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Abstract: We study the following nonlinear eigenvalue problem: −u′′(t) = λ f (u(t)), u(t) > 0,
t ∈ I := (−1, 1), u(±1) = 0, where f (u) = log(1 + u) and λ > 0 is a parameter. Then λ is a
continuous function of α > 0, where α is the maximum norm α = ‖uλ‖∞ of the solution uλ associated
with λ. We establish the precise asymptotic formula for L1-norm of the solution ‖uα‖1 as α→ ∞ up
to the second term and propose a numerical approach to obtain the asymptotic expansion formula
for ‖uα‖1.
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1. Introduction

We consider the following nonlinear eigenvalue problems

−u′′(t) = λ f (u(t)), t ∈ I := (−1, 1), (1)

u(t) > 0, t ∈ I, (2)

u(−1) = u(1) = 0, (3)

where λ > 0 is a parameter. In this paper, we consider the case f (u) = log(1 + u), which is motivated
by the logarithmic Schroedinger equation (see [1]) and the Klein-Gordon equation with logarithmic
potential, which has been introduced in the quantum field theory (see [2]). We know from [3] that,
if f (u) is continuous in u ≥ 0 and positive for u > 0, then for a given α > 0, there exists a unique
classical solution pair (λ, uα) of (1)–(3) satisfying α = ‖uα‖∞ for any given α > 0. Since (uα, λ(α)) is
constructed explicitly by time-map method (cf. [3], Theorem 2.1), λ is a continuous for α > 0, we write
as λ = λ(α) for α > 0.

We introduce one of the most famous results for bifurcation curve, which was shown for the
one-dimensional Gelfand problem, namely, the Equations (1)–(3) with f (u) = eu. Then it was shown
in [4] that it has the exact solution

uα(t) = α + log

(
sech2

(√
2λ(α)

2
teα/2

))
, (4)

where sech x = 1/ cosh x. The related results have been obtained in [5]. Unfortunately, however,
such explicit solution as (4) cannot be expected in general. From this point of view, one of the
standard approach for the better understanding of the asymptotic shape of uα(t) is to establish precise
asymptotic expansion formula for uα(t) as α→ ∞. Indeed, in some cases, the asymptotic expansion
formulas for uα(t) up to the second term have been obtained. Regrettably, however, precise asymptotic
expansion formula for uα is also difficult to obtain from technical point of view of pure mathematics.
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In this paper, in order to understand the asymptotic behavior of uα, we establish the asymptotic
expansion formula for ‖uα‖1 as α → ∞. The importance of this view point is that, ‖uα‖p (p ≥ 1)
characterizes (or is related to) the many significant properties, such as the density of the objects in
quantum physics, logistic equation in biology, and so on. Moreover, by using this formula, it is possible
to obtain the approximate value of ‖uα‖1 numerically as accurate as they want. If the readers observe
Theorem 2 and Section 3 below, they understand immediately that it is impossible to purchase more
correct approximate value by hand calculation any more .

Now we state our main results.

Theorem 1. Let f (u) = log(1 + u). Consider (1)–(3). For an arbitrary fixed small constant 0 < ε � 1,
let wα,ε(t) := uα(t)− α(−t2 + 1) defined on the compact interval Iε := [−1 + ε, 1− ε] ⊂ I. Then as α→ ∞,

wα,ε(t)
α

→ 0 (5)

uniformly on Iε

Theorem 2. Let f (u) = log(1 + u). Consider (1)–(3). Then as α→ ∞,

‖uα‖1 = 2α

{
2
3
+

(
−4

3
log 2 +

8
9

)
1

log(1 + α)
+ O

(
1

(log(1 + α))2

)}
. (6)

The leading term 4α/3 in the right-hand side of (6) comes from (5) immediately. The most
important point of (6) is to give the procedure to obtain the asymptotic expansion formula for ‖uα‖1

as correct as we want by using computer-assisted method, although we only obtain up to the second
term of ‖uα‖1, since the calculation is purchased by hand.

The proof depends on the time-map argument and the precise asymptotic formula for λ(α) as
α→ ∞.

2. Proof of Theorem 1

We put vα(t) := uα(t)/α. It is known that if (uα, λ(α)) ∈ C2( Ī)×R+ satisfies (1)–(3), then

uα(t) = uα(−t), 0 ≤ t ≤ 1, (7)

uα(0) = max
−1≤t≤1

uα(t) = α, (8)

u′α(t) > 0, −1 < t < 0. (9)

We recall the asymptotic behavior of λ(α) as α→ ∞.

Theorem 3. ([6]). Let f (u) = log(1 + u) and consider (1)–(3). Then as α→ ∞,

√
λ(α) =

√
2α

log(1 + α)

{
1− 1

2
(4 log 2− 3)

1
log(1 + α)

+
3
8
(5− 8 log 2 + C1)

1
(log(1 + α))2

}
+ R3,

(10)

where C1 is a constant explicitly represented by elementary definite integrals, R3 is the remainder term satisfying

b3(log(1 + α))−3 ≤ |R3| ≤ b−1
3 ((log(1 + α))−3, (11)

where 0 < b3 < 1 is a constant independent of α� 1.
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For any arbitrary fixed small ε > 0, we set Iε := [−1 + ε, 1− ε]. Then it is obvious that there is
a constant δε > 0 independent of α � 1 such that 0 < δε ≤ vα(t) ≤ 1 for t ∈ Iε. Indeed, if there is a
subsequence of {vα}, which is denoted by {vα} again, such that vα(−1 + ε)→ 0 as α→ ∞, then vα(t)
is not convex on [−1, 0] for α� 1. By (1) and Theorem 3, for any t ∈ Iε, we have

−αv′′α (t) =
2α

log(1 + α)
(1 + o(1)) log(1 + αvα(t))

=
2α

log(1 + α)
(1 + o(1))(log α + log vα(t)).

(12)

By this, we see that as α→ ∞

−v′′α (t)→ 2 (13)

uniformly on Iε. By this, we easily see that v′α(t)→ 2t and vα(t)→ 1− t2 for t ∈ Iε, which implies (5).
Thus the proof is complete.

3. Proof of Theorem 2

In this section, let α � 1. In what follows, we denote by C the various positive constants
independent of α. We modify the time-map method used in [6]. By (1), we have{

u′′α (t) + λ (log(1 + uα(t))
}

u′α(t) = 0.

By this, (8) and putting t = 0, we obtain

1
2

u′α(t)
2 + λ {uα(t) log(1 + uα(t))− uα(t) + log(1 + uα(t))} = const.

= λ {α log(1 + α)− α + log(1 + α)} .

This along with (9) implies that for −1 ≤ t ≤ 0,

u′α(t) =
√

2λ
√

α log(1 + α)− uα(t) log(1 + uα(t)) + ξ(uα(t)), (14)

where

ξ(u) := log(1 + α)− log(1 + u)− (α− u). (15)

By this and putting uα(t) = αs2, we obtain

‖uα‖1 = 2
∫ 0

−1
uα(t)dt =

√
2
λ

∫ 0

−1

uα(t)u′α(t)√
α log(1 + α)− uα(t) log(1 + uα(t)) + ξ(uα(t))

dt

=

√
2
λ

∫ 1

0

2α2s3√
α(1− s2) log(1 + α) + αs2 Aα(s) + ξ(αs2)

ds (16)

:=

√
2
λ

2α3/2√
log(1 + α)

∫ 1

0

s3
√

1− s2

1√
1 + gα(s)

ds,

where

Aα(s) := log(1 + α)− log(1 + αs2), (17)

gα(s) :=
1

log(1 + α)

s2

(1− s2)
Aα(s) +

ξ(αs2)

α(1− s2) log(1 + α)
. (18)
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For 0 ≤ s ≤ 1, we have∣∣∣∣ 1
log(1 + α)

s2

(1− s2)
Aα(s)

∣∣∣∣ ≤ s2

1− s2
1

log(1 + α)

∫ α
αs2

1
1 + x

dx

≤ 1
log(1 + α)

αs2

1 + αs2

≤ 1
log(1 + α)

� 1,

(19)

∣∣∣∣ ξ(αs2)

α(1− s2) log(1 + α)

∣∣∣∣ ≤ 2
log(1 + α)

� 1. (20)

By (16)–(20) and Taylor expansion, we obtain

‖uα‖1 =

√
2
λ

2α3/2√
log(1 + α)

∫ 1

0

s3
√

1− s2

{
1 +

∞

∑
n=1

(−1)n (2n− 1)!!
n!2n gα(s)n

}
ds (21)

=

√
2
λ

2α3/2√
log(1 + α)

∫ 1

0

s3
√

1− s2

{
1− 1

2
gα(s) + O

(
1

(log(1 + α))3

)}
ds,

where (2n− 1)!! = (2n− 1)(2n− 3) · · · 3 · 1, (−1)!! = 1. We have

∫ 1

0

s3
√

1− s2
ds =

2
3

. (22)

Lemma 1. As α→ ∞

J1 :=
∫ 1

0

s3

(1− s2)3/2 gα(s)ds (23)

=
1

log(1 + α)

(
16
3

log 2− 34
9

)
+ O

(
1

α log(1 + α)

)
.

Proof. We have

J1 =
1

log(1 + α)

∫ 1

0

s5

(1− s2)3/2 Aα(s)ds +
1

α log(1 + α)

∫ 1

0

s3

(1− s2)3/2 ξα(αs2)ds

:=
1

log(1 + α)
J11 +

1
α log(1 + α)

J12. (24)

It was shown in [6] that as α→ ∞,

0 ≤ sin2 θAα(sin θ) = −2 sin2 θ log(sin θ) + O
(

1
α

)
. (25)

Moreover, it is clear that for 0 ≤ θ ≤ π/2

sin2 θ − 1
α
≤ sin2 θ

(
α sin2 θ

1 + α sin2 θ

)
≤ sin2 θ. (26)
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We put s = sin θ. By (25), (26) and integration by parts, we obtain

J11 =
∫ π/2

0

sin5 θ

cos2 θ
Aα(sin θ)dθ (27)

=
[
tan θ(sin5 θAα(sin θ))

]π/2

0

− 5
∫ π/2

0
sin5 θAα(sin θ)dθ + 2

∫ π/2

0

α sin2 θ

1 + α sin2 θ
sin5 θdθ

= J111 + 10
∫ π/2

0
sin5 θ log(sin θ)dθ + 2

∫ π/2

0
sin5 θdθ + O(α−1)

:= J111 + 10J112 + 2J113 + O(α−1).

By l’Hôpital’s rule, we obtain

lim
θ→π/2

tan θ(sin5 θAα(sin θ)) = lim
θ→π/2

Aα(sin θ)

cos θ
= lim

θ→π/2

2α cos θ

1 + α sin2 θ
= 0. (28)

This implies that J111 = 0. By (25), we have

J112 =
∫ π/2

0
sin5 θ log(sin θ)dθ (29)

=
∫ π/2

0
(1− cos2 θ)2 log

√
1− cos2 θ sin θdθ

=
1
2

∫ 1

0
(1− x2)2 log(1− x2)dx =

8
15

log 2− 94
225

.

By (26), we have

J113 =
∫ π/2

0
sin5 θdθ + O(α−1) =

8
15

+ O(α−1). (30)

By this, we have

J11 =
16
3

log 2− 28
9

+ O(α−1). (31)

We put s = sin θ. Then by integration by parts, (25) and (26), we have

J12 =
∫ π/2

0

1
cos2 θ

sin3 θ(Aα(sin θ)− α cos2 θ)dθ

=
[
tan θ(sin3 θAα(sin θ))

]π/2
0 − 3

∫ π/2

0
sin3 θAα(sin θ)dθ + 3α

∫ π/2

0
sin3 θdθ

+2
∫ π/2

0
sin3 θ

α sin2 θ

1 + α sin2 θ
dθ − 5α

∫ π/2

0
sin5 θdθ

= −2
3

α + 6
∫ π/2

0
sin3 θ log(sin θ)dθ + 2

∫ π/2

0
sin3 θdθ + O(α−1)

= −2
3

α + 6
(

2
3

log 2− 5
9

)
+

4
3
+ O(α−1)

= −2
3

α + 4 log 2− 2 + O(α−1).

(32)
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By (24), (31) and (32), we obtain

J1 =
1

log(1 + α)

(
16
3

log 2− 34
9

)
+ O

(
1

α log(1 + α)

)
. (33)

Thus the proof is complete.

Proof of Theorem 2. By Theorem 3, Lemma 1, (21) and direct calculation, we obtain Theorem 2.
Thus the proof is complete.

Remark 1. Unfortunately, the author is not familiar with computing an analytical formula through computer
packages. All the calculations in this paper were obtained by hand. As the authors mentioned in Section 1, if the
suitable computer packages will be found, then it will be possible to compute the term

Jn :=
∫ 1

0

s3

(1− s2)3/2 gα(s)nds (n = 2, 3, · · · .). (34)

By this, (21) and computer, it will be possible to calculate the approximate value of ‖uα‖1 as correct as
we want.
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