Y = Ỹ + wB
y max{t̃2 − d, 0} ≤ Y + wB

y max{t2 −
d, 0} = Y′. If t̃2 6= t2, then from Claim 1 we know that t̃2 ≤ d, and then t2 − d < 0. Thus we have
Y = Ỹ ≤ Y = Y′.

Case 4. π′ is obtained from π by scheduling JB
y directly after schedule π4. Then (t1, t2, t3, C, Y) ∈

Γ(−→x ,
←−−
y + 1), and there is a state (t̃1, t̃2, t̃3, C̃, Ỹ) ∈ Γ̃(−→x ,

←−−
y + 1) such that t̃1 ≤ t1, t̃2 ≥ t2, t̃3 ≤ t3, C̃ ≤ C,

and Ỹ ≤ Y. Let π̃ be an (−→x ,
←−−
y + 1)-schedule corresponding to (t̃1, t̃2, t̃3, C̃, Ỹ), and let π be the

(−→x ,←−y)-schedule obtained from π̃ by scheduling JA
x directly after schedule π̃3. Let (t1, t2, t3, C, Y) be

the state corresponding to π. Then we have (t1, t2, t3, C, Y) = (t̃1, t̃2, t̃3, C̃, Ỹ + wB
y pB

y). Combining with the
fact that (t′1, t′2, t′3, C′, Y′) = (t1, t2, t3, C, Y + wB

y pB
y), we have

t1 = t̃1 ≤ t1 = t′1,

t2 = t̃2 ≥ t2 = t′2,

t3 = t̃3 ≤ t3 = t′3,

C = C̃ ≤ C = C′,

Y = Ỹ + wB
y pB

y ≤ Y + wB
y pB

y = Y′.

(7)

The result follows.

Theorem 1. Algorithm 1 solves the Pareto-frontier scheduling problem 1|dB
j = d|#(ΣwA

j CA
j , ΣwB

j YB
j) in

O(nAnBdPsumUAUB) time.

Mathematics 2020, 8, 2070 9 of 17

Algorithm 1: For problem 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j)

1 Set Γ(
−→
0 ,
←−−−
nB + 1) = {(0, t0, t0, 0, 0) : d− pA

max + 1 ≤ t0 ≤ d + pB
max − 1} and set Γ(−→x ,←−y) = ∅ if

(x, y) 6= (0, nB + 1).
2 for x = 0, 1, . . . , nA, y = nB + 1, nB, . . . , 1, do
3 for each (t1, t2, t3, C, Y) ∈ Γ(

−−→
x− 1,←−y), do

4 if 0 < x ≤ nA, then
5 Γ(−→x ,←−y) := Γ(−→x ,←−y) ∪ (t1, t2, t3 + pA

x , C + wA
x (t3 + pA

x), Y)
6 end
7 if 0 < x ≤ nA and t1 + pA

x ≤ t2, then
8 Γ(−→x ,←−y) := Γ(−→x ,←−y) ∪ (t1 + pA

x , t2, t3, C + wA
x (t1 + pA

x), Y)
9 end

10 end

11 for each (t1, t2, t3, C, Y) ∈ Γ(−→x ,
←−−
y + 1), do

12 if 1 ≤ y < nB + 1, then
13 Γ(−→x ,←−y) := Γ(−→x ,←−y) ∪ (t1, t2, t3, C, Y + wB

y pB
y)

14 end
15 if 1 ≤ y < nB + 1 and t1 ≤ t2 − pB

y < d, then
16 Γ(−→x ,←−y) := Γ(−→x ,←−y) ∪ (t1, t2 − pB

y , t3, C, Y + wB
y max{t2 − d, 0})

17 end
18 end
19 For each newly generated Γ(−→x ,←−y), set Γ(−→x ,←−y) := Γ̃(−→x ,←−y)

20 end
21 Generate Q̃1 and, for each state (C, Y) ∈ Q̃1, derive the corresponding optimal schedule by

backtracking.

Proof. The correctness of Algorithm 1 is guaranteed by Lemma 2, Lemma 1, and Lemma 3. Here we
only analyze its time complexity. The initialization step takes O(Psum + nAnB) time, which is dominated
by the final time complexity of Algorithm 1. In the implementation of Algorithm 1, we guarantee that
Γ(−→x ,←−y) = Γ̃(−→x ,←−y). Note that 0 ≤ t1 ≤ dB and dB − pA

max + 1 ≤ t3 ≤ Psum, then each state set Γ(−→x ,←−y)

contains O(dBPsumUAUB) states. Moreover, Γ(−→x ,←−y) is obtained by performing at most two (constant)
operations on the states in Γ(

−−→
x− 1,←−y)

⋃
Γ(−→x ,

←−−
y + 1) for x = 0, 1, . . . , nA, y = nB + 1, nB, . . . , 1. Note

that the upper bounds of ΣwA
j CA

j and ΣwB
j YB

j are given by UA = ∑nA
j=1 wA

j Psum and UB = ∑nB
j=1 wB

j pB
j ,

respectively. Thus, the overall running time of Algorithm 1 is O(nAnBdPsumUAUB).

4. An FPTAS

In this section, for problem 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j), we first give another dynamic

programming algorithm, and then turn it into an FPTAS by the trimming technique. As for Algorithm 1,
we first introduce the following terminologies and notations.

• An (x, y)-schedule is defined to be an ABAB-schedule π for J A
x ∪ J B

y with no idle time existing
between subschedules π1, π2 and π3, where x ∈ {1, 2, . . . , nA} and y ∈ {1, 2, . . . , nB}.

• A vector (t1, t2, t3, W, k(π), C, Y) is introduced to denote a state of (x, y), in which t1, t2, t3, W, k, C
and Y, respectively, stand for the end point of π1, the end point of π2, the end point of π3, the total
weight of the jobs in π3, the index of the last B-job in π2, the total weighted completion time of the

Mathematics 2020, 8, 2070 10 of 17

A-jobs of J A
x , and the total weighted late work of the B-jobs of J B

y . Note that a state of (x, y) at least
corresponds to some (x, y)-schedule.

• Γ(x, y) denotes the set of all the states of (x, y).
• Γ̃(x, y) denotes the set obtained from Γ(x, y) by deleting the vectors (t1, t2, t3, W, k, C, Y), for which

there is another vector (t1, t2, t3, W, k, C, Y) with t1 ≤ t1, t2 ≤ t2, t3 ≤ t3, W ≤W, C ≤ C, Y ≤ Y.
• Let Q2 = {(C, Y) : (t1, t2, t3, W, k, C, Y) ∈ Γ̃(nA, nB)}, and let Q̃2 be the set of the non-dominated

vectors in Q2.

Clearly, Q2 is an intermediate set. Similarly to the discussion for Algorithm 1, we can generate all the
Γ(x, y) for all the possible choices of the tuple (x, y) dynamically in the following way.

Initially, set Γ(0, 0) = {(0, 0, 0, 0, 0, 0, 0)} and Γ(x, y) = ∅ if (x, y) 6= (0, 0). Then we recursively
generate all the state sets Γ(x, y) from the previously generated sets Γ(x− 1, y) and Γ(x, y− 1). Specifically,

• For each state (t1, t2, t3, W, k, C, Y) ∈ Γ(x − 1, y) with Γ(x − 1, y) 6= ∅, add two states (t′1, t′2, t′3, W ′,
k′, C′, Y′) and (t′′1 , t′′2 , t′′3 , W ′′, k′′, C′′, Y′′) to the set Γ(x, y), with

(t′1, t′2, t′3, W ′, k′, C′, Y′) = (t1 + pA
x , t2 + pA

x , t3 + pA
x , W, k, C + wA

x (t1 + pA
x) + W pA

x , Y
+wB

k max{min{t2 + pA
x − dB, pA

x }, 0}), and(t′′1 , t′′2 , t′′3 , W ′′, k′′, C′′, Y′′)
= (t1, t2, t3 + pA

x , W + wA
x , k, C + wA

x (t3 + pA
x), Y).

These two states respectively correspond to the newly obtained (x, y)-schedules by scheduling job
JA
x immediately following the subschedule π1 and immediately following the subschedule π3, in some
(x− 1, y) schedule π that corresponds to the state (t1, t2, t3, W, k, C, Y). Note that the first case occurs only
when t1 + pA

x ≤ t2 is satisfied.

• For each state (t1, t2, t3, W, k, C, Y) ∈ Γ(x, y− 1), also add two two states (t′1, t′2, t′3, W ′, k′, C′, Y′) and
(t′′1 , t′′2 , t′′3 , W ′′, k′′, C′′, Y′′) to the set Γ(x, y), with

(t′1, t′2, t′3, W ′, k′, C′, Y′) = (t1, t2 + pB
y , t3 + pB

y , W, y, C + W pB
y , Y + wB

y max{t2 + pB
y − dB, 0}),

and
(t′′1 , t′′2 , t′′3 , W ′′, k′′, C′′, Y′′) = (t1, t2, t3, W, k, C, Y + wB

y pB
y).

These two states respectively correspond to the newly obtained (x, y)-schedules by scheduling job JB
y

immediately after π2 and immediately following the subschedule π4, in some (x, y− 1) schedule π that
corresponds to the state (t1, t2, t3, W, k, C, Y). Note that the first case occurs only when t2 < dB is satisfied.

Note that, if in the above state-generation procedures we replace sets Γ(x− 1, y) and Γ(x, y− 1) with
sets Γ̃(x− 1, y) and Γ̃(x, y− 1), then the resulting set of new states, denoted by Γ′(x, y), may be different
from Γ(x, y). Recall that, when deleting those dominated vectors in the sets Γ(x, y) and Γ′(x, y), the newly
obtained sets are respectively denoted by Γ̃(x, y) and Γ̃′(x, y), which will be shown to be identical in the
following lemma, and its proof is similar to that of Lemma 3.

Mathematics 2020, 8, 2070 11 of 17

Lemma 4. Γ̃(x, y) = Γ̃′(x, y).

Theorem 2. Algorithm 2 solves 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j) in O(nAn2

BdPsumWA
sumUAUB) time.

Algorithm 2: For solving 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j)

1 Set Γ(0, 0) = {(0, 0, 0, 0, 0, 0, 0)} and set Γ(x, y) = ∅ if (x, y) 6= (0, 0).
2 for x = 0, 1, . . . , nA, y = 0, 1, . . . , nB, do
3 for each (t1, t2, t3, W, k, C, Y) ∈ Γ(x− 1, y), do
4 if 0 < x ≤ nA, then
5 Γ(x, y) := Γ(x, y) ∪ (t1, t2, t3 + pA

x , W + wA
x , k, C + wA

x (t3 + pA
x), Y)

6 if k = 0 or (k 6= 0 and t2 + pA
x − dB < pB

k), then
7 Γ(x, y) := Γ(x, y) ∪ (t1 + pA

x , t2 + pA
x , t3 + pA

x , W, k, C + wA
x (t1 + pA

x) + W pA
x , Y +

wB
k max{min{t2 + pA

x − d, pA
x }, 0})

8 end
9 end

10 end
11 for each (t1, t2, t3, C, Y) ∈ Γ(x, y− 1), do
12 if 0 < y ≤ nB, then
13 Γ(x, y) := Γ(x, y) ∪ (t1, t2, t3, W, k, C, Y + wB

y pB
y)

14 if t2 < d, then
15 Γ(x, y) := Γ(x, y) ∪ (t1, t2 + pB

y , t3 + pB
y , W, y, C +W pB

y , Y + wB
y max{t2 + pB

y − d, 0})
16 end
17 end
18 end
19 The elimination step: for each newly generated Γ(x, y), set Γ(x, y) := Γ̃(x, y)
20 end
21 Generate Q̃2 and, for each state (C, Y) ∈ Q̃2, derive the corresponding optimal schedule by

backtracking.

Proof. The correctness of Algorithm 2 is guaranteed by the discussion above. Next we only analyze
its time complexity. The initialization step takes O(nAnB) time, which is dominated by the final time
complexity of Algorithm 2. In the implementation of Algorithm 2, we guarantee thatΓ(x, y) = Γ̃(x, y).
Note that 0 ≤ t1 ≤ dB and d− pA

max + 1 ≤ t3 ≤ Psum, 0 ≤ k ≤ nB and 0 ≤ W ≤ WA
sum, then each state

set Γ(x, y) contains O(nBdPsumWA
sumUAUB) states. Moreover, Γ(x, y) is obtained by performing at most

two (constant) operations on the states in Γ(x − 1, y)
⋃

Γ(x, y− 1) for x = 0, 1, . . . , nA, y = 0, 1, . . . , nB.
Thus, the overall running time of Algorithm 2 is O(nAn2

BdBPsumWA
sumUAUB).

Next we turn Algorithm 2 into an FPTAS in the following way. Set ∆ = 1 + ε
2n , L1 = dlog∆de, L3 =

dlog∆(Psum)e, LW = dlog∆(WA
sum)e, LA = dlog∆(UA)e and LB = dlog∆(UB)e. Set I1

i = [∆(i−1), ∆i] for
i = 1, 2, . . . , L1, I3

i = [∆(i−1), ∆i] for i = 1, 2, . . . , L3, IW
i = [∆(i−1), ∆i] for i = 1, 2, . . . , LW , IA

i = [∆(i−1), ∆i]

for i = 1, 2, . . . , LA and IB
i = [∆(i−1), ∆i] for i = 1, 2, . . . , LB. For x = 0, 1, . . . , nA and y = 0, 1, . . . , nB,

Γ̂(x, y) is obtained from Γ(x, y) by the following operation: for any two states (t1, t2, t3, W, k, C, Y) and
(t1, t2, t3, W, k, C, Y) in Γ(x, y), if (t1, t3, W, C, Y) and (t1, t3, W, C, Y) fall into the same box I1

u × I3
v × IW

w ×
IA
p × IB

q for u = 1, 2, . . . , L1, v = 1, 2, . . . , L3, w = 1, 2, . . . , LW , p = 1, 2, . . . , LA and q = 1, 2, . . . , LB with

Mathematics 2020, 8, 2070 12 of 17

t2 ≤ t2, remaining the first one. Note that it takes O(L1L3LW LALB) time to partition the boxes. Moreover,
we define

Q3 = {(C, Y) : (t1, t2, t3, W, k, C, Y) ∈ Γ̂(nA, nB)} (8)

and let Q̃3 be the set of non-dominated vectors in Q3.

Theorem 3. Algorithm 3 is an FPTAS for solving 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j).

Algorithm 3: For solving 1|dB
j = d|#(∑ wA

j CA
j , ∑ wB

j YB
j)

1 Set Γ(0, 0) = {(0, 0, 0, 0, 0, 0, 0)} and set Γ(x, y) = ∅ if (x, y) 6= (0, 0).
2 for x = 0, 1, . . . , nA, y = 0, 1, . . . , nB, do
3 the same operations with Algorithm 2
4 The elimination step: for each newly generated Γ(x, y), set Γ(x, y) := Γ̂(x, y)
5 end
6 Generate Q̃3 and, for each state (C, Y) ∈ Q̃3, derive the corresponding optimal schedule by

backtracking.

Proof. By induction on z = x + y, We prove that, for any state (t′1, t′2, t′3, W ′, k′, C′, Y′) ∈ Γ(x, y), there
is a state (t1, t2, t3, W, k′, C, Y) ∈ Γ̂(x, y) such that t1 ≤ ∆zt′1, t2 ≤ t′2, t3 ≤ ∆zt′3, W ≤ ∆zW ′, C ≤ ∆zC′

and Y ≤ ∆zY′.
This is obviously true for z = 0. Inductively suppose that it holds up to z − 1. Next we show

that it also holds for z. Recall that each state (t′1, t′2, t′3, W ′, k′, C′, Y′) ∈ Γ(x, y) is derived from some
state (t1, t2, t3, W, k, C, Y) in Γ(x − 1, y) or Γ(x, y − 1). Let π′ be an (x, y)-schedule corresponding
to (t′1, t′2, t′3, W ′, k′, C′, Y′), and let π be a schedule corresponding to the state (t1, t2, t3, W, k, C, Y).
Using the induction hypothesis, there is a state (t̂1, t̂2, t̂3, Ŵ, k, Ĉ, Ŷ) in Γ̂(x− 1, y) or Γ̂(x, y− 1) such that
t̂1 ≤ ∆z−1t1, t̂2 ≤ t2, t̂3 ≤ ∆z−1t3, Ŵ ≤ ∆z−1W, Ĉ ≤ ∆z−1C, and Ŷ ≤ ∆z−1Y. Let π̂ be an (x− 1, y)-schedule
or (x, y− 1)-schedule corresponding to (t̂1, t̂2, t̂3, Ŵ, k, Ĉ, Ŷ), and if it is feasible, let π̃ be the (x, y)-schedule
obtained from π̂ by performing the same operation that we perform on π to get π′. Let (t̃1, t̃2, t̃3, W̃, k̃, C̃, Ỹ)
be the state corresponding to π̃. Furthermore, there is a state (t1, t2, t3, W, k̃, C, Y) ∈ Γ̂(x, y) in the same box
with (t̃1, t̃2, t̃3, W̃, k̃, C̃, Ỹ) such that t1 ≤ ∆t̃1, t2 ≤ t̃2, t3 ≤ ∆t̃3, W ≤ ∆W̃, C ≤ ∆C̃ and Y ≤ ∆Ỹ. There are
four possible ways to get π′ from π.

Case 1. π′ is obtained from π by scheduling JA
x directly after schedule π1. Note that in this

case, the condition t2 + pA
x − dB < pB

k must be satisfied. Then (t1, t2, t3, W, k, C, Y) ∈ Γ(x − 1, y),
and the operation to get π̃ is feasible since t̂2 + pA

x − dB ≤ t2 + pA
x − dB < pB

k . Then we have
(t̃1, t̃2, t̃3, W̃, k̃, C̃, Ỹ) = (t̂1 + pA

x , t̂2 + pA
x , t̂3 + pA

x , Ŵ, k, Ĉ + wA
x (t̂1 + pA

x) + Ŵ pA
x , Ŷ + wB

k max{min{t̂2 +

pA
x − dB, pA

x }, 0}). Combining with the fact that (t′1, t′2, t′3, W ′, k′, C′, Y′) = (t1 + pA
x , t2 + pA

x , t3 +

pA
x , W, k, C + wA

x (t1 + pA
x) + W pA

x , Y + wB
k max{min{t2 + pA

x − dB, pA
x }, 0}), we have



t1 ≤ ∆t̃1 = ∆(t̂1 + pA
x) ≤ ∆z(t1 + pA

x) = ∆zt′1,

t2 ≤ t̃2 = t̂2 + pA
x ≤ t2 + pA

x = t′2,

t3 ≤ ∆t̃3 = ∆(t̂3 + pA
x) ≤ ∆z(t3 + pA

x) = ∆zt′3,

W ≤ ∆W̃ = ∆Ŵ ≤ ∆zW = ∆zW ′,

k̃ = k = k′,

C ≤ ∆C̃ = ∆(Ĉ + wA
x (t̂1 + pA

x) + Ŵ pA
x) ≤ ∆z(C + wA

x (t1 + pA
x) + W pA

x) = ∆zC′,

Y ≤ ∆Ỹ = ∆(Ŷ + wB
k max{min{t̂2 + pA

x − dB, pA
x }, 0}) ≤ ∆z(Y + wB

k max{min{t2 + pA
x − dB, pA

x }, 0}) = ∆zY.

(9)

Mathematics 2020, 8, 2070 13 of 17

Case 2. π′ is obtained from π by scheduling JA
x directly after schedule π3. Then (t1, t2, t3, W, k, C, Y) ∈

Γ(x− 1, y), and π̃ is clearly a feasible schedule. Then we have (t̃1, t̃2, t̃3, W̃, k̃, C̃, Ỹ) = (t̂1, t̂2, t̂3 + pA
x , Ŵ +

wA
x , k, Ĉ + wA

x (t̂3 + pA
x), Ŷ). Combining with the fact that (t′1, t′2, t′3, W ′, k′, C′, Y′) = (t1, t2, t3 + pA

x , W +

wA
x , k, C + wA

x (t3 + pA
x), Y), we have

t1 ≤ ∆t̃1 = ∆t̂1 ≤ ∆zt1 = ∆zt′1,

t2 ≤ t̃2 = t̂2 ≤ t2 = t′2,

t3 ≤ ∆t̃3 = ∆(t̂3 + pA
x) ≤ ∆z(t3 + pA

x) = ∆zt′3,

W ≤ ∆W̃ = ∆(Ŵ + wA
x) ≤ ∆z(W + wA

x) = ∆zW ′,

k̃ = k = k′,

C ≤ ∆C̃ = ∆(Ĉ + wA
x (t̂3 + pA

x)) ≤ ∆z(C + wA
x (t3 + pA

x)) = ∆zC′,

Y ≤ ∆Ỹ = ∆Ŷ ≤ ∆zY = ∆zY′.

(10)

Case 3. π′ is obtained from π by scheduling JB
y directly after schedule π2. Note that in this case,

the condition t2 < dB must be satisfied. Then (t1, t2, t3, W, k, C, Y) ∈ Γ(x, y − 1), and the operation to
get π̃ is feasible since t̂2 ≤ t2 < dB. Then we have (t̃1, t̃2, t̃3, W̃, k̃, C̃, Ỹ) = (t̂1, t̂2 + pB

y , t̂3 + pB
y , Ŵ, y, Ĉ +

Ŵ pB
y , Ŷ+wB

y max{t̂2 + pB
y − dB, 0}). Combining with the fact that (t′1, t′2, t′3, W ′, k′, C′, Y′) = (t1, t2 + pB

y , t3 +

pB
y , W, y, C + W pB

y , Y + wB
y max{t2 + pB

y − dB, 0}), we have



t1 ≤ ∆t̃1 = ∆t̂1 ≤ ∆zt1 = ∆zt′1,

t2 ≤ t̃2 = t̂2 + pB
y ≤ t2 + pB

y = t′2,

t3 ≤ ∆t̃3 = ∆(t̂3 + pB
y) ≤ ∆z(t3 + pB

y) = ∆zt′3,

W ≤ ∆W̃ = ∆Ŵ ≤ ∆zW = ∆zW ′,

k̃ = y = k′,

C ≤ ∆C̃ = ∆(Ĉ + Ŵ pB
y) ≤ ∆z(C + W pB

y) = ∆zC′,

Y ≤ ∆Ỹ = ∆(Ŷ + wB
y max{t̂2 + pB

y − dB, 0}) ≤ ∆z(Y + wB
y max{t2 + pB

y − dB, 0}) = ∆zY′.

(11)

Case 4. π′ is obtained from π by scheduling JB
y directly after schedule π4. Then (t1, t2, t3, W, k, C, Y) ∈

Γ(x, y− 1), and π̃ is clearly a feasible schedule. Then we have (t̃1, t̃2, t̃3, W̃, k̃, C̃, Ỹ) = (t̂1, t̂2, t̂3, Ŵ, k, Ĉ, Ŷ +

wB
y pB

y). Combining with the fact that (t′1, t′2, t′3, W ′, k′, C′, Y′) = (t1, t2, t3, W, k, C, Y + wB
y pB

y), we have



t1 ≤ ∆t̃1 = ∆t̂1 ≤ ∆zt1 = ∆zt′1,

t2 ≤ t̃2 = t̂2 ≤ t2 = t′2,

t3 ≤ ∆t̃3 = ∆t̂3 ≤ ∆zt3 = ∆zt′3,

W ≤ ∆W̃ = ∆Ŵ ≤ ∆zW = ∆zW ′,

k̃ = k = k′,

C ≤ ∆C̃ = ∆Ĉ ≤ ∆zC = ∆zC′,

Y ≤ ∆Ỹ = ∆(Ŷ + wB
y pB

y) ≤ ∆z(Y + wB
y pB

y) = ∆zY′.

(12)

Mathematics 2020, 8, 2070 14 of 17

Thus, for each state (C′, Y′) in Q̃2, there is a state (C, Y) in Q3 such that C ≤ ∆nC′ ≤ (1 + ε)C′ and
Y ≤ ∆nY′ ≤ (1 + ε)Y′.

Next we analyze its time complexity. The initialization step takes O(nAnB) time, which is dominated
by the final time complexity of Algorithm 3. In the implementation of Algorithm 3, we guarantee that
Γ(x, y) = Γ̂(x, y). Note that there are O(L1L3LW LALB) distinct boxes and 0 ≤ k ≤ nB, then there are at
most O(nBL1L3LW LALB) different states (t1, t2, t3, W, k, C, Y) in Γ(x, y). Moreover, Γ(x, y) is obtained by
performing at most two (constant) operations on the states in Γ(x− 1, y)

⋃
Γ(x, y− 1) for x = 0, 1, . . . , nA,

y = 0, 1, . . . , nB. Thus, the overall running time of Algorithm 3 is O(nAn2
BL1L3LW LALB).

5. Numerical Results

In this section some numerical results are provided to show the efficiency of our proposed algorithms.
For running our optimization algorithms, we need to input the following parameters relative with the
job instances: the numbers of A-jobs and B-jobs, the processing times and weights of all the jobs, and the
common due date of B-jobs. By running Algorithms 1 and 2, we get the Pareto frontier. To use Algorithm 3,
we need to choose the value of ε (>0) to get a (1 + ε)-approximate Pareto frontier. Note that for the same
instance, the Pareto frontiers obtained by Algorithms 1 and 2 are the same, except that the running time
of Algorithm 1 is theoretically faster than that of Algorithm 2. The closer the (1 + ε)-approximate Pareto
frontier obtained by Algorithm 3 is to the curve obtained by Algorithms 1 and 2, the closer it is to the
optimal solution.

We randomly generate some job instances, in which the numbers of the jobs are set to be n = 4
(nA = nB = 2), n = 6 (nA = nB = 3), and n = 10 (nA = nB = 5). The processing times and the weights of
the jobs are randomly generated between 1 and 2. The common due date of B-jobs is set to be 5. What is
more, we set ε = 1. We ran our algorithms on these instances in a Matlab R2016b environment on an
Intel(R) Core(TM) CPU, 2.50 GHz, 4 GB of RAM computer. In fact, when the number of the jobs is small,
the Pareto frontier or the approximate Pareto frontier can be found relatively quickly, but when the number
of the jobs increases, the running time will increase hugely. The following three Figures 1–3 present the
Pareto frontier and (1 + ε)-approximate Pareto frontier generated by Algorithms 1–3. As can be seen from
the three figures, the results obtained by Algorithms 1 and 2 are exactly the same. The results of Algorithm 3
are consistent with those of Algorithms 1 and 2, which may be due to the coincidence caused by the
small size of the instance we chose and the few choices in the sizes of the jobs. In fact, considering that
the problem we studied is NP-hard, our algorithm can only reach pseudo-polynomial-time theoretically.
Therefore, our algorithm is theoretically more suitable for small-scale instances, where the sizes of the
jobs are relatively uniform, which fits with the nature of such problems in real life, such as in logistics
distribution centers where we use boxes of fixed sizes.

8 8.5 9 9.5 10 10.5 11

 wA
j
CA

j

0

1

2

3

 w
B j
Y

B j

n=4

Figure 1. The black stars are the points generated by Algorithms 1 and 2, the red circles are points generated
by Algorithm 3.

Mathematics 2020, 8, 2070 15 of 17

9 10 11 12 13 14 15 16 17

wA
j
CA

j

0

2

4

6

8

w
B j
Y

B j

n=6

Figure 2. The black stars are the points generated by Algorithms 1 and 2, the red circles are points generated
by Algorithm 3.

25 30 35 40 45 50 55 60 65

wA
j
CA

j

2

4

6

8

10

12

w
B j
Y

B j

n=10

Figure 3. The black stars are the points generated by Algorithms 1 and 2, the red circles are points generated
by Algorithm 3.

6. Conclusions

In this paper we investigated a Pareto-optimal problem of scheduling two agents’ jobs on a single
machine to minimize one agent’s total weighted completion time and the other’s total weighted late work.
For this problem, we devised two dynamic programming algorithms to obtain the Pareto frontier, and an
FPTAS to generate an approximate Pareto frontier. Some numerical results were also provided. Compared
with the two problems 1|pA

j ↑↓ wA
j |#(ΣwA

j CA
j , ΣwB

j YB
j) and 1|pA

j ↑↓ wA
j , dB

j ↑↓ wB
j |#(ΣwA

j CA
j , ΣwB

j YB
j)

studied in Zhang et al. [20], the constraint pA
j ↑↓ wA

j was removed from the problem considered in this
paper and we turned to the optimization problem under the condition that B-jobs had a common due
date. Table 1 lists the computational complexity of the above three problems. As we can see from Table 1,
the condition pA

j ↑↓ wA
j seems to have a greater impact on the complexity result of the problem. In future

research, we can try to devise more efficient approximation algorithms for our considered problem with
a constant performance-ratio, and we can also study two-agent problems with other combinations of
objective functions.

Table 1. Complexity of three problems.

Problems Complexity Reference

1|pA
j ↑↓ wA

j |
#(ΣwA

j CA
j , ΣwB

j YB
j) O(nAn2

BUAUB) Zhang et al. [20]
1|pA

j ↑↓ wA
j , dB

j ↑↓ wB
j |

#(ΣwA
j CA

j , ΣwB
j YB

j) O(nAnBUAUB) Zhang et al. [20]
1|dB

j = d|#(ΣwA
j CA

j , ΣwB
j YB

j) O(nAnBdPsumUAUB) Theorem 1

Mathematics 2020, 8, 2070 16 of 17

Author Contributions: Supervision, J.Y.; writing–original draft, Y.Z.; writing–review and editing, Z.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the NSFC under grant numbers 12071442, 11671368 and 11771406.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym
LD linear dichroism

References

1. Agnetis, A.; Billaut, J.C.; Gawiejnowicz, S.; Pacciarelli, D.; Soukhal, A. Multiagent Scheduling: Models and
Algorithms; Springer: Berlin/Heidelberg, Germany, 2014.

2. Li, S.S.; Yuan, J.J. Single-machine scheduling with multi-agents to minimize total weighted late work. J. Sched.
2020, 23, 497–512. [CrossRef]

3. Hariri, A.M.A.; Potts, C.N.; Van Wassenhove, L.N. Single machine scheduling to minimize total weighted late
work. ORSA J. Comput. 1995, 7, 232–242. [CrossRef]

4. Wan, L.; Yuan, J.J.; Wei, L.J. Pareto optimization scheduling with two competing agents to minimize the number
of tardy jobs and the maximum cost. Appl. Math. Comput. 2016, 273, 912–923. [CrossRef]

5. Wan, L.; Wei, L.J.; Xiong, N.X.; Yuan, J.J.; Xiong, J.C. Pareto optimization for the two-agent scheduling problems
with linear non-increasing deterioration based on Internet of Things. Future Gene. Comp. Syst. 2017, 76, 293–300.
[CrossRef]

6. Gao, Y.; Yuan, J.J. Bi-criteria Pareto-scheduling on a single machine with due indices and precedence constraints.
Discret. Optim. 2017, 25, 105–119. [CrossRef]

7. He, C.; Leung, J. Two-agent scheduling of time-dependent jobs. J. Comb. Optim. 2017, 34, 362–377. [CrossRef]
8. Yuan, J.J.; Ng, C.T.; Cheng, T.C.E. Two-agent single-machine scheduling with release dates and preemption to

minimize the maximum lateness. J. Sched. 2015, 18, 147–153. [CrossRef]
9. Wan, L. Two-Agent Scheduling to Minimize the Maximum Cost with Position-Dependent Jobs. Discrete Dyn.

Nat. Soc. 2015. [CrossRef]
10. Dabia, S.; Talbi, E.G.; Van Woensel, T.; De Kok, T. Approximating multi-objective scheduling problems. Comput.

Oper. Res. 2013, 40, 1165–1175. [CrossRef]
11. Lee, K.; Choi, B.C.; Leung, J.Y.T.; Pinedo, M.L. Approximation algorithms for multi-agent scheduling to minimize

total weighted completion time. Inf. Process. Lett. 2009, 109, 913–917. [CrossRef]
12. Legriel, J.; Guernic, C.L.; Cotton, S.; Maler, O. Approximating the pareto front of multi-criteria optimization

problems. In Proceedings of the 16th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems held at the 13th Joint European Conferences on Theory and Practice of Software, Paphos,
Cyprus, 20–28 March 2010.

13. Marinescu, R. Efficient approximation algorithms for multi-objective constraint optimization. In Proceedings of
the 2nd International Conference on Algorithmic Decision Theory, Piscataway, NJ, USA, 26–28 October 2011.

14. Vassilvitskii, S.; Yannakakis, M. Efficiently computing succinct trade-off curves. Theor. Comput. Sci. 2005,
348, 334–356. [CrossRef]

15. Yin, Y.Q.; Cheng, S.R.; Cheng, T.C.E.; Wang, D.J.; Wu, C.C. Just-in-time scheduling with two competing agents on
unrelated parallel machines. Omega-Int. J. Manag. Sci. 2016, 63, 41–47. [CrossRef]

16. Yin, Y.Q.; Cheng, T.; Wang, D.J.; Wu, C.C. Two-agent flowshop scheduling to maximize the weighted number of
just-in-time jobs. J. Sched. 2017, 20, 313–335. [CrossRef]

http://dx.doi.org/10.1007/s10951-020-00646-7
http://dx.doi.org/10.1287/ijoc.7.2.232
http://dx.doi.org/10.1016/j.amc.2015.10.059
http://dx.doi.org/10.1016/j.future.2016.09.004
http://dx.doi.org/10.1016/j.disopt.2017.02.004
http://dx.doi.org/10.1007/s10878-016-9994-y
http://dx.doi.org/10.1007/s10951-013-0360-y
http://dx.doi.org/10.1155/2015/932680
http://dx.doi.org/10.1016/j.cor.2012.12.001
http://dx.doi.org/10.1016/j.ipl.2009.04.018
http://dx.doi.org/10.1016/j.tcs.2005.09.022
http://dx.doi.org/10.1016/j.omega.2015.09.010
http://dx.doi.org/10.1007/s10951-017-0511-7

Mathematics 2020, 8, 2070 17 of 17

17. Chen, R.X.; Li, S.S.; Li, W.J. Multi-agent scheduling in a no-wait flow shop system to maximize the weighted
number of just-in-time jobs. Eng. Optim. 2019, 51, 217–230. [CrossRef]

18. Purcaru, C.; Precup, R.E.; Iercan, D.; Fedorovici, L.O.; David, R.C.; Dragan, F. Optimal robot path planning using
gravitational search algorithm. Int. J. Artif. Intell. 2013, 10, 1–20.

19. Soares, A.; Râbelo, R.; Delbem, A. Optimization based on phylogram analysis. Expert Syst. Appl. 2017, 78, 32–50.
[CrossRef]

20. Zhang, Y.; Yuan, J.J. A note on a two-agent scheduling problem related to the total weighted late work.
J. Comb. Optim. 2019, 37, 989–999. [CrossRef]

21. Zhang, Y.; Yuan, J.J.; Ng, C.T.; Cheng, T.C.E. Pareto-optimization of three-agent scheduling to minimize the total
weighted completion time, weighted number of tardy jobs, and total weighted late work. Nav. Res. Logist. 2020,
in press.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/0305215X.2018.1458844
http://dx.doi.org/10.1016/j.eswa.2017.02.012
http://dx.doi.org/10.1007/s10878-018-0337-z
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	An Exact Algorithm
	An FPTAS
	Numerical Results
	Conclusions
	References

