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1. Introduction

This survey article is dedicated to a topic that has received little attention in the past, and therefore
seems not to be very well known by the mathematical community.

Recently the role of the Laguerre derivative was considered in a few papers.
In [1], the authors introduce an interesting application of Wright functions of the first kind

to solve fractional ordinary differential equations, with variable coefficients, generalizing the
Bessel-type equations.

In [2], the authors use the same tool in Combinatorics, a completely different area, and in [3] an
operational approach to the subject has been examined, in the framework of Clifford algebras.

Actually, in past time, the Laguerre-type exponentials and the related Laguerre derivative were
introduced and studied in several articles (see [4–15]) and applications to Special functions, have been
obtained. In particular, Laguerre-type functions of Bessel, Appell, Bell and multivariate functions were
defined.

The operator DxD = D + x D2 determines a linear differential isomorphism, acting onto the
space of analytic functions of the x variable. By using this isomorphism, a sort of parallel structure
is created within this space, in such a way that the differentiation properties have their counterpart,
which can be immediately derived.

Furthermore, iterations of the Laguerre derivative can be defined, so that this parallelism with the
space of analytic functions can be iterated too, in an endless way.

Therefore, a cyclic construction is created within the space that repeats the same structure at
a higher level of differentiation order. It is one of the great cycles that sometimes occur within
mathematical theories: for example, in Number theory the Fibonacci numbers Fn with Fibonacci
indexes constitute a higher sequence of Fibonacci numbers which still satisfies the same recursion, i.e.,
FFn+2 = FFn+1 + FFn , and this property can be iterated at infinity.
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However the operators DL = DxD and its iterates as DnL = DxDxDx · · ·DxD are not completely
new, since they can be considered to be particular cases of the hyper-Bessel differential operators
when α0 = α1 = · · · = αn = 1 (the special case considered in operational calculus by Ditkin and
Prudnikov [16]). In general, the Bessel-type differential operators of arbitrary order n were introduced by
Dimovski, in 1966 [17] and later called by Kiryakova hyper-Bessel operators, because are closely related
to their eigenfunctions, called hyper-Bessel by Delerue [18], in 1953. These operators were studied in
1994 by Kiryakova in her book [19] (Ch. 3).

Since the Laguerrian exponentials on the positive semi-axis of the abscissas are convex increasing
functions, with a growth lower than the exponential one, in Section 7 a natural application was made
in the context of population dynamics.

Laguerre-type linear dynamical systems were also considered in Section 8.

2. The Laguerre Derivative and the Relevant Exponentials

The Laguerre derivative, is defined by

DL := DxD = D + xD2, (1)

where D = Dx = d/dx.
It is an interesting operator. In fact, as the exponential function eax (a constat) is an eigenfunction

of the derivative operator D = Dx, i.e.,

Deax = aeax , (2)

equally the function

e1(x) :=
∞

∑
k=0

xk

(k!)2 = C0(−x), (3)

where C0(x) is the Tricomi function of order zero, is an eigenfunction of the Laguerre
derivative DL, since:

DL e1(ax) = ae1(ax) . (4)

The proof easily follows, by noting that:

DL e1(ax) =
(

D + xD2) ∞

∑
k=0

ak xk

(k!)2 =

=
∞

∑
k=1

(k + k(k− 1)) ak xk−1

(k!)2 =
∞

∑
k=1

k2 ak xk−1

(k!)2 =

= a
∞

∑
k=0

ak xk

(k!)2 = ae1(ax).

(5)

For this reason, the function e1(x) is called the Laguerre-type exponential (of order 1).
In preceding articles, the role of the Laguerre derivative, in connection with the monomiality

principle—an important technique introduced by G. Dattoli [20]—and its application to the
multidimensional Hermite (Hermite-Kampé de Fériet or Gould-Hopper polynomials, see [21–23]) or
Laguerre polynomials [14,24], has been shown.

The above technique can be iterated, producing Laguerre classes of exponential-type functions,
of higher order, called L-exponentials, and the relevant L-circular, L-hyperbolic, L-Gaussian functions
(see [4]).
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Similar generalized hypergeometric functions, called trigonometric/Bessel type, exponential/
confluent type and Gauss/Beta-distribution, can be found in a book by Kiryakova [19] and also in [25].

Before going on, we notice that the Laguerre derivative verifies [26]:

(DxD)n = DnxnDn , (6)

an equation which can be easily proven by recursion.

2.1. L-Exponentials of Higher Order

We consider the operator:

D2L := DxDxD = D
(

xD + x2D2
)
= D + 3xD2 + x2D3, (7)

and the function:

e2(x) :=
∞

∑
k=0

xk

(k!)3 . (8)

The following theorem holds:

Theorem 1. The function e2(ax) is an eigenfunction of the operator D2L, i.e.,

D2L e2(ax) = ae2(ax) (9)

The proof (see [4]) depends on the identity: k + 3k(k− 1) + k(k− 1)(k− 2) = k3, so that, it can
be recognized that the coefficients of the combination in Equation (7) are the Stirling numbers of the
second kind, S(3, 1), S(3, 2), S(3, 3), (see [27], and [28] (p. 835 for an extended table)).

In general, we can state the following theorem:

Theorem 2. The function

en(x) :=
∞

∑
k=0

xk

(k!)n+1 . (10)

is an eigenfunction of the operator

DnL := Dx · · ·DxDxD = D
(

xD + x2D2 + · · ·+ xnDn) =
= S(n + 1, 1)D + S(n + 1, 2)xD2 + · · ·+ S(n + 1, n + 1)xnDn+1 ,

(11)

i.e., for every constant a it results:

DnL en(ax) = aen(ax) . (12)

Remark 1. The above results show that, for every positive integer n, we can define a Laguerre-exponential
function, satisfying an eigenfunction property, which is an analog of the elementary property (2) of the
exponential. The function en(x) reduces to the exponential function when n = 0, so that we put by definition:

e0(x) := ex, D0L := D.

Obviously, D1L := DL.

Examples of the L-exponential functions are given in Figure 1.
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Figure 1. e1(x), (green) and e2(x), (red).

2.2. L-Circular and L-Hyperbolic Functions

Starting from the equation

e1(ix) =
∞

∑
h=0

(−1)h x2h

((2h)!)2 + i
∞

∑
h=0

(−1)h x2h+1

((2h + 1)!)2 , (13)

we can define the 1L-circular functions as follows

cos1(x) := < (e1(ix)) =
∞

∑
h=0

(−1)h x2h

((2h)!)2 , (14)

sin1(x) := = (e1(ix)) =
∞

∑
h=0

(−1)h x2h+1

((2h + 1)!)2 , (15)

so that we find the Euler-type formulas

cos1(x) =
e1(ix) + e1(−ix)

2
, sin1(x) =

e1(ix)− e1(−ix)
2i

, (16)

Recalling Equation (6), we find the result:

Theorem 3. The 1L-circular functions (14) and (15) are solutions of the differential equation

D2
L v + v =

(
D2x2D2

)
v + v = 0. (17)

The above results hold even for the generalized case.
Write the nL-exponential in the form:

en(ix) =
∞

∑
h=0

(−1)h x2h

((2h)!)n+1 + i
∞

∑
h=0

(−1)h x2h+1

((2h + 1)!)n+1 . (18)

Then we can define the nL-circular functions by putting

Definition 1.

cosn(x) := < (en(ix)) =
∞

∑
h=0

(−1)h x2h

((2h)!)n+1 , (19)
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sinn(x) := = (en(ix)) =
∞

∑
h=0

(−1)h x2h+1

((2h + 1)!)n+1 , (20)

and we find again the Euler-type formulas:

cosn(x) =
en(ix) + en(−ix)

2
, sinn(x) =

en(ix)− en(−ix)
2i

. (21)

Theorem 3 becomes, in general:

Theorem 4. The nL-circular functions (18) and (19) are solutions of the differential equation

D2
nL v + v = 0.

and satisfy the conditions:

cosn(0) = 1, sinn(0) = 0.

Furthermore, we find:

Theorem 5. The nL-circular functions satisfy

DnL cosn(x) = − sinn(x), DnL sinn(x) = cosn(x) . (22)

Examples of the L-circular functions are given in Figures 2 and 3.

Figure 2. cos1(x), (green) and sin1(x), (red).

Figure 3. cos2(x) (green) and sin2(x) (red).
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In a similar way we can define the nL-hyperbolic functions, putting

coshn(x) :=
∞

∑
h=0

x2h

((2h)!)n+1 ,

sinhn(x) :=
∞

∑
h=0

x2h+1

((2h + 1)!)n+1 ,

and the formulas analogues of that of the circular functions are easily derived (see [4]).
All the eigenfunctions e1(x), e2(x), . . . , en(x) can be expressed as generalized hypergeometric

functions pFq, [29], namely: e1(x) = 0F1(−x), e2(x) = 0F2(x), . . . , en(x) = 0Fn(x). In practice, starting
from the Bessel function e1(x), all these eigenfunctions are special cases of the hyper-Bessel functions
of Delerue [18], which are shown to be eigenfunctions of Dimovski’s operators mentioned above.

Naturally, the cosn, sinn functions, in Equations (19) and (20), and their hyperbolic variants,
are special cases of the trigonometric type generalized hypergeometric functions considered in the Kiryakova
book [19].

3. The Isomorphism Tx and Its Iterations

It was previously noted (see e.g., [14]) that, in the space Ax of analytic functions, it is possible to
define an isomorphism Tx that preserves the differentiation properties, by means of correspondence:

D → DL, x· → D−1
x , (23)

where

D−1
x f (x) =

∫ x

0
f (ξ) dξ , D−n

x f (x) =
1

(n− 1)!

∫ x

0
(x− ξ)n−1 f (ξ) dξ , (24)

so that

Tx(xn) = D−n
x (1) =

1
(n− 1)!

∫ x

0
(x− ξ)n−1 dξ =

xn

n!
. (25)

It is worth noting that this kind of isomorphism is widely used in operational calculus and
differential equations also under the name of Transmutation or Similarity operator, since it transforms
one operator into another, and eigenfunctions into each other.

In fact, in such an isomorphism we have the correspondences:

• The exponential function is transformed into the function e1(x), since

Tx(ex) =
∞

∑
k=0

Tx(xk)

k!
=

∞

∑
k=0

xk

(k!)2 = e1(x) .

• The Hermite polynomial H(1)
n (x, y) := (x− y)n becomes the Laguerre polynomial

Ln(x, y) := n!
n

∑
r=0

(−1)ryn−rxr

(n− r)!(r!)2

and by using the monomiality principle we can prove thate all the relations valid in the polynomial
space still hold after the substitutions stated in Equation (23).

Furthermore, an iterative application of Equation (23) gives in sequence the functions
e1(x), e2(x), e3(x), . . . .
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We have, for example:

T 2
x (e

x) =
∞

∑
k=0

Tx(xk)

(k!)2 =
∞

∑
k=0

xk

(k!)3 = e2(x) ,

and so on.
We already noticed that the isomorphism connected with the Laguerre derivative can be iterated

as many times as we wish.
Correspondently, the derivative operator is transformed into

DL = DxD , D2L = DLD−1
x DL = DxDxD ,

D3L = DLD−1
x DLD−1

x DL = DxDxDxD , . . . , (26)

and so on.
We can conclude that the L-exponentials (and the relevant L-circular and L-hyperbolic functions)

are determined by an iterative application of the considered differential isomorphism.

4. Examples of Laguerre-Type Problems

4.1. L-Diffusion Equations

Theorem 6. For any fixed integer n, consider the problem (see [4] (Theorem 5.1)):{
DnL S(x, t) = ∂

∂t S(x, t), in the half plane t > 0,
S(0, t) = s(t),

(27)

with analytic boundary condition s(t).
The operational solution of problem (27) is given by:

S(x, t) = en

(
x

∂

∂t

)
s(t) =

∞

∑
k=0

xk

(k!)n+1
dk

dtk s(t) (28)

Representing s(t) =
∞

∑
k=0

aktk, from Equation (28) we find, in particular:

S(x, 0) =
∞

∑
k=0

ak
xk

(k!)n . (29)

Please note that the operational solution becomes an effective solution whenever the series in
Equation (28) is convergent. The validity of this condition depends on the growth of the coefficients ak
of the boundary data s(t), but it is usually satisfied in physical problems.

More general problems are shown in [4,10], where evolution problems related to an operator of
the type

Dp1 xq1 Dp2 xq2 · · ·Dpr xqr Dpr+1 , (30)

where p1, p2, . . . , pr+1; q1, q2, . . . qr are fixed integers, have been considered.
An operational solution of the problem

Dp1 xq1 Dp2 xq2 · · ·Dpr xqr Dpr+1 S(x, t) = DtS(x, t), in the half plane t > 0 ,

with suitable initial conditions have been determined, in terms of the eigenfunctions of the same operator.
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Remark 2. Please note that the above operators generalize the subsequent Laguerre-type derivatives, since they
are written as:

Dr
nL = (DxDx · · ·DxD)r︸ ︷︷ ︸

(n+1) Derivatives

= DrxrDrxr · · ·DrxrDr , (31)

which is an equation extending (6).

The operator (30) closely recalls the general case of hyper-Bessel B operators, in [17], since integers
q1, q2, . . . qr could be replaced by arbitrary real numbers, as are parameters α0, α1, . . . , αn, considered
in [17,30]. The solutions of the general differential equation By(x) + λy(x) = f (x) are given by
Kiryakova et al. in [31].

4.2. L-Hyperbolic-Type Problems

Theorem 7. Let Ω̂x be a 2nd order differential operator with respect to the x variable, DnL := (DnL)t the
nL-derivative with respect to the t variable, and denote by ψ(t) and χ(t) two functions such that:

DnL ψ(t) = χ(t), DnL χ(t) = ψ(t)

ψ(0) = 1, χ(0) = 0
(32)

then the abstract L-hyperbolic-type problem:
Ω̂2

x S(x, t) = D2
nL S(x, t), in the half plane t > 0,

S(x, 0) = q(x),
DnL S(x, t)|t=0 = v(x)

(33)

with analytic initial condition q(x), v(x), admits the operational solution (see [4], Theorem 5.3):

S(x, t) = ψ
(
tΩ̂x

)
q(x) + χ

(
tΩ̂x

)
w(x), (34)

where w(x) := Ω̂−1
x v(x).

Please note that conditions in (32) are satisfied, for any fixed integer n, assuming:

ψ(x) := coshnL(x), χ(x) := sinhnL(x) .

4.3. L-Elliptic-Type Problems

Theorem 8. Let Ω̂x be a 2nd order differential operator with respect to the x variable, DnL := (DnL)y the
nL-derivative with respect to the y variable, and denote by ϕ(y) and τ(y) two functions such that:

DnL ϕ(y) = −τ(y), DnL τ(y) = ϕ(y)

ϕ(0) = 1, τ(0) = 0
(35)

then the abstract L-elliptic-type problem:{
Ω̂2

x S(x, y) + D2
nL S(x, y) = 0, in the half plane t > 0,

S(x, 0) = q(x),
(36)

with analytic boundary condition q(x), admits the operational solution (see [4], Theorem 5.4):

S(x, y) = ϕ
(
yΩ̂x

)
q(x). (37)
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Please note that conditions in (35) are satisfied, for any fixed integer n, assuming:

ϕ(x) := cosnL(x), τ(x) := sinnL(x) .

Further examples of PDE’s problems involving the Laguerre derivatives can be found in [10,11].

5. Laguerre-Type Special Functions

5.1. Laguerre-Type Bessel Functions

The Laguerre-type Bessel functions, of order 1, (shortly L-Bessel functions), denoted by L Jn(x),
are obtained substituting the exponential with the L-exponential e1(x) in the classic generating
function, i.e., by putting

e1

[
x
2

(
t− 1

t

)]
=

+∞

∑
n=−∞

L Jn(x) tn .

We can derive the explicit expression by applying the isomorphism Tx to both sides of the explicit
expression of the Bessel functions, so that we find:

L Jn(x) :=
∞

∑
n=0

(−1)hxn+2h

2n+2h h!(n + h)!(n + 2h)!
.

We proved the results:

Theorem 9. The L-Bessel functions L Jn(x) satisfy the recurrence relation (see [8], Theorem 2.3):{
D̂−1

x [L Jn−1(x) + L Jn+1(x)] = 2n L Jn(x),
L Jn−1(x)− L Jn+1(x) = 2D̂L L Jn(x).

Theorem 10. The differential equation satisfied by the L-Bessel functions L Jn(x) is (see [8], Theorem 2.5):(
D̂2

L + D̂xD̂L − n2D̂2
x + Î

)
L Jn(x) = 0 ,

where Î denotes the identity operator. This equation can be derived by applying the isomorphism Tx to both
sides of the differential equation of the ordinary first kind Bessel functions.

5.2. Laguerre-Type Hypergeometric Functions

By using the isomorphism technique it is possible to define in general Laguerre-type special
functions, and in particular, the 1st order Laguerre-type hypergeometric functions.

In fact, starting from the Gauss’ hypergeometric equation:

x(1− x)y′′ + [c− (a + b + 1)x]y′ − aby = 0

and applying the isomorphism Tx, we find the equation

x(1− x)D2
Ly + [c− (a + b + 1)x]DLy− aby = 0 , (38)

that is:

[x(1− x)](x2yiv + 4xy′′′ + 2y′′) + [c− (a + b + 1)x](y′ + xy′′)− aby = 0 . (39)
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The solution of Equation (38), corresponding to the Gauss’ hypergeometric equation F(a, b, c; x),
is given by

LF(a, b, c; x) = 1 +
∞

∑
n=1

a(n)b(n)

c(n)
xn

(n!)2 , (40)

where the symbol a(n) denotes the rising factorial.
Of course the rth order Laguerre-type hypergeometric functions are obtained by applying to

both sides of the hypergeometric equation the iterated isomorphism of order r, but the corresponding
differential equation becomes more and more complicated as r increases.

The generalized hypergeometric functions have their 1st order Laguerre-type counterpart, which
are given by:

L pFq(a1, . . . , ap; b1, . . . , bq, ; x) =
∞

∑
n=0

a(n)1 · · · a
(n)
p

b(n)1 · · · b
(n)
q

xn

(n!)2 , (41)

and those of higher order immediately follow.
Please note that the function in (41) can be viewed as a generalized hypergeometric function

of the form pFq+1, by moving one of the n! in the first fraction under the sum and considering

Γ(n + 1)/Γ(1) = 1(n) = n! = b(n)q+1 as the (q + 1)-th term.

5.3. Laguerre-Type Bell Polynomials

We first note that for the Laguerre derivative, the chain rule

d
dt

=
d

dx
dx
dt

becomes:

d
dt

t
d
dt

=
d

dx
d
dt

t
dx
dt

, that is : (DL)t =
d

dx
(DL)t x (42)

and in general:

(DnL)t =
d

dx
(DnL)t x.

The problem of constructing Bell polynomials can be extended in the natural way to the case of
the Laguerre-type derivatives.

To this aim, we introduce the definition:

Definition 2. The nth Laguerre-type Bell polynomial, denoted by rLYn (x; [ f , g]n), represents the nth
rLaguerre-type derivative of the composite function f (g(t)).

In [12] we showed that rLYn can be expressed as a polynomial in the independent variable x,
depending on f1, g1; f2, g2; . . . ; fn, gn, in terms of the classical Bell polynomials.

According to Equation (6), the Leibniz rule, gives:

(DxD)n = Dn (xnDn) =
n

∑
k=0

(
n
k

)
Dn−kxnDn+k =

=
n

∑
k=0

[(
n
k

)]2
(n− k)! xk Dn+k =

n

∑
k=0

n!
k!

(
n
k

)
xk Dn+k .

(43)
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Therefore, the following representation formula for the Laguerre-type Bell polynomials, denoted
by LYn, holds:

Theorem 11. The LYn polynomials are expressed in terms of the ordinary Bell polynomials according to the
equation (see [12], Theorem 4.1):

LYn (x; [ f , g]n) =
n

∑
k=0

n!
k!

(
n
k

)
xk Yn+k

(
[ f , g]n+k

)
. (44)

The above results can be easily generalized, since

(D2L)
n = (DxDxD)n = Dn (xnDnxnDn) =

=
n

∑
k1=0

n

∑
k2=0

n!
k1!

(n + k1)!
(k1 + k2)!

(
n
k1

)(
n
k2

)
xk1+k2 Dn+k1+k2 .

(45)

In [12] even the general case of polynomials rLYn Bell is considered, but we do not report here the
equation which is a little more complicated.

6. The Multivariate Case

6.1. Laguerre-Type Appell Polynomials

In a preceding article [32] multivariate extensions of the Appell polynomials (including the
Bernoulli and Euler cases) have been introduced, by means of the generating function [23]:

A(t) exp(xt + yj) =
∞

∑
n=0

R(j)
n (x, y)

tn

n!
,

where j is a fixed integer.
The application of the isomorphism Tx, and its iterations allows defining new classes of

multivariate special polynomials, the Laguerre-type Appell polynomials, and to build their main
properties (recurrence relations, shift operators, differential equations, etc), in an easy and uniform way.

This has been achieved in [6] starting from generating functions of the type

A(t)es(xt)eσ(ytj) =
∞

∑
n=0

R(j)
n (T s

x (x), T σ
y (y))

tn

n!

where es(·) and eσ(·) are Laguerre-type exponentials. Many properties of these functions have been
derived, including recursions and differental equations.

The results obtained in this case are easily extended to the functions of r variables, since the
technique works regardless of the number r.

6.2. Laguerre-Type Appell Series

We limit ourselves to the case of series in two variables, but the equations trivially extend to the
general case. For |x| < 1, |y| < 1 the double series

LF1(a, b1, b2; c; x, y) =
∞

∑
m,n=0

a(m+n)b(m)
1 b(n)2

c(m+n)
xm

(m!)2
yn

(n!)2 (46)

is the Laguerre-type Appell series, obtained by the classical one acting on it with the two isomorphisms
Tx and Ty.
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We avoid to consider further extension to the case of multivariate functions with several
parameters, since they are trivially obtained.

7. Applications to Population Dynamics

7.1. Exponential and L-Exponential Models

In this section a possible application of the Laguerre derivative is recalled [9,13]. Since the
L-exponentials for every x ≥ 0 are convex increasing functions, with a graph lower with respect to
exp(x), it is possible to use these function in the framework of population dynamics, as it seems that
in some cases the growth of the exponential is too fast.

Consider the number N(t) of population individuals at time t and let N(0) = N0 the initial
number at time t = 0.

In the Malthus model, the variation is assumed to be proportional to N(t), i.e.,
d
dt

N(t) = rN(t),

N(0) = N0 ,

where the growth rate r is a suitable constant.
The solution is given by the exponential function

N(t) = N0 ert .

Using the Laguerre derivative, the Laguerre-type Malthus reads:

d
dt

t
dN
dt

= rN(t) i. e.
dN
dt

+ t
d2N
dt2 = rN(t) ,

where r is a positive constant. Assuming the initial conditions

 N(0) = N0,

N′(0) = N1 = N0r ,

we find the solution

N(t) = N0e1(rt) = N0

+∞

∑
k=0

rk tk

(k!)2 .

In this case the population growth increases according to the Laguerre exponential function e1(x),
so that the relevant increasing is slower with respect to the classical Malthus model.

In [9] it has been shown, with tables of data taken from real population dynamics, that the
Laguerre-type Malthus model produces data closer to real population growth.

7.2. Logistic vs. L-logistic Model

Taking into account that the growth rate cannot be constant, since it depends on the environmental
resources, Pierre Verhulst considered the so-called logistic model

dN
dt

= r
[

1− 1
K

N(t)
]

N(t),

N(0) = N0 ,
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where r is called the intrinsic growth rate, and K denotes the environmental capacity.
The exact solution of this problem is given by

N(t) =
N0K

N0 + (K− N0)e−rt ,

so that, if N0 < K the solution is a function monotonically increasing to K, whereas, if N0 > K,
the solution is monotonically decreasing to K. In any case,

lim
t→∞

N(t) = K ,

and the value N(t) = K is a stable equilibrium point for the logistic equation.
The Laguerre-logistic (shortly L-logistic) model is expressed by

N′(t) + tN′′(t) = rN(t)
(

1− N(t)
K

)
,

N(0) = N0 ,

N′(0) = N1 .

(47)

Please note that if in the above equation N is small with respect to K, then N/K is close to 0 and
consequently DttDtN ≈ rN(t).

If N → K, then N/K → 1, and DttDtN → 0.
The L-logistic equation cannot be solved explicitly, but numerically, using a Runge-Kutta method.
The behavior of the approximate solutions for the L-logistic model is shown in Figure 4. It is

worth noting that the solution tends to the environmental capacity K by an oscillating behavior.

20

40

60
K

80

0 10 20 30 40 50 60 70 80 90 100

N(t)

t

0

20

40

60
K
80

100

120

0 20 40 60 80 100

N(t)

t

Figure 4. Solutions to the L-logistic model with N(0) = N′(0) < K (on the left), N(0) = N′(0) > K
(on the right), K = 64, r = 0.8, T = 100, ∆t = 0.1.

This is the main difference with respect to the ordinary logistic model, since in that case the
solution was monotonically increasing or decreasing to K.

Similar results could be obtained by using the nL-derivatives, introducing suitable initial
conditions which can be easily derived from the initial observations data.

Please note that as the order n increases, for x > 0, the Laguerrian exponential attenuates its
growth and for n→ ∞ it tends to assume the linear value 1 + x, so it can be used to model a growth as
slow as it is needed.
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Remark 3. We recall that the oscillating asymptotic trend of solutions occurs in reality. For example,
the classical experiment of G.F. Gause, relative to the protozoon paramecium shows such a typical behavior,
represented in Figure 5. In this figure the true values, represented by a dotted line, are compared with the
exponential trend of Malthus and with the logistic curve.

Figure 5. The behavior of growth in the Gause experiment.

7.3. Modified L-Logistic Models

Many different models modifying the basic logistic model appeared in the literature: the Bernoulli,
the modified logistic, the Gompertz, the Alee, and the Beverton-Holt models.

In [13] we considered the Laguerre-type version of all of them, showing that in all cases the
oscillating asymptotic behavior of solutions takes the place of the monotonic one.

Instead, it was found that the model of Volterra-Lotka model is invariant under the action of the
isomorphism Tx, since the Laguerre derivative satisfies again the chain rule, according to Equation (42).

8. Laguerre-Type Linear Dynamical Systems

Let A be a r × r matrix and denote by uk, (k = 1, 2, . . . , r) the invariants of A, i.e., the sum of
principal minors (i.e., the elementary symmetric functions of the eigenvalues). The invariants of the
matrix tA are given by uk(t) = tkuk, (k = 1, 2, . . . , r).

Consider the vectors {
Z(t) = (Z1(t), . . . , Zr(t))T

Z0 = (Z1(0), . . . , Zr(0))T .

Then the solution of the linear dynamical system{
Z′(t) = A Z(t) ,
Z(0) = Z0

writes [33]:

Z(t) = etAZ0 =
r−1

∑
h=0

[
1

2πi

r−h−1

∑
j=0

(−1)juj(t)
∮

γ

eλλr−h−j−1

P(λ, t)
dλ

]
· thZh

0 ,

where P(λ, t) is the characteristic polynomial of the matrix tA and γ denotes a simple Jordan curve
encircling all the eigenvalues of A. The choice of γ, without computing the eigenvalues, can be done
by using the Gershgorin theorem.
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In [15], a Laguerre-type version of the above classic result has been shown.
Consider the above r× r matrix, and the vectors

Z(t) = (Z1(t), . . . , Zr(t))T

Z0 = (Z1(0), . . . , Zr(0))T

Z′0 = (Z′1(0), . . . , Z′r(0))T = A · Z0
...
Zr−1

0 = (Zr−1
1 (0), . . . , Zr−1

r (0))T = A · Zr−2
0 .

The following result holds (see [15] (Theorem 10)):

Theorem 12. The Laguerre-type Cauchy problem for a homogeneous linear differential system
DLZ(t) = Z′(t) + tZ′′(t) = A · Z(t)
Z(0) = Z0

Z′0 = A · Z0 ,

has the solution:

Z(t) = e1(tA) Z0 =
r−1

∑
h=0

[
1

2πi

r−h−1

∑
j=0

(−1)juj(t)
∮

γ

e1(λ) λr−h−j−1

P(λ, t)
dλ

]
· thZh

0 ,

where P(λ, t) and γ have been defined above.
The proof of this result is a straightforward application of the isomorphism Tt. In [15] worked

examples are reported.

9. Conclusions

The Laguerre derivative and the relevant Laguerre-type exponentials allow to associate, to any
given integer n, a new class of special functions. This fact is obtained by exploiting the properties of
an isomorphism, within the space of analytic functions, which acts in such a way as to preserve the
differentiation properties. The successive iterations of this isomorphism produce a cyclic construction
within the space that repeats the same structure at a higher level of the order of derivation.

Infinite many special functions can be defined in this way. A few of them have been presented
explicitly, and the general technique to produce the others has been indicated.

This Survey has shown even possible applications of the Laguerrian derivative in the context
of population dynamics and in the solution of Cauchy problems related to particular linear
dynamical systems.
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