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Abstract: We study the behavior of multiple power series distributions at the boundary points of their
existence. In previous papers, the necessary and sufficient conditions for the integral limit theorem
were obtained. Here, the necessary and sufficient conditions for the corresponding local limit theorem
are established. This article is dedicated to the memory of my teacher, professor V.M. Zolotarev.
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1. Introduction

Let (a(i) >0,1=0,1,2,...) be a sequence with

for x € (0,1). The trivial case a(i) =0, i = 0,1,2,... is excluded. It is said that a random variable ¢,
has a power series distribution iff
a(i)x’

P{gx = i} = B(x) ’

for some B(x) and forany i € Z.

Power series distributions were introduced in the fundamental paper of Noack [1] (1950).

Systematic studies of their properties (moments, generating functions, convolutions, limit properties,
statistical applications, etc.) began immediately. References may be found in the encyclopedias of
Johnson, Kotz, and Kemp [2] (for the one-dimensional case) and Johnson, Kotz, and Balakrishnan [3]
(for the multidimensional case). For example, the binomial, Poisson, negative binomial, and logarithmic
distributions, as well as their multidimensional analogues are among the important distributions
in this class.

Note that power series distributions are widely useful in a generalized allocation scheme (in the
one-dimensional case). This scheme was introduced by V. Kolchin [4]. His results and, in particular,
those obtained with the use of this scheme, play an important role in probabilistic combinatorics
(see, for example, his books [5,6]). So, one can express distributions of various characteristics of
random permutations (a(i) = 1/i), random mappings ((a(i) = i1 Z;;lo i*/k!)) [5]), and random
mappings with various constraints (on cycle length, height, component sizes, etc.; see, for example,
the books of Timashev [7,8]), random trees, and random forests (i.e., random mappings with cycles of
only unit length (see the book of Yu. Pavlov [9])) in terms of power series distributions. An analogue
of Kolchin’s generalized allocation scheme [4] with a bounded number of particles was introduced
in the work of A.N. Chuprunov and I. Fezekash [10]. A corresponding multivariate scheme was
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recently introduced by A.N. Chuprunov, G. Alsaied, and M. Alkhuzani [11]. For another investigation
of A.N. Chuprunov and his students, see the paper [11] and the references therein. We also note the
successful work of the representatives of the Karelian Scientific Center in the study of the asymptotic
properties of configuration graphs under the leadership and participation of Yu.L. Pavlov by LA.
Cheplyukova, M.M. Leri, and E.V. Khvorostyanskaya [12-17].

Suppose that B(x) regularly varies as x 1 1 with index ¢ > 0[18,19]. It is known, in this case, that

Yy
P{¢x(1—x) <y} — / e Myl gy, Yy >0
0

as x 1 1. In addition, the corresponding local limit theorem is true when a(i) is regularly varying at
infinity with index ¢ — 1 > —1. See, for instance, Timashev [8].

The multidimensional integral limit theorem was obtained in [20]. It is supposed in [20] that
the corresponding multiple power series regularly varies at the boundary point of its convergence
(see Definition 2). In [21], it was shown that this condition is necessary and sufficient.

In this paper, we prove the corresponding local limit theorem. For this aim, we introduce
in Section 2 some generalizations of multivariate regularly varying sequences in the orthant.
Namely, the notion of R-weakly one-sided oscillatory sequences at infinity along some sequence
(see Definition 3). This concept allows us to give adequate conditions for the validity of both the
local limit theorem and the corresponding statement of Tauberian type (Lemma 2). The definition of
multiple power series distribution and the main result are given in the next section (see Definition 1 and
Theorem 1, respectively). Here, we also formulate the corresponding integral limit result from [21] as
Lemma 1. The statement of this lemma also gives the necessary and sufficient conditions but describes
them in terms of regular variation of the power series B(x) at the boundary point of their existence.
Proofs of Lemma 2 and the main result (Theorem 1) are given in the Sections 3 and 4, respectively.
In Section 5, we describe some previous results in this direction.

2. Main Result

2.1. Some Notations

We introduce the following notations. Let the vectors x = (x1,...,x,) and y = (y1,.--,Yn)
belong to R". Denote xy = (x1y1,...,%uYn) and x/y = (x1/y1,...,%4/yn) (the last in the case,
wheny, #0Vk =1,...,n). Putexp(x) = (exp(x1),...,exp(xn)), Inx = (Inxy,...,Inx,). The notation
x T 1means that x — 1, x € (0,1)". Here1 = (1,...,1). Set R, = {x : x = (x1,...,x) €
R", x¢ >0Vk =1,...,n}, Z ={x: x = (x1,...,x) € R, % € Zy = NUOVk =1,...,n}.
Fora = (ay,...,ay) € R, x = (x1,...,%,) € R’} we use an abbreviation

n
=TT
k=1

assuming that 0° = 1. Let (5, k € N) be a sequence of random vectors (r.v.) from R".

Further, the notation 7 4 7 means the weak convergence of the corresponding distributions with
P{n e R"} =1.

2.2. Multiple Power Series Distributions

First we give the necessary definitions. Let (a(i) > 0, i € Z'} ) be a multiple sequence with

B(x) = Y a(i)x' < oo

i€zl

for x = (x1,...,x,) € [0,1)". The trivial case a(i) = 0, i € Z'} is excluded.
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Definition 1. For x € [0,1)" a random vector (r.v.) &y has a multiple power series distribution iff

a(i)x!

(
B(x)’ (1)

P{x =i} =
for some B(x) and for any i € Z'}.

It is clear that P{¢, € R"} = 1. The history of this notion and some bibliographic references
are given in encyclopedias [2,3], also see the articles [20,22]. Let the sequence of vectors b = b(k) €
(0,00)", k € N be given with b; = bj(k) — oo, Vj=1,...,nask — co.

Definition 2 ([23]). We say that B(x) reqularly varies as x 1 1 along the sequence b = b(k), iff

B(exp(—A/D))

Blexp(—1/b)) — ¥(A) € (0,00), (2)

for an arbitrary fixed A = (Ay,...,Ay) > 0as k — co.

(Notations A /b and exp(—A/b) are defined in the Section 2.1).
The following statement has been proved in [21] (we formulate it as a lemma).

Lemma 1. A series B(x) reqularly varies as x 1T 1 along the sequence b = b(k) iff for any (some) fixed vector
u e Gand x = exp(—u/b)

G(1—x) Sy =y), (k- ) (3)

In both cases, the function ¥ (A) from Equation (2) is the Laplace transform of some o-finite measure ®(-) and
r.v. n7(u) has Laplace transform ¥ (A + 1)u) /¥ (u).

Let R(k) be some positive sequence. To formulate the resulting limit theorem, we need to give the
following definition.

Definition 3. We say that the sequence a(i) is R-weakly one-sided oscillatory at infinity along the sequence
b = b(k) if for every j = 1,...,n and for any sequence z; = zj(k) > 1,z; = 1+ o(1) one of the
following inequalities

liminf(a(ry, ..., 7j-1,27), i1, 1n) — a(r))/R(k) > 0; (4)
k—o0

limsup(a(ry, ..., 1j-1,27j,7js1,---, ) —a(r))/R(k) <0. (5)
k—o0

holds for every fixed y = (y1,...,yn) € G. Herer = r(k) = (r1(k),...,ru(k)) is an arbitrary function of
k with
r~ y1b1, cees ynbn-

Hereinafter, we define a(x) = a([x]) for x ¢ Z'l. The simplest examples of such sequences are
monotone in each variable sequence (a(i) >0, i € Z'}).

Theorem 1. Suppose that B(x) regularly varies as x T 1 along the sequence b = b(k) (i.e., the the assumption
of integral limit Lemma 1 is true). Then, for any compact K C G and for any (some) fixed vector u € G and
x = exp(—u/b)

P{Zc = [y/(1 - x)]} ¥<K o e
7:1 (1 _ X]) = lpu (]/) < (k - ) (6>
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where function Py () is continuous in G, iff the sequence a(i) is R-weakly one-sided oscillatory at infinity along
the sequence b = b(k) with
R(k) = B(exp(=1/b(k)))/ [ T bi (k). (7)
i=1

In both cases, the measure ®(-) from Lemma 1 has the continuous density ¢(-) in G and the following

equality holds:
_ oly/w)e Y

Pu(y) = H?:l uj‘I’(u) , Yy eG. (8)

Note that, in Theorem 1, the case when ®(dG) > 0(«< P{y(u) € oG} > 0) is not excluded.
In addition, we admit that ¢, (y) = 0, y € V, for some nonempty set V C G in this theorem.
3. Tauberian Lemma

The next lemma gives some generalization of the Tauberian Theorem 2 from [23].

Lemma 2. Assume that B(x) reqularly varies as x T 1 along the sequence b = b(k) (i.e., (2) holds). Then,
for some continuous function ¢(-) in G the relation

RS el <o )

holds for any compact K C G iff the sequence a(i) is R-weakly one-sided oscillatory at infinity along the sequence
b = b(k) with R(k) from Equation (7). In both cases, the measure ®(-) from Lemma 1 is absolutely continuous
in G with density ¢(-).

Proof. For an arbitrary bounded set A C R”, put

_ _al)
D (A) = iezﬁ;/ o T (R (10)

It follows from Equations (2) and (7) that

B(exp(—y/b))

B = [, ) = T R

~9) =3y = [ o)

RL

for any fixed y € G. The last equality follows from the statement of Lemma 1. Thus, according to the
continuity theorem for Laplace transforms of measures, it follows from Equation (10) that

Di(-) = (). (11)

(see, for example the theorem 1.3.2 from [24]). Suppose that the sequence a(i) is R-weakly one-sided
oscillatory at infinity along the sequence b = b(k). Set m(j) = 1 if Equation (4) holds and m(j) = —1 if
Equation (5) is valid. Fix v € G. For an arbitrary ¢ € (0,1), put

AG) = {y= () v € (0,004 8)"D), ¥j=1,...,n} (12)
(for ¢ > d, we put (c,d) = (d, c)). Further, for an arbitrary ¢ € (0,1), there exists such é € (0, ¢) that

a(i) — a(bo)

R(K) > —¢ (13)
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for any i € mA(6). The proof of this fact repeats the proof of Lemma 5 from [23]. Without loss of
generality, we assume that ®(0A(J)) = 0. It follows from Equations (9) and (13) that

) )
Dr(A(0)) = iez&%efw) " b (R(k)
a(bv) 1

atbo) 1y
R(K) TTi=1 b;(k) s zn iThe o)

Y
|
™
4

a(bv)

(b
> _ S
> —et R 1+ mIAG)
where 17 — 0 as k — oo. By |A(d)|, we denote here the Lebesque measure of the set A(J). Therefore,
a(bv) (@k(A((S)) € ) 1
< 4 . 14
R = \Tla@) TTAGT) T .

Since ®(dA(6)) = 0, we have from Equations (9) and (11) that

_ a(i)
ch(A((S)) - ieZi,%GA((s) H;‘lzl b](k)R(k) - ©(A(§)) (15>

Tending in Equation (14) k to oo and using Equation (15), we have

. a(bv) _ P(A(9)) €
limsu < + . 16
PP RK) S TAG) TAQ) 16)
Since the left side of Equation (16) does not depend on ¢, we have
. a(bv) _ ®(A(9))
lim su < . 17
PP RK) = TAR) 7)

PutA={06¢€(0,1): ®(dA(d)) = 0}. Since the left side of Equation (17) does not depend on 4,
we have

, a(bv) ... D(A(0))

1 <1 f ——. 18

TP RE =8 TAG) 1
Similarly, we obtain the inequality

lim inf a(bo) > lim sup M (19)

k—eo R(k) ~ 50 sen |A(0)]

It follows from Equations (18) and (19) that there exist the next two limits:

(bo) _ . P(A() (”’éf (p(?})).

x

li =
o R(k) 650 0ea A(O)]

O

The next proof repeats the proof of Theorem 2 from [23]. The inverse assertion of Lemma 2 follows
immediately from Equation (9). Lemma 2 is proved.
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4. Proof of Theorem 1
Suppose that Equation (2) holds. Put for z € N" and x € [0, 1]"

a(z)
B(x)

p(z,x) =P{iy =2z} = exp(z,Inx).
We have
a(z) = p(z,x)B(x) exp(z, —Inx). (20)

Suppose that Equation (6) takes place for some u € G and continuous in G function ¢, (). For fixed
y € G, put in Equation (20) x = exp(—u/b(k)) and z = [y/(1 — x)]. Wehave x =1 — (u + ¢(k)) /b(k)
and z = [b(k)y/(u+e(k))] = b(k)(y/u+ 6(k)). Here ¢(k) and é(k) are some functions tending to zero
ask — co. Thus (z, —Inx) = (y,1) +0(1) as k — oo. So, it follows from Equations (20), (2), and (6) that

a(z) = p(z,x)B(x) exp(z, —Inx) = (1 +0(1))p(z,x) B(x) exp(y, 1)

n

=] l(1 = X)B(x)(¢u(y) +0(1)) exp(y, 1)
=

= | [(1=xj)B(exp(=1/b(k))¥ (u) (Yu(y) + 0(1)) exp(y, 1)

= R(k)ﬁuj‘f’(u)(%(y) +o(1)) exp(y,1) (21)
i

according to Equation (7). Since Equation (6) holds locally uniformly on y then it follows from
Equation (21) that

a(by/u) 1

R(K) g“j‘f’(u)wu(y) exp(y,1) = ¢(y/u) (22)

and the last relation also holds locally uniformly on y. The equality Equation (8) follows directly from
Equation (22). Replacing in Equation (22) y/u by v, we obtain Equation (9). One-sided R-oscillation
of a(-) along b(k) follows immediately from Equation (9). The proof of inverse assertion repeats the
proof of Theorem 2 from [20].

5. On Some Previous Results

The definition of regularly varying functions of one variable was given in Karamata’s well-known
work [25]. The notion of regularly varying functions at infinity along some sequence in an orthant was
introduced in Omey [26]. The definition of regularly varying multiple power series is given in [23].
A brief overview of various definitions of multivariate regularly varying functions is available in [27].
The history of different class functions having slow (one-sided or ordinary) oscillation can be seen in
the book [24]. In [22], we give the integral representation and Abelian statements (Theorems 3.1 and
3.2). With the help of these theorems, it is easy to set such sequences a(7) explicitly.

As the source, for n = 1 the sufficient condition for Equation (3) was given in Timashev [28],
see also [8]. In [20], we show that conditions from [8,28] are equivalent to Equation (2). Timashev used
the method of moments in his aforementioned result. In the papers [20,22,27] and in this article, we use
the corresponding Tauberian statements. All these statements go back to Karamata’s well-known
Tauberian theorems [29,30].
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