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Abstract: In this work, we study an optimization problem arising in the management of a natural resource
over an infinite time horizon. The resource is assumed to evolve according to a logistic stochastic differential
equation. The manager is allowed to harvest the resource and sell it at a stochastic market price modeled
by a geometric Brownian process. We assume that there are delay constraints imposed on the decisions
of the manager. More precisely, starting harvesting order and selling order are executed after a delay.
By using the dynamic programming approach, we characterize the value function as the unique solution
to an original partial differential equation. We complete our study with some numerical illustrations.
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1. Introduction

In the recent decades, the management of natural resources has become a major issue. Indeed,
for many countries, natural resources ensure regular incomes, allowing for economic growth and
development. In particular, the seeking of high short-term profits can lead to an overconsumption
of the natural resources and therefore to their exhaustion (see, e.g., [1]). Hence, the question of the
sustainability of such natural resources is crucial.

As a consequence, many countries have imposed restrictions on the exploitation of natural resources
so as to avoid their depletion. One of the repercussions of these constraints is the non-immediacy of
the decisions: the actions of the natural resources managers are executed after some delay. Moreover,
the harvests are limited in time, and sometimes, we have a lag constraint between two harvests. The aim
of this work is to model these delays and to study their effects on the gain and the behavior of the natural
resource managers.

We suppose that the resource manager can act by two type of interventions: starting and stopping
the harvesting of the natural resource. We therefore model the strategy by a double sequence (di, si)i≥1
where di and si are stopping times representing respectively the time of the i-th decision to start and
stop harvesting. Therefore, we assume si ≥ di for i ≥ 1.

Such a formulation naturally appears in decision-making problems in economics and finance.
In many cases, managers face technical and regulatory delays, which may be significant.
Thus, these delays need to be taken into account in the way of acting (see for example [2,3]). In our
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case, we consider the management of a natural resource when we have constraints and lags. We first
suppose that there is a minimum time δ between the end of an action and the beginning of the following
one. This constraint can be written on the strategy (di, si)i≥1 as di+1 ≥ si + δ for i ≥ 1. We also suppose
that we have two kind of lags. The first one appears for starting orders: the harvest of the natural
resource starts after a given fixed delay `. This delay represents the time needed to access the natural
resource. The second kind of lag, denoted by m, corresponds to the time between the end of the harvest
and the date when the manager sells the harvest; this lag can be due to the drying, the packaging,
the transport, the time to find a counterpart to buy the harvest, etc.

Hence, our modeling takes into account the non-immediacy of both the harvest and its sale. As a
result, the corresponding optimal strategies will be more practical and will lead to economic and
environmental policies that are more effective than those suggested in the classic literature.

We assume that without any intervention of the manager, the natural resource abundance evolves
according to a stochastic logistic diffusion model. Such a logistic dynamics is classic in the modeling of
populations’ evolution; see for example [4]. If we denote by Xα the controlled resource abundance
process and by P its price process, the problem of the manager turns into a maximization of the
expected total profit on an infinite horizon of the form:

E
[
∑
i≥1

f (di, si, Psi+m, (Xα
t )di+`≤t≤si

)
]

,

over the strategies α = (di, si)i≥1 satisfying the previous constraints.
From a mathematical point of view, control problems with delay were studied in [5,6] where

there was only one kind of intervention. In our model, we consider two kinds of interventions,
which are moreover related by a constraint. In the paper [7], the authors also considered two kinds
of interventions. However, there is no constraint linking them, and only one of them is lagged.
Furthermore, the state variable (the resource abundance) is a physical quantity. We therefore have
the additional state constraint restricting strategies to those in which the remaining abundance
is nonnegative.

Control problems under state constraints without delay have been intensely studied in the
literature (see for example [8] for the study of optimal portfolio management under liquidity
constraints), and the classical approach to deal with such problems is to consider the notion of
constrained viscosity solutions introduced in [9,10]. In this work, we adapt these techniques to a state
constraints control problem with delay. Using a dynamic programming approach, we characterize the
associated value function as the unique solution in the viscosity sense to an original partial differential
equation (PDE). The novelty of the PDE lies in the different forms it takes on several regions of
the space.

We then test the applicability of our approach by computing numerically the optimal strategies
on some examples. Our numerical tests show that the optimal strategies heavily depend on the delay
parameters. In particular, the effective optimal strategies are different from the naive optimal strategies,
i.e., without delays. This illustrates the contribution of our approach to identifying optimal solutions
for the management of natural resources.

The paper is organized as follows. We define the model and formulate our stochastic control
problem in Section 2. In Section 3, we derive the partial differential equations associated with
the control problem. Then, we characterize the value function as the unique viscosity solution
of a Hamilton–Jacobi–Bellman equation. Finally, in Section 4, we compute numerically the value
function and the associated optimal policy via an iterative procedure based on a quantization method.
We further enrich our studies with numerical illustrations.
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2. Problem Formulation

2.1. The Model

Let Ω = C(R+,R2) be the space of continuous functions from R+ to R2. We define on Ω the
σ-algebra F generated by the coordinate functions ω ∈ Ω 7→ ωt, for t ∈ R+, and we endow (Ω,F )
with the Wiener measure P. By an abuse of notation, we still denote by F the P-completed σ-algebra.
We define on the probability space (Ω,F ,P) the two R-valued processes B and W by:

Bt(ω) = ω1
t and Wt(ω) = ω2

t ,

for t ∈ R+ and ω = (ω1
t , ω2

t )t≥0. We then denote by F = (Ft)t≥0 the complete filtration generated
by (W, B).

We consider a resource that evolves according to the classical logistic stochastic differential
equation if there is no harvesting:

dXt = ηXt(λ− Xt)dt + γXtdBt ,

where η, λ, and γ are three positive constants. The constant ηλ corresponds to the intrinsic rate of
population growth, and 1/λ is the carrying capacity of the environment. A manager can harvest the
resource under some conditions. We denote by α := (di, si)i≥1 a harvesting strategy, which is described
as follows.

• di is the time at which the manager gives the order to harvest. The harvest starts only at time
di + `, with ` a positive constant representing the delay.

• si is the time when the harvest is stopped.

In the following, we will only consider the set A of admissible strategies such that (di)i≥1 and
(si)i≥1 are two increasing sequences of F-stopping times satisfying:

0 ≤ si − di ≤ K , (1)

and

si + δ ≤ di+1 , (2)

for any i ≥ 1, where δ and K are positive constants with ` < K.
We assume that in the harvesting time, the manager harvests the quantity g(x) by the time unit

where x is the quantity of the available resource, and g is a function satisfying the following conditions.
(Hg) g is an increasing function from R+ to R+ such that g(0) = 0, and there exist two positive

constants amin and amax such that aminx ≤ g(x) ≤ amaxx for any x ∈ R+.
Moreover, the manager must pay a cost when he harvests during a period ∆t, and this cost is

f (∆t) where f is an increasing function from R+ to R+ such that f (0) = 0.
Finally, after any harvest time, the manager sells at time si + m, with m a positive constant,

the harvested resource. We denote by Pp the price of the resource, and we suppose that it evolves
according to the following stochastic differential equation:

dPp
t = Pp

t (µtdt + σtdWt) ,

Pp
0 = p ,

where µ and σ are positive bounded F-adapted processes and p is the price at time 0. We assume
that m < δ.

We can sum up all the constraints with the following graph.
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The state A corresponds to the state where the manager can decide to start a harvest. The state B
corresponds to the harvesting time. The state C corresponds to the moment of sale.

The variable di (resp. si) corresponds to the time when the manager decides to leave the state A
(resp. B). The time to go from the state A to the state B is `. This means that the time between the order
to harvest and the start of the harvest is `. We cannot stay more than K− ` in the state B, which means
that the harvesting time cannot be more than K− `. The time to go from the state B to the state C is m.
This means that the manager must wait m after the harvest to sell this production. The time to go from
the state C to the state A is δ−m, which means that the minimum time between the sale and the next
order to harvest is δ−m.

If the manager follows an admissible strategy α = (di, si)i≥1, then the quantity of available
resource Xx,α

t at time t evolves with the following stochastic differential equation:

dXx,α
t = ηXx,α

t (λ− Xx,α
t )dt + γXx,α

t dBt −∑
i≥1

g(Xx,α
t )1di+`≤t≤si

dt , (3)

with Xx,α
0 = x.

2.2. The Value Function

The objective of the manager is to optimize the expected profit over an infinite horizon.
The associated value function is then given by:

V(x, p) = sup
α∈A

E
[

∑
i≥1

e−β(si+m)(Gα
i − Cα

i )
]

, (4)

where β is a positive constant corresponding to the discount factor, Gα
i and Cα

i corresponds to the gain,
and the cost for the i-th harvest associated with the strategy α ∈ A:

Cα
i = f (si − di − `) , (5)

and:

Gα
i = Pp

si+m

∫ si

di+`
g(Xx,α

t )dt . (6)

3. PDE Characterization

3.1. Extension of the Value Function

In order to provide an analytic characterization of the value function V defined by (4), we need to
extend the definition of this control problem to general initial conditions. Indeed, the delays imposed
on the manager make the state process non-Markov. To overcome this issue, we introduce new
variables keeping in mind the time spent from the previous decision. More precisely, we consider a
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gain function J(x, p, θ, ρ, y, α) from E := R+ ×R∗+ ×D ×A(Θ) to R, with x representing the size of
the available resource at the initial time, p the price of the resource, θ the time from the last decision
of the manager (start a harvest or stop a harvest), ρ the time from which the manager has decided
to harvest the last time, y the quantity of the harvest until now associated with this harvest, and α

the strategy. We introduce some notation to simplify the formulae: z := (x, p), Z := R+ ×R∗+ and
Θ := (θ, ρ, y). We also introduce the following sets:

D0 := {(θ, ρ, y) ∈ R3
+ , y ≥ 0 , 0 ≤ θ = ρ ≤ K} ,

D1 := {(θ, ρ, y) ∈ R3
+ , y ≥ 0 , 0 ≤ θ < ρ ∧m and ρ− K ≤ θ ≤ ρ− `} ,

D2 := {(θ, ρ, y) ∈ R3
+ , y ≥ 0 , m ≤ θ < ρ and ρ− K ≤ θ ≤ ρ− `} ,

and D := D0 ∪D1 ∪D2.
The gain function J is given for any state (z, Θ) ∈ Z ×D and strategy α ∈ A(Θ) by:

J(z, Θ, α) := E
[

∑
j≥1

e−β(sj+m)(Gj − Cj)
]

, (7)

where G1 and C1 are defined by:

G1 =
[
y +

∫ s1

(`−θ)+
g(Xx,α

s )ds
]

Pp
s1+m1D0 + yPp

m−θ1D1 ,

C1 = f (s1 + θ − `)1D0 + f (ρ− θ − `)1D1 .

For any j ≥ 2, Cj and Gj are defined by (5) and (6).
To define the set of admissible strategies A(Θ), we first introduce the set of admissible strategies

Ai(Θ) defined for any Θ ∈ Di with i ∈ {0, 1, 2}:

A0(Θ) :=
{
(di, si)i≥1 , where d1 = −θ , s1 is a stopping time valued in [(`− θ)+, K− θ] and

(di, si)i≥2 ∈ A with d2 ≥ s1 + δ
}

,

A1(Θ) :=
{
(di, si)i≥1 , where (d1, s1) = (−ρ,−θ) and (di, si)i≥2 ∈ A with d2 ≥ δ− θ

}
,

A2(Θ) :=
{
(di, si)i≥1 , where (d1, s1) = (−ρ,−θ) and (di, si)i≥2 ∈ A with d2 ≥ (δ− θ)+

}
.

Finally, we define the set A(Θ) by A(Θ) = Ai(Θ) when Θ ∈ Di with i ∈ {0, 1, 2}.
We can now define the extended value function v by:

v(z, Θ) := sup
α∈A(Θ)

E
[

J(z, Θ, α)
]

,

for any (z, Θ) ∈ Z ×D.

3.2. Dynamic Programming Principle

To characterize the value function v by a PDE, we use the approach by dynamic programming
principle. The value function v satisfies the following equalities, which depend on the set in which Θ
lives.

Theorem 1. For any z ∈ Z and Θ ∈ D0, we have:

v(z, Θ) = sup
(`−θ)+≤s1≤K−θ

E
[
e−βs1 v(Xx,α

s1
, Pp

s1 , 0, s1 + θ, y +
∫ s1

(`−θ)+
g(Xx,α

s )ds)
]

.
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For any z ∈ Z and Θ ∈ D1, we have:

v(z, Θ) = E
[
e−β(m−θ)[yPp

m−θ − f (ρ− θ − `)] + e−β(m−θ)v(Xx,α
m−θ , Pp

m−θ , m, ρ + m− θ, 0))
]

.

For any z ∈ Z and Θ ∈ D2, we have:

v(z, Θ) = sup
(δ−θ)+≤d2

E
[
e−βd2 v(Xx,α

d2
, Pp

d2
, 0, 0, y)

]
.

The proof of this theorem is postponed to Appendix A.

3.3. Growth Property

We now impose the following assumption on the coefficients:

µ + ηλ− β < 0 . (8)

We then get the following growth property for the value function v. This one will be useful to
characterize v as the unique viscosity solution of a PDE system.

Proposition 1. The value function v satisfies the following growth condition: there exist two positive constants
C1 and C2 such that:

yp− C1 ≤ v(z, Θ) ≤ C2(1 + |x|2 + |p|2) , (9)

for any z = (x, p) ∈ Z and Θ = (θ, ρ, y) ∈ D.

Proof. We first prove the left inequality. If Θ ∈ D0, we can consider the strategy that consists of
stopping the harvest as soon as possible and never harvesting after that, so:

v(z, Θ) ≥ E[yPp
(`−θ)++m − f ((θ − `)+)]

≥ yp− f (K− `) .

If Θ ∈ D1, we can consider the strategy that consists of selling the harvest and never harvesting after
that, and we get:

v(z, Θ) ≥ E[yPp
m−θ − f (ρ− θ − `)]

≥ yp− f (K− `) .

If Θ ∈ D2, we can consider the strategy that consists of starting the harvest as soon as possible,
stopping this as soon as possible, and never harvesting after that, so:

v(z, Θ) ≥ E[yPp
(δ−θ)++`+m − f (0)]

≥ yp− f (K− `) .

Hence, the left inequality holds with C1 = f (K− `).
We now prove the right inequality. For that, we introduce the process X̄x defined by X̄x

0 = x and:

dX̄x
t = ηX̄x

t (λ− X̄x
t )dt + γX̄x

t dBt .

Using the closed formula of the logistic diffusion (see, e.g., in [11]), we have:
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X̄x
t =

e(ηλ− γ2
2 )t+γBt

1
x + η

∫ t
0 e(ηλ− γ2

2 )u+γBu du

≤ xeηλTe−
γ2
2 t+γBt ,

which implies the following inequality:

sup
0≤t≤T

E[X̄x
t ] ≤ xeηλT . (10)

We now consider any strategy α = (di, si)i≥1 ∈ A(Θ). Since the cost function f is positive, we get:

J(z, Θ, α) ≤ ∑
i≥1

e−β(si+m)E
[

Pp
si+m

∫ si

di+`
g(X̄x

s )ds
]

.

From Assumption (Hg), we have:

J(z, Θ, α) ≤ ∑
i≥1

e−β(si+m)E[Pp
si+m]

∫ si

di+`
amaxE

[
X̄x

s
]
ds

≤ Cp ∑
i≥1

e(µ−β)si amax sup
0≤t≤si

E
[
X̄x

s
]

.

From Inequality (10), we get (C is a generic constant, which can be modified):

J(z, Θ, α) ≤ Cpx ∑
i≥1

e(µ+ηλ−β)si .

From Inequality (8) and all the constraints about di and si, we know that si ≥ Ki + δ(i− 1) + m for any
i ∈ N∗, so we get:

J(z, Θ, α) ≤ Cpx ∑
i≥1

e(µ+ηλ−β)(Ki+δ(i−1)+m)

≤ Cpx ∑
i≥1

e(µ+ηλ−β)(K+δ)i

≤ Cpx ,

which implies:

v(z, Θ) ≤ Cpx .

3.4. Viscosity Properties and Uniqueness

We now consider all the cases to get the PDEs satisfied by the value function v, which is derived
from the dynamic programming relation:

• If Θ ∈ D0 with θ ∈ [0, `), that means the manager has given the order to harvest, but this has not
yet started, which implies:

βv−L0v = 0 , (11)

with L0ψ = ηx(λ − x)∂xψ + µp∂pψ + |γx|2
2 ∂xxψ + |σp|2

2 ∂ppψ + ∂θψ + ∂ρψ for any function ψ ∈
C2(Z ×D).
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• If Θ ∈ D0 with θ ∈ [`, K), that means the manager harvests, and he/she can decide to stop this,
which implies:

min(βv−L1v, v−M1v) = 0 , (12)

with L1ψ = (ηx(λ − x) − g(x))∂xψ + µp∂pψ + g(x)∂yψ + |γx|2
2 ∂xxψ + |σp|2

2 ∂ppψ + ∂θψ ψ ∈
C2(Z ×D), and the operatorM1 is defined for any function v ∈ C2(Z ×D0) by:

M1v(x, p, θ, θ, y) = v(x, p, 0, θ, y) .

• If Θ ∈ D0 with θ = K, the manager must stop the harvest, so we have:

v(x, p, K, K, y) = v(x, p, 0, K, y) . (13)

• If Θ ∈ D1 with θ ∈ [0, m), that means the manager has finished harvesting, but he/she has not
yet sold his/her harvest, which implies:

βv−L0v = 0 . (14)

• If Θ ∈ D1 with θ = m, that means the manager sells his/her harvest, which implies:

lim
θ→m−

v(x, p, θ, ρ, y) = yp− f (ρ−m− `) + v(x, p, m, ρ, 0) . (15)

• If Θ ∈ D2 with θ ∈ [m, δ), then the manager can do nothing, which implies:

βv−L0v = 0 . (16)

• If Θ ∈ D2 with θ ≥ δ, then the manager can decide to start a harvest:

min(βv−L0v, v−M2v) = 0 . (17)

The operatorM2 is defined for any function v ∈ C2(Z ×D2) by:

M2v(x, p, θ, ρ, y) = v(x, p, 0, 0, y) .

As usual, we do not have any regularity property on the value function v. We therefore work
with the notion of the viscosity solution.

Definition 1 (Viscosity solution to (11)–(17)). A locally bounded function w defined on Z ×D is a viscosity
supersolution (resp. subsolution) if:

1. for any (z, Θ) ∈ Z ×D0 and ϕ ∈ C2(Z ×D0) such that:

(w∗ − ϕ)(z, Θ) = min
Z×D0

(w∗ − ϕ)

(resp. (w∗ − ϕ)(z, Θ) = max
Z×D0

(w∗ − ϕ))

we have
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βϕ(z, Θ)−L0 ϕ(z, Θ) ≥ 0 if θ ∈ [0, l)

(resp. βϕ(z, Θ)−L0 ϕ(z, Θ) ≤ 0)

min(βϕ(z, Θ)−L1 ϕ(z, Θ), w∗(z, Θ)−M1w∗(z, Θ)) ≥ 0 if θ ∈ [l, K)

(resp. min(βϕ(z, Θ)−L1 ϕ(z, Θ), w∗(z, Θ)−M1w∗(z, Θ)) ≤ 0)

2. for any z ∈ Z and y ∈ R+

w∗(x, p, K, K, y) ≥ w∗(x, p, 0, K, y)

(resp. w∗(x, p, K, K, y) ≤ w∗(x, p, 0, K, y))

3. for any (z, Θ) ∈ Z ×D1 with θ ∈ [0, m) and ϕ ∈ C2(Z ×D1) such that:

(w∗ − ϕ)(z, Θ) = min
Z×D1

(w∗ − ϕ)

(resp. (w∗ − ϕ)(z, Θ) = max
Z×D1

(w∗ − ϕ))

we have:

βϕ(z, Θ)−L0 ϕ(z, Θ) ≥ 0

(resp. βϕ(z, Θ)−L0 ϕ(z, Θ) ≤ 0)

4. for any z ∈ Z , ρ ∈ [`+ m, K + m] and y ∈ R+:

w∗(x, p, m−, ρ, y) ≥ yp− f (ρ− `) + w∗(x, p, m, ρ, 0)

(resp. w∗(x, p, m−, ρ, y) ≤ yp− f (ρ− `) + w∗(x, p, m, ρ, 0))

5. for any (z, Θ) ∈ Z ×D2 and ϕ ∈ C2(Z ×D2) such that:

(w∗ − ϕ)(z, Θ) = min
Z×D2

(w∗ − ϕ)

(resp. (w∗ − ϕ)(z, Θ) = max
Z×D2

(w∗ − ϕ))

we have:

βϕ(z, Θ)−L0 ϕ(z, Θ) ≥ 0 if θ ∈ [m, δ)

(resp. βϕ(z, Θ)−L0 ϕ(z, Θ) ≤ 0)

min(βϕ(z, Θ)−L0 ϕ(z, Θ), w∗(z, Θ)−M2w∗(z, Θ)) ≥ 0 if θ ≥ δ

(resp. min(βϕ(z, Θ)−L0 ϕ(z, Θ), w∗(z, Θ)−M2w∗(z, Θ)) ≤ 0)

A locally bounded function w defined on Z ×D is said to be a viscosity solution to (11)–(17) if it is a
supersolution and a subsolution to (11)–(17).

The next result provides the viscosity properties of the value function v.

Theorem 2 (Viscosity characterization). The value function v is the unique viscosity solution to (11)–(17)
satisfying the growth condition (9). Moreover, v is continuous on Z ×D.

The proof of this theorem is postponed in Appendix B.
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4. Numerical Results

Unfortunately, we are not able to provide an explicit solution for the HJB Equations (11)–(17).
We therefore propose in this section a scheme to approximate the solution v.

4.1. The Discrete Problem

In the following, we introduce the numerical tools to solve the HJB equations related to the value
function v. We use a numerical backward scheme based on the optimal quantization mixed with an
iterative procedure. The convergence of the solution of the numerical scheme towards the solution of
the HJB equation, when the time-space step on a bounded grid goes to zero, can be shown using the
standard monotonicity, stability, and consistency arguments. We refer to [12,13] for numerical schemes
of the same form.

Each HJB equation of the form min(βv−Liv, v− hi) = 0, with i ∈ {0, 1}, will be approximated
as follows:

vn+1(x, p, θ, ρ, y) = max
{
E [vn+1(Xi

∆, P∆, θ + ∆, ρ + ∆, Yi
∆)], hn

i
}

,

where:

Xi
∆ = x + (ηx(λ− x)− ig(x))∆ + γx

√
∆ξk ,

P∆ = p exp((µ− σ2/2)∆ + σ
√

∆ξl) ,

Yi
∆ = y + ig(x)∆ .

The constant ∆ represents the time step, and the index n stands for the iteration procedure steps,
which are stopped when the error between two consecutive iterations becomes smaller than a given
stopping criterion ε. The random variables ξk and ξl represent the quantization of two independent
normally distributed random variables.

Remark 1. Recall that the optimal quantization technique consists of approximating the expectation E[ f (Z)],
where Z is a normal distributed variable and f is a given real function, by:

E [ f (ξ)] = ∑
k∈ξ(Ω)

f (k)P(ξ = k) .

The distribution of the discrete variable ξ is known for a fixed N := card(ξ(Ω)), and the approximation is
optimal as the L2-error between ξ and Z is of order 1/N (see [14]). The optimal grid ξ(Ω) and the associated
weights P(ξ = k) can be downloaded from the website: http://www.quantize.maths-fi.com/downloads.

4.2. Numerical Interpretations

The numerical computation is done using the following set of data:

• η = 0.1 , λ = 2 , γ = 0.2 , µ = 0.2 , σ = 0.1 , β = 0.5.
• δ = K = 0.4828 , l = m = 0.2069.
• Penalty function: f (x) = 0.1× x.
• Gain function: g(x) = x.

Figure 1. The shape of the value function v for (x, p, θ, ρ, y) ∈ D0 in the plane of x.

We plot the shape of the value function v for a fixed state (p, θ, ρ, y) in the plane of x s.t.
(x, p, θ, ρ, y) ∈ D0 and θ ∈ [0, `). We can see that, as expected, v is increasing with respect to x.
We can remark about three cases in this figure:
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• x ∈ [1.5, 1.7]: in this case the, value function is increasing since if we have 1.5 ≤ x < x′ ≤ 1.7 at
the initial time, then we will have Xx

`−θ < Xx′
`−θ < 2 a.s., and the bigger is the resource when we

harvest, the more we can harvest since the function g is increasing;
• x ∈ [1.7, 2]: in this case, the value function is constant since if we have 1.7 ≤ x < x′ ≤ 2 at the

initial time then we will have Xx
`−θ = Xx′

`−θ = 2 a.s., so we harvest exactly the same quantity in
the two cases;

• x > 2: in this case, the value function is increasing since if we have 2 ≤ x < x′ at the initial time,
then the resource decreases, but we will have Xx

`−θ < Xx′
`−θ a.s.

Figure 1. The shape of the value function v sliced in the plane of x.

The value function increases with respect to x, which is natural since the greater the resource is,
the more we can harvest as the function g is increasing. We can also see that the value function becomes
concave after x = 2, which is due to the resource’s mean-reverting nature. Indeed, if the quantity of
the resource is greater than two, because the drift is negative, the resource would necessarily decrease,
reducing the harvest. The oscillations observed when x is small are due to the delay `.

Figure 2. The shape of the value function v for (x, p, θ, ρ, y) ∈ D0 in the plane of x for different
values of `.

We plot the shape of the value function v for a fixed state (p, θ, ρ, y) in the plane of x s.t.
(x, p, θ, ρ, y) ∈ D0 and θ ∈ [0, `) for different values of `. We can see that, when changing the delay
time `, the change point of the value function’s monotony is also shifted: 1.6 for ` = 0.1379, 1.7 for
` = 0.2069, and 1.8 for ` = 0.2759. Indeed, as the figure shows, as the delay decreases, the change point
of the monotony approaches zero and will likely disappear when there is no delay, leading to a perfect
concave function. In fact, wasting time waiting to harvest because of the delay will lead the manager
to skip the increasing period of the resource. The manager will start the real harvesting when the
population is dropping due to the mean-reverting parameter λ; thus, the value function will decrease.

Figure 3. The optimal policy for (x, p, θ, ρ, y) ∈ D0 in the plane of x.

We plot the optimal decision that the manager would make for a fixed state (p, θ, ρ, y) in the plane
of x s.t. (x, p, θ, ρ, y) ∈ D0 and θ ∈ [`, K]. As we can see, the optimal decision that the manager should
make is to start harvesting if the resource x is over a given level; otherwise, he/she should stop and
sell the harvest. This is due to the cost f , which penalizes him/her as long as the harvesting is ongoing.
In fact, if the population is not large enough, he/she would not be able to cover his/her loss.
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Figure 2. The shape of the value function v sliced in the plane of x for different values of `.

Figure 3. The optimal policy for (x, p, θ ∈ [`, K], ρ, y) ∈ D0 in the plane of x.

Figure 4. The optimal policy for (x, p, θ, ρ, y) ∈ D0 in the plane of θ.

We plot the optimal decision that the manager would make for four fixed states (x, p, y)
(P1, P2, P3, P4) in the plane of θ s.t. (x, p, θ, ρ, y) ∈ D0. The state P1 represents the case where x
and y are both low; state P2 is for x low and y high, P3 for x high and y low, and final state P4 for
x and y both high. Decision 1 stands for starting the harvest, and Decision 2 stands for stopping it.
As we can see, the optimal decision that the manager should make in state P1 (resp. P2), knowing
that he/she has already spent θ time since the starting decision, is to stop harvesting if θ ≤ θ0 (resp.
θ ≤ θ1) where θ0 ' 0.34 (resp. θ1 ' 0.38). We can explain this as follows: on the one hand, in the case
where θ ≤ θ0 (resp. θ ≤ θ1), due to the cost of harvesting and the fact that we are in state P1 (resp. P2)
where the population is low, the manager prefers to immediately stop harvesting and sell the harvest;
otherwise, he/she will likely lose money. On the other hand, if θ ≥ θ0 (resp. θ ≥ θ1), i.e., the manager
has already given the order to harvest since a given period of time, it is optimal for him/her to harvest
for the purpose of covering the cost due to the large time spent harvesting. We can also note that this
last window of time is larger for state P1 in comparison with the one of state P2. Indeed, in state P2,
the manager has already harvested more than in state P1, so he/she can stop harvesting sooner.
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Concerning states P3 and P4, where the population is high, obviously, the optimal decision for
the manager is to harvest at all times and stop harvesting when θ = K = 0.4828.

Figure 4. The optimal policy for (x, p, θ, ρ, y) ∈ D0 in the plane of θ.

Figure 5. The shape of the value function v for (x, p, θ, ρ, y) ∈ D1 in the plane of p.

We plot the value function v for a fixed state (x, θ, ρ, y) in the plane of p s.t. (x, p, θ, ρ, y) ∈ D1 and
θ ∈ [0, m]. As expected, v is nondecreasing w.r.t. p. The more expensive the resource is, the more the
manager takes benefits.

Figure 5. The value function v for (x, p, θ ∈ [0, m], ρ, y) ∈ D1 in the plane of p.

Figure 6. The optimal policy for (x, p, θ, ρ, y) ∈ D2 in the plane of x.

We plot the optimal decision that the manager would make for a fixed state (p, θ, ρ, y) in the
plane of x s.t. (x, p, θ, ρ, y) ∈ D2 and θ ∈ [δ, θmax]. As we can see, the optimal decision that the
manager should make, knowing that he/she has already sold the harvest, is to start harvesting over a
certain level of x under the mean-reverting barrier λ so that the population grows enough to cover the
harvesting costs and take benefits.
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Figure 6. The optimal policy for (x, p, θ ∈ [δ, θmax], ρ, y) ∈ D2 in the plane of x.

4.3. Conclusions

Our modeling takes into account the non-immediacy of both the harvest and its sale, described by
the time delays ` and m. The optimum strategies commented on previously illustrate the effect of those
delays on the manager’s actions. In the classical literature, many studies suggesting optimal harvesting
policies presume that the natural resource is immediately available, which is not the case in general.
Consequently, the proposed policies would not be feasible and would lead to a sub-optimal use of the
resource, in the best case scenario. The ecological and economic effects may thus be consequential.

For example, a modeling of fisheries that does not involve delays may lead to a harvesting strategy
that would likely deplete the fish population, leading to extinction.

In fact, if the population is at a high level at the initial time, it is then likely to decline due to the
logistic nature of the dynamics. As a result, if the time required to reach the harvest region is not taken
into account, the best approach would be to harvest massively, thus causing a drastic degradation of
the fish population.

We may make the same reasoning when it comes to selling the crop. Assume that we are in a
position to sell our harvest immediately after harvesting and neglect the time required to return to
land. In that case, if the price of fish falls, we would suffer losses, and we would not be able to amortize
the costs of fishing.
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Appendix A. Dynamic Programming Principle

We introduce some notations in this part to alleviate the proofs. We first denote by T the set of
F-stopping time. For ω, ω′ ∈ Ω and t ≥ 0, we set:

(tωs)s≥0 = (ωs∧t)s≥0 and (ω⊕t ω′s)s≥0 = (ωs1s≤t + (ω′s −ω′t + ωt)1s>t)s≥0 .

For any (z, Θ) ∈ Z ×D and α ∈ A(Θ) we define Zz,α as the two-dimensional process (Xx,α, Pp).
For any t ≥ 0, we denote by Θ(t, α) the triple (θt, ρt, yt) where θt corresponds to the time from the last
decision of the manager before t (this order can be an order to start a harvest or an order to stop a
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harvest), ρt the time from which the manager has given the last order to harvest before t and yt is the
harvested quantity until time t.

For τ ∈ T and α = (di, si)i≥1 ∈ A(Θ), we define the shifted (random) strategy ατ by:

ατ(ω) =
{
(di(ω⊕τ(ω) ω′)− τ(ω), si(ω⊕τ(ω) ω′)− τ(ω))i≥κ(τ,α)(ω) , ω′ ∈ Ω} (A1)

with

κ(τ, α)(ω) := sup {i ≥ 1 , di(ω) ≤ τ(ω)}

for all ω ∈ Ω.

Before proving the dynamic programming principle, we need the following results.

Lemma A1. For any ϑ ∈ T , (z, Θ) ∈ Z × D and α = (di, si)i≥1 ∈ A(Θ), we have the
following properties.

1. Consistency of the admissible strategies: Θ(ϑ, α) ∈ D and αϑ ∈ A(Θ(ϑ, α)) P-a.s.
2. Consistency of the gain function:

J(z, Θ, α) = E
[ κ(ϑ,α)−1

∑
i=1

e−β(si+m)(Gα
i − Cα

i )
]
+E

[
e−βϑ J(Zz,α

ϑ , Θ(ϑ, α), αϑ)
]

.

Proof. These properties are direct consequences of the dynamics of Zz,α and of the definitions of J andA.
We now turn to the proof of the dynamic programming principle. Unfortunately, we have not

enough information on the value function v to directly prove these results. In particular, we do not
know the measurability of v and this prevents us from computing expectations involving v as in
the dynamic programming principle. We therefore provide weaker dynamic programing principles
involving the envelopes v∗ and v∗ as in [15] where:

v∗(z, Θ) = lim(z′ ,Θ′)→(z,Θ)
(z′ ,Θ′)∈E

θ′→θ+

ρ′→ρ+

v(z′, Θ′) ,

and:

v∗(z, Θ) = lim(z′ ,Θ′)→(z,Θ)
(z′ ,Θ′)∈E

θ′→θ+

ρ′→ρ+

v(z′, Θ′) .

We recall that in general, v∗ ≤ v ≤ v∗. Since we get the continuity of v at the end, these results implies
the dynamic programming principle.

Proposition A1. For any Θ ∈ D0 and z ∈ Z , we have:

v(z, Θ) ≥ sup
α∈A(Θ)

sup
ϑ∈T

E
[
e−βϑv∗(Zz,α

ϑ , Θ(ϑ, α))1ϑ<s1+m

+
[
e−β(s1+m)

((
y +

∫ s1

(`−θ)+
g(Xx,α

s )ds
)

Pp
s1+m − f (s1 + θ − `)

)
+

κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+ e−βϑv∗(Zz,α
ϑ , Θ(ϑ, α)) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1s1+m≤ϑ

]
.
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For any Θ ∈ D1 and z ∈ Z , we have:

v(z, Θ) ≥ sup
α∈A(Θ)

sup
ϑ∈T

E
[
e−βϑv∗(Zz,α

ϑ , Θ(ϑ, α))1ϑ<m−θ

+
[
e−β(m−θ)

(
yPp

m−θ − f (ρ− θ − `)
)
+

κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+ e−βϑv∗(Zz,α
ϑ , Θ(ϑ, α)) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1m−θ≤ϑ

]
.

For any Θ ∈ D2 and z ∈ Z , we have:

v(z, Θ) ≥ sup
α∈A(Θ)

sup
ϑ∈T

E
[
e−βϑv∗(Zz,α

ϑ , Θ(ϑ, α))1ϑ<d2 +
[ κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+ e−βϑv∗(Zz,α
ϑ , Θ(ϑ, α)) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1ϑ≥d2

]
.

Proof. Let i ∈ {0, 1, 2}, z ∈ Z and Θ ∈ Di, α ∈ A(Θ) and ϑ ∈ T . By definition of the value function
v, for any ε > 0 and ω ∈ Ω, there exists αε,ω = (sε,ω

k , dε,ω
k )k≥1 ∈ A(Θ(ϑ(ω), α), which is ε-optimal at

(Zz,α
ϑ , Θ(ϑ, α))(ω), i.e.,

v
(
Zz,α

ϑ(ω)
(ω), Θ(ϑ(ω), α(ω))

)
− ε ≤ J(Zz,α

ϑ(ω)
(ω), Θ(ϑ(ω), α(ω)), αε,ω) . (A2)

By a measurable selection theorem (see e.g., Theorem 82 in the appendix of Chapter III in [16]),
there exists a sequence of stopping times ᾱε = (s̄ε

k, d̄ε
k)k≥1 s.t. s̄ε

k(ω) = sε,ω
k (ω) and d̄ε

k(ω) = dε,ω
k (ω) for

a.a. ω ∈ Ω.
We now define by concatenation the control strategy ᾱ consisting of the impulse control

components of α on [0, ϑ), and the impulse control components (ᾱε + ϑ) on [ϑ, ∞). More precisely, α is
given by:

ᾱ(ω) = (sk(ω), dk(ω))1≤k<κ(ϑ,α)(ω) ∪ (s̄ε
k(ω) + ϑ(ω), d̄ε

k(ω) + ϑ(ω))κ(ϑ,α)(ω)≤k .

By definition of the shift given in (A1), we have:

ᾱϑ(ω) = {(s̄ε
k(ω⊕ϑ(ω) ω′), d̄ε

k(ω⊕ϑ(ω) ω′))k≥1 , ω′ ∈ Ω}

= {ᾱϑ,ε(ω⊕ϑ(ω) ω′) , ω′ ∈ Ω} .

From Lemma A1 (ii) and the definition of the performance criterion we get the following equalities.

• If z ∈ Z and Θ ∈ D0, then we have:

J(z, Θ, ᾱ) = E
[
e−βϑ J(Zz,α

ϑ , Θ(ϑ, α), ᾱε)1ϑ<s1+m

+
[
e−β(s1+m)

((
y +

∫ s1

(`−θ)+
g(Xx,α

s )ds
)

Pp
s1+m − f (s1 + θ − `)

)
+

κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+e−βϑ J(Zz,α
ϑ , Θ(ϑ, α), ᾱε) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1s1+m≤ϑ

]
.

• If z ∈ Z and Θ ∈ D1, then we have:
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J(z, Θ, ᾱ) = E
[
e−βϑ J(Zz,α

ϑ , Θ(ϑ, α), ᾱε)1ϑ<m−θ

+
[
e−β(m−θ)

(
yPp

m−θ − f (ρ− θ − `)
)
+

κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+e−βϑ J(Zz,α
ϑ , Θ(ϑ, α), ᾱε) + e−β(sκ(ϑ,α)+n)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1m−θ≤ϑ

]
.

• If z ∈ Z and Θ ∈ D2, then we have:

J(z, Θ, ᾱ) = E
[
e−βϑ J(Zz,α

ϑ , Θ(ϑ, α), ᾱε)1ϑ<d2 +
[ κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+e−βϑ J(Zz,α
ϑ , Θ(ϑ, α), ᾱε) + e−β(sκ(ϑ,α)+n)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1d2≤ϑ

]
.

Together with (A2), this implies if z ∈ Z and Θ ∈ D0, we have:

v(z, Θ) ≥ J(z, Θ, ᾱ)

≥ E
[
e−βϑ(v∗(Zz,α

ϑ , Θ(ϑ, α))− ε)1ϑ<s1+m

+
[
e−β(s1+m)

((
y +

∫ s1

(`−θ)+
g(Xx,α

s )ds
)

Pp
s1+m − f (s1 + θ − `)

)
+

κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+e−βϑ(v∗(Zz,α
ϑ , Θ(ϑ, α))− ε) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1s1+m≤ϑ

]
.

If z ∈ Z and Θ ∈ D1, we have:

v(z, Θ) ≥ J(z, Θ, ᾱ)

≥ E
[
e−βϑ(v∗(Zz,α

ϑ , Θ(ϑ, α))− ε)1ϑ<m−θ

+
[
e−β(m−θ)

(
yPp

m−θ − f (ρ− θ − `)
)
+

κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)
)

+e−βϑ(v∗(Zz,α
ϑ , Θ(ϑ, α))− ε) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1m−θ≤ϑ

]
.

If z ∈ Z and Θ ∈ D2, we have:

v(z, Θ) ≥ J(z, Θ, ᾱ)

≥ E
[
e−βϑ(v∗(Zz,α

ϑ , Θ(ϑ, α))− ε)1ϑ<d2 +
[ κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+e−βϑ(v∗(Zz,α
ϑ , Θ(ϑ, α))− ε) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1d2≤ϑ

]
.

Since ε, ϑ and α are arbitrarily chosen, we get the result.

Proposition A2. For all z ∈ Z and Θ ∈ D0, we have:

v(z, Θ) ≤ sup
α∈A(Θ)

inf
ϑ∈T

E
[
e−βϑv∗(Zz,α

ϑ , Θ(ϑ, α))1ϑ<s1+m

+
[
e−β(s1+m)

((
y +

∫ s1

(`−θ)+
g(Xx,α

s )ds
)

Pp
s1+m − f (s1 + θ − `)

)
+

κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+ e−βϑv∗(Zz,α
ϑ , Θ(ϑ, α)) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1s1+m≤ϑ

]
.
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For all z ∈ Z and Θ ∈ D1, we have:

v(z, Θ) ≤ sup
α∈A(Θ)

inf
ϑ∈T

E
[
e−βϑv∗(Zz,α

ϑ , Θ(ϑ, α))1ϑ<m−θ

+
(

e−β(m−θ)
(

yPp
m−θ − f (ρ− θ − `)

)
+

κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+ e−βϑv∗(Zz,α
ϑ , Θ(ϑ, α)) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

)
1m−θ≤ϑ

]
.

For all z ∈ Z and Θ ∈ D2, we have:

v(z, Θ) ≤ sup
α∈A(Θ)

inf
ϑ∈T

E
[
e−βϑv∗(Zz,α

ϑ , Θ(ϑ, α))1ϑ<d2 +
[ κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+ e−βϑv∗(Zz,α
ϑ , Θ(ϑ, α)) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

)
1ϑ≥d2

]
.

Proof. Fix z ∈ Z and Θ ∈ D0, α ∈ A(Θ) and ϑ ∈ T . From Lemma A1, the definition of the
performance criterion, we get:

J(z, Θ, α) = E
[
e−βϑ J(Zz,α

ϑ , Θ(ϑ, α), αϑ)1ϑ<s1+m

+
[
e−β(s1+m)

((
y +

∫ s1

(`−θ)+
g(Xx,α

s )ds
)

Pp
s1+m − f (s1 + θ − `)

)
+

κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+e−βϑ J(Zz,α
ϑ , Θ(ϑ, α), αϑ) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1s1+m≤ϑ

]
≤ E

[
e−βϑv∗(Zz,α

ϑ , Θ(ϑ, α))1ϑ<s1+m

+
[
e−β(s1+m)

((
y +

∫ s1

(`−θ)+
g(Xx,α

s )ds
)

Pp
s1+m − f (s1 + θ − `)

)
+

κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+e−βϑv∗(Zz,α
ϑ , Θ(ϑ, α)) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1s1+m≤ϑ

]
since ϑ and α are arbitrary, we obtain the required inequality.

If z ∈ Z and Θ ∈ D1, we get:

J(z, Θ, α) = E
[
e−βϑ J(Zz,α

ϑ , Θ(ϑ, α), αϑ)1ϑ<m−θ

+
[
e−β(m−θ)

(
yPp

m−θ − f (ρ− θ − `)
)
+

κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+e−βϑ J(Zz,α
ϑ , Θ(ϑ, α), αϑ) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1m−θ≤ϑ

]
≤ E

[
e−βϑv∗(Zz,α

ϑ , Θ(ϑ, α))1ϑ<m−θ

+
[
e−β(m−θ)

(
yPp

m−θ − f (ρ− θ − `)
)
+

κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+e−βϑv∗(Zz,α
ϑ , Θ(ϑ, α)) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1m−θ≤ϑ

]
since ϑ and α are arbitrary, we obtain the required inequality.

If z ∈ Z and Θ ∈ D2, we get:
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J(z, Θ, α) = E
[
e−βϑ J(Zz,α

ϑ , Θ(ϑ, α), 2, αϑ)1ϑ<d2 +
[ κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)

+e−βϑ J(Zz,α
ϑ , Θ(ϑ, α), αϑ) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1d2≥ϑ

]
≤ E

[
e−βϑv∗(Zz,α

ϑ , Θ(ϑ, α))1ϑ<d2 +
[ κ(ϑ,α)−1

∑
i=2

e−β(si+m)(Gi − Ci)
)

+e−βϑv∗(Zz,α
ϑ , Θ(ϑ, α)) + e−β(sκ(ϑ,α)+m)(Gκ(ϑ,α) − Cκ(ϑ,α))1D2

]
1d2≤ϑ

]
since ϑ and α are arbitrary, we obtain the required inequality.

Appendix B. Viscosity Properties

1. We first prove the viscosity supersolution property. Fix i ∈ {0, 1, 2}, and let z̄ ∈ Z and Θ̄ ∈ Di,
ϕ ∈ C2(Z ×Di) such that:

(v∗ − ϕ)(z̄, Θ̄) = min
Z×Di

(v∗ − ϕ) = 0 . (A3)

If i = 0 and θ̄ ≥ `, we can take the immediate control s1 = 0 so we obtain by Theorem 1:

v(x̄, p̄, θ̄, θ̄, ȳ) ≥ v(x̄, p̄, 0, θ̄, ȳ) = M1v(x̄, p̄, θ̄, θ̄, ȳ) . (A4)

If i = 2 and θ̄ ≥ δ, we can take the immediate control d2 = 0 so we obtain by Theorem 1:

v(x̄, p̄, θ̄, ρ̄, ȳ) ≥ v(x̄, p̄, 0, 0, ȳ) = M2v(x̄, p̄, θ̄, ρ̄, ȳ) . (A5)

From the definition of v∗, there exists a sequence (zn, Θn)n∈N of Z ×Di such that:

(zn, Θn, v(zn, Θn)) −→
n→+∞

(z̄, Θ̄, v∗(z̄, Θ̄)) .

We define γn := v(zn, Θn)− v∗(z̄, Θ̄)− ϕ(zn, Θn) + ϕ(z̄, Θ̄). By continuity of ϕ, we get γn → 0
as n→ ∞.

Applying Proposition A1 with ϑ = hn =
√
|γn|. We have for n large enough:

• if i = 0:

v(zn, Θn) ≥ E
[
e−βhn v∗(Zzn ,α0,n

hn
, Θ(hn, α0,n))1hn<sn

1+m

+
[
e−β(sn

1+m)
(
(y +

∫ K−θn

(`−θn)+
g(Xxn ,α0,n

s )ds)Ppn
sn

1+m − f (sn
1 + θn − `)

)
+e−βhn v∗(Zzn ,α0,n

hn
, Θ(hn, α0,n))

]
1sn

1+m≤hn

]
where α0,n is the strategy (dn

1 , sn
1 ) = (−θn, K− θn) and then the manager follows the optimal

strategy after this date,
• if i = 1:

v(zn, Θn) ≥ E
[
e−βhn v∗(Zzn ,α1,n

hn
, Θ(hn, α1,n))1hn<m

+1hn≥m

[
e−β(sn

1+m)(yPpn
sn

1+m − f (sn
1 + θn − `)) + e−βhn v∗(Zzn ,α1,n

hn
, Θ(hn, α1,n))

]]
where α1,n is the strategy (dn

1 , sn
1 ) = (−ρn,−θn) and then the manager follows the optimal

strategy after this date,
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• if i = 2:

v(zn, Θn) ≥ E
[
e−βhn v∗(Zzn ,α2,n

hn
, Θ(hn, α2,n))1hn<δ

+1hn≥δe−βhn v∗(Zzn ,α2,n

hn
, Θ(hn, α2,n))

]
where α2,n is the strategy (dn

2 , sn
2 ) = ((δ− θn)+, (δ− θn)+ +K) and then the manager follows

the optimal strategy after this date.

We get for n large enough from (A3) and the three previous inequalities:

γn + ϕ(zn, Θn) ≥ E[e−βhn
(
v∗(Zzn ,αi,n

hn
, Θ(hn, αi,n))]

≥ E[e−βhn
(

ϕ(Zzn ,αi,n

hn
, Θ(hn, αi,n))] .

Applying Itô’s formula, we get:

• if i = 0 and θ̄ < `:

1
hn

E
[ ∫ hn

0
e−βs(βϕ(Zzn ,α0,n

s , Θ(s, α0,n))−L0 ϕ(Zzn ,α0,n

s , Θ(s, α0,n)))ds
]
≥ −

√
|γn| ,

• if i = 0 and ` ≤ θ̄ < K:

1
hn

E
[ ∫ hn

0
e−βs(βϕ(Zzn ,α0,n

s , Θ(s, α0,n))−L1 ϕ(Zzn ,α0,n

s , Θ(s, α0,n)))ds
]
≥ −

√
|γn| ,

• if i = 1 and θ̄ < m:

1
hn

E
[ ∫ hn

0
e−βs(βϕ(Zzn ,α1,n

s , Θ(s, α1,n))−L0 ϕ(Zzn ,α1,n

s , Θ(s, α1,n)))ds
]
≥ −

√
|γn| ,

• if i = 2 and θ̄ ≥ m:

1
hn

E
[ ∫ hn

0
e−βs(βϕ(Zzn ,α2,n

s , Θ(s, α2,n))−L0 ϕ(Zzn ,α2,n

s , Θ(s, α2,n)))ds
]
≥ −

√
|γn| .

Sending n to ∞, we get the supersolution property from the mean value theorem.

2. We turn to the viscosity subsolution. Fix i ∈ {0, 1, 2}, and let z̄ ∈ Z and Θ̄ ∈ Di, ϕ ∈ C2(Z ×Di)

such that:

(v∗ − ϕ)(z̄, Θ̄) = max
Z×Di

(v∗ − ϕ)(z, Θ) = 0 .

If v∗(z̄, Θ̄) ≤ M1v∗(z̄, Θ̄) for Θ̄ ∈ D0 with θ̄ ≥ `, and v∗(z̄, Θ̄) ≤ M2v∗(z̄, Θ̄) for Θ̄ ∈ D2

with θ̄ ≥ δ, then the subsolution inequality holds trivially. Consider now the case v∗(z̄, Θ̄) >

M1v∗(z̄, Θ̄) for Θ̄ ∈ D0 with θ̄ ≥ `, and v∗(z̄, Θ̄) >M2v∗(z̄, Θ̄) for Θ̄ ∈ D2 with θ̄ ≥ δ, and argue
by contradiction by assuming on the contrary that:

• if z̄ ∈ Z , Θ̄ ∈ D0 and θ̄ < `:

r := βϕ(z̄, Θ̄)−L0 ϕ(z̄, Θ̄) > 0 ,

• if z̄ ∈ Z , Θ̄ ∈ D0 and θ̄ ≥ `:

r := βϕ(z̄, Θ̄)−L1 ϕ(z̄, Θ̄) > 0 ,
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• if z̄ ∈ Z , Θ̄ ∈ D1:

r := βϕ(z̄, Θ̄)−L0 ϕ(z̄, Θ̄) > 0 ,

• if z̄ ∈ Z , Θ̄ ∈ D2:

r := βϕ(z̄, Θ̄)−L0 ϕ(z̄, Θ̄) > 0 .

By continuity of ϕ and its derivatives, there exists some ∆0 > 0 s.t. for all 0 < ∆ ≤ ∆0, we have:

• if z̄ ∈ Z , Θ̄ ∈ D0 and θ̄ < `:

βϕ(z, Θ)−L0 ϕ(z, Θ) > r/2 , ∀ (z, Θ) ∈ B((z̄, Θ̄), ∆) ∩ E0 with θ < ` ,

• if z̄ ∈ Z , Θ̄ ∈ D0 and θ̄ ≥ `:

βϕ(z, Θ)−L1 ϕ(z, Θ) > r/2 , ∀ (z, Θ) ∈ B((z̄, Θ̄), ∆) ∩ E0 with θ ≥ ` ,

• if z̄ ∈ Z , Θ̄ ∈ D1:

βϕ(z, Θ)−L0 ϕ(z, Θ) > r/2 , ∀ (z, Θ) ∈ B((z̄, Θ̄), ∆) ∩ E1 ,

• if z̄ ∈ Z , Θ̄ ∈ D2:

βϕ(z, Θ)−L0 ϕ(z, Θ) > r/2 , ∀ (z, Θ) ∈ B((z̄, Θ̄), ∆) ∩ E1 .

From the definition of v∗, there exists a sequence (zn, Θn)n∈N of B((z̄, Θ̄), ∆/2) ∩ E0 with θn < `

(resp. θn ≥ `) if θ̄ < ` (resp. θ̄ ≥ `) such that:

(zn, Θn, v(zn, Θn))
n→∞−−−→ (z̄, Θ̄, v∗(z̄, Θ̄)) ,

and there exists a sequence (zn, Θn)n∈N of B((z̄, Θ̄), ∆/2)∩E1 (resp. B((z̄, Θ̄), ∆/2)∩E2) if θ̄ < m
(resp. θ̄ ≥ m) such that:

(zn, Θn, v(zn, Θn))
n→∞−−−→ (z̄, Θ̄, v∗(z̄, Θ̄)) .

By Theorem 1 we can find for each n ∈ N a control αi,n ∈ A(Θn) such that for all hn ∈ T :

v(zn, Θn) ≤ E
[
e−βhn

(
v(Zzn ,α0,n

hn
, Θ(hn, α0,n))1hn<s0,n

1 +n

)
+
[
e−β(s0,n

1 +m
((

yn +
∫ s0,n

1

(`−θ)+
g(Xxn ,α0,n

s )ds
)

Ppn

s0,n
1 +n

− f (s0,n
1 + θ− `)

)
+

κ(hn ,α0,n)−1

∑
i=2

e−β(s0,n
i +m)(Gi−Ci)

+ e−βhn v(Zzn ,α0,n

hn
, Θ(hn, α0,n))

]
1s0,n

1 +n≤hn

]
+

1
n

,

and for all (z, Θ) ∈ E1, we have:
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v(zn, Θn) ≤ E
[
e−βhn v(Zzn ,α1,n

hn
, Θ(hn, α1,n))1hn<m−θn

+
[
e−β(m−θn)

(
ynPpn

m−θn
− f (ρn − θn − `)

)
+

κ(hn ,α1,n)−1

∑
i=2

e−β(s1,n
i +n)(Gi − Ci)

+ e−βhn v(Zzn ,α1,n

hn
, Θ(hn, α1,n))

]
1`−θn≤hn

]
+

1
n

,

and for all (z, Θ) ∈ E2, we have:

v(zn, Θn) ≤ E
[
e−βhn v(Zzn ,α2,n

hn
, Θ(hn, α2,n))1hn<dn

2

+
[ κ(hn ,α2,n)−1

∑
i=2

e−β(s1,n
i +m)(Gi − Ci) + e−βhn v(Zzn ,α2,n

hn
, Θ(hn, α2,n))

]
1dn

2≤hn

]
+

1
n

.

We now choose hn := τ0
n ∧ s0,n

1 where τ0
n := inf{s ≥ 0 , (Zzn ,α0,n

s , Θ(s, α0,n)) /∈ B((zn, Θn), ∆/2)}.
Therefore, we get:

v(zn, Θn) ≤ E
[
e−βhn

(
v(Zzn ,α0,n

hn
, Θ(hn, α0,n))1

τ0
n<s0,n

1

+h∗1(Zzn ,α0,n

hn
, Θ(hn, α0,n))1

τ0
n≥s0,n

1

)]
+

1
n

(A6)

Now, since h∗1(Zzn ,α0,n

hn
, Θ(hn, α0,n))1

τ0
n≥s0,n

1
< ϕ(Zzn ,α0,n

hn
, Θ(hn, α0,n))1

τ0
n≥s0,n

1
and v ≤ v∗ ≤ ϕ on

E0, we get:

ϕ(zn, Θn) + γn ≤ E
[
e−βhn ϕ(Zzn ,α0,n

hn
, Θ(hn, α0,n))

]
+

1
n

.

Applying Itô’s formula to e−βhn ϕ(Zzn ,α0,n

hn
, Θ(hn, α0,n)) between 0 and hn, we then get:

γn ≤ − r
2
E[hn] +

1
n

.

This implies:

lim
n→∞

E[hn] = 0 . (A7)

On the other hand, we have by (A6):

v(zn, Θn) ≤ sup
(z′ ,Θ′)∈B((zn ,Θn),∆/2)

v0(z′, Θ′)P[τ0
n < s0,n

1 ]

+ sup
(z′ ,Θ′)∈B((zn ,Θn),∆/2)

h∗1(z
′, Θ′)P[τ0

n ≥ s0,n
1 ] +

1
n

.

From (A7), we then get sending n to infinity and ∆ to zero:

v∗(z̄, Θ̄) ≤ M1v∗(z̄, Θ̄) .
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Concerning the proof for D1 and D2, we consider two cases: the case θ̄ < m and the case θ̄ ≥ m.
We start with the case θ̄ ≥ m. In this case we consider hn = d1,n

2 ∧ τ1
n where τ1

n := inf{s ≥
0 , (Zzn ,α1,n

s , d(s, α1,n)) /∈ B((zn, Θn), ∆/2)}. Therefore, we have:

v2(zn, Θn) ≤ E
[
e−βhn

(
h∗2(Zzn ,α1,n

hn
, Θ(hn, α1,n))1d1,n

2 ≤τ1
n

+v2(Zzn ,α1,n

hn
, Θ(hn, α1,n))1d1,n

2 >τ1
n

)]
+

1
n

(A8)

Now, since h∗2(Zzn ,α1,n

hn
, Θ(hn, α1,n))1d1,n

2 ≤τ1
n
< ϕ(Zzn ,α1,n

hn
, Θ(hn, α1,n))1d1,n

2 ≤τ1
n

and v2 ≤ v∗2 ≤ ϕ on

E1, we get:

ϕ(zn, Θn) + γn ≤ E
[
e−βhn ϕ(Zzn ,α1,n

hn
, Θ(hn, α1,n))

]
+

1
n

.

Applying Itô’s formula to e−βhn ϕ(Zzn ,α1,n

hn
, Θ(hn, α1,n)) between 0 and hn, we then get:

γn ≤ − r
2
E[hn] +

1
n

.

This implies:

lim
n→∞

E[hn] = 0 . (A9)

On the other hand, we have by (A8):

v2(zn, Θn) ≤ sup
(z′ ,Θ′)∈B((zn ,Θn),∆/2)

v2(z′, Θ′)P[τ1
n < d1,n

2 ]

+ sup
(z′ ,Θ′)∈B((zn ,Θn),∆/2)

h∗2(z
′, Θ′)P[τ1

n ≥ d1,n
2 ] +

1
n

.

From (A9), we then get sending n to infinity and ∆ to zero:

v∗2(z̄, d̄) ≤ h∗2(z̄, d̄) ,

which is a contradiction.

The case θ̄ < m where i = 1, is analogous to the previous case and we also obtain a contradiction.

Appendix C. Uniqueness

The uniqueness of v as a viscosity solution to (11), (12), (14), (16) and (17) satisfying (9) follows
from the following comparison result.

Proposition A3. Let w : Z ×D → R a viscosity subsolution to (11), (12), (14), (16), and (17) such that:

w(x, p, K, K, y) ≥ g(x, p, 0, K, y) (A10)

lim
θ→m−

w(x, p, θ, ρ, y) ≥ yp− f (ρ−m− `) + g(x, p, m, ρ, 0)
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and w̄ : Z ×D → R a viscosity supersolution to (11), (12), (14), (16), and (17) such that:

w̄(x, p, K, K, y) ≤ g(x, p, 0, K, y) (A11)

lim
θ→m−

w̄(x, p, θ, ρ, y) ≤ yp− f (ρ−m− `) + g(x, p, m, ρ, 0) .

Suppose there exist two positive constants C1 and C2 such that:

w(z, Θ) ≤ C2(1 + |x|2 + |p|2) (A12)

w̄(z, Θ) ≥ yp− C1 ,

for all (z, Θ) ∈ Z ×D with z = (x, p) and Θ = (θ, ρ, y). Then w ≤ w̄ on Z ×D. In particular, there
exists at most a unique viscosity solution w to (11), (12), (14), (16), (17), (A10), and (A11) satisfying
(A12) and w is continuous on Z ×D.

The proof follows from the classical argument of doubling variable for proving the comparison
between a sub and a super solution. We therefore omit it and refer to [8] Theorem 5.2 for a
detailed proof that can be easily adapted to our PDE.
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