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Abstract: In the present paper, we study the global behaviour of geodesics of a Randers metric, defined
on Finsler surfaces of revolution, obtained as the solution of the Zermelo’s navigation problem. Our wind
is not necessarily a Killing field. We apply our findings to the case of the topological cylinder R× S1 and
describe in detail the geodesics behaviour, the conjugate and cut loci.
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1. Introduction

A Finsler surface (M, F) is a geometrical structure defined on a smooth 3-manifold Σ ⊂ TM whose
the canonical projection π : Σ → M is a surjective submersion such that for each x ∈ M, the π-fiber
Σx = π−1(x) is a strictly convex curve including the origin Ox ∈ Tx M. Here, we denote by TM the tangent
bundle of M. This is actually equivalent to saying that (M, F) is a surface M endowed with a Minkowski
norm in each tangent space Tx M that varies smoothly with the base point x ∈ M all over the manifold.
Obviously, Σ is the unit sphere bundle {(x, y) ∈ TM : F(x, y) = 1}, also called the indicatrix bundle.
Even though the these notions are defined for arbitrary dimension, we restrict to surfaces hereafter [1].

On the other hand, such a Finsler structure (M, F) defines a 2-parameter family of oriented curves,
or paths, on the surface M, one going in each oriented direction passing through every point. This is a
special case of so-called Path Geometry. We recall that, roughly speaking, a path geometry on a surface M
is a family of curves on M such that through each point x ∈ M there exists a unique curve in the family
going in each tangent direction at x (the simplest case is a family of lines in the Euclidean plane).

To be more precise, a path geometry on a surface M is given by a foliation P defined on the projective
tangent bundle PTM by contact curves that are transverse to the fibers of the canonical projection π :
PTM→ M. Observe that even though PTM is independent of any norm F, actually there is a Riemannian
isometry between PTM and Σ, a fact that allows us to identify them in the Finslerian case [2].

The 3-manifold PTM is naturally endowed with a contact structure. Indeed, for a curve to be a
smooth, immersed curve γ : (a, b) → M, we denote γ̂ : (a, b) → PTM its canonical lift to the projective
tangent bundle PTM. Since the canonical projection is a submersion, it results that, for each line L ∈ PTM,
the linear map π∗,L : TLPTM→ Tx M, is surjective, here π(L) = x ∈ M. Hence, EL := π−1

∗,L(L) ⊂ TLPTM
is a 2-plane in TLPTM that defines a contact distribution and thus a contact structure on PTM. The curve
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on PTM is called a contact curve if it is tangent to the contact distribution E. Clearly, the canonical lift γ̂ to
PTM of the curve γ on M is by definition a contact curve.

If (M, F) is a Finsler surface, then the 3-manifold Σ is endowed with a canonical coframe (ω1, ω2, ω3)

satisfying the structure equations

dω1 = −Iω1 ∧ω3 + ω2 ∧ω3

dω2 = ω3 ∧ω1

dω3 = Kω1 ∧ω2 − Jω1 ∧ω3,

(1)

where the functions I, J and K : TM → R are the Cartan scalar, the Landsberg curvature and the
Gauss curvature, respectively (see [1] or [3] for details). The 2-plane field D := 〈ê2, ê3〉 defines a contact
structure on Σ, where we denote (ê1, ê2, ê3) the dual frame of (ω1, ω2, ω3). Indeed, it can be seen that
the 1-form η := Aω1 is a contact form for any function A 6= 0 on Σ. The structure Equation (1) imply
η ∧ dη = A2ω1 ∧ω2 ∧ω3 6= 0. Observe that in the Finslerian case, we actually have two foliations on the
3-manifold Σ:

1. P = {ω1 = 0, ω3 = 0} the geodesic foliation on Σ, that is the leaves are curves in Σ tangent to the
geodesic spray ê2;

2. Q = {ω1 = 0, ω2 = 0} the indicatrix foliation of Σ, that is the leaves are indicatrix curves in Σ
tangent ê3.

The pair (P ,Q) is called sometimes a generalized path geometry (see [3]).
The (forward) integral length of a regular piecewise C∞-curve γ : [a, b]→ M on a Finsler surface (M, F)

is given by

Lγ :=
k

∑
i=1

∫ ti

ti−1

F(γ(t), γ̇(t))dt,

where γ̇ = dγ
dt is the tangent vector along the curve γ|[ti−1,ti ]

.
A regular piecewise C∞-curve γ on a Finsler manifold is called a (forward) geodesic if (Lγ)′(0) = 0

for all piecewise C∞-variations of γ keeping its ends fixed (this can be characterized by using the Chern
connection or other Finsler connection [1]). Observe that the canonical lift of a geodesic γ to PTM gives
the geodesics foliation P described above.

The integral length of a curve allows to define the Finslerian distance between points on M. For two
points p, q ∈ M, let Ωp,q be the set of all regular piecewise C∞-curves γ : [a, b] → M, γ(a) = p and
γ(b) = q. Then the function

d : M×M→ [0, ∞), d(p, q) := inf
γ∈Ωp,q

Lγ

is called the Finslerian distance on M. Observe that d is not symmetric in general.
A Finsler manifold (M, F) is called forward geodesically complete if any geodesic γ : [a, b)→ M can be

extended to a geodesic γ : [a, ∞)→ M. The equivalence between forward completeness as metric space
and geodesically completeness is given by the Hopf–Rinow Theorem Finsler case (see, e.g., [1], p. 168).
Same is true for backward geodesics.

Any geodesic γ starting from a point p in a compact Finsler manifold loses its global minimality at a
point q on γ. This point q is called a cut point of p along γ. One can define the cut locus of a point p as the
set of all cut points along all geodesics starting from the point p. This kind of point often appears as an
obstruction in global theorems in differential geometry, it also appears in analysis as a singular points set.
Observe that the cut locus of a point p is actually the closure of the set of non-differentiable points of the
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distance function from the point p. The structure of the cut locus is important in optimal control problems
and quantum dynamics.

The cut locus was discovered by H. Poincaré in 1905. For a 2-dimensional analytical sphere,
S. B. Myers has shown that the cut locus of a point is a finite tree for Riemannian and Finsler metrics [4].
For an analytic Riemannian manifold, M. Buchner has proved that the cut locus of a point p is triangulable,
and has obtained its local structure [5,6]. It is known that the cut locus may have a quite complex
structure. Indeed, H. Gluck and D. Singer have constructed a C∞ Riemannian manifold having a point
with non-triangulable cut locus (see [7] or [8] for an exposition). It was also shown that there exist
Ck-Riemannian and Finsler structures on spheres with a special point whose cut locus is a fractal [9].

In the present paper, we will study the local and global behaviour of the geodesics of a Finsler metric
of revolution on topological cylinders. In special, we will determine the structure of the cut locus on the
cylinder for such metrics and compare it with the Riemannian case.

We will focus on Finsler metrics of Randers type obtained as solutions of the Zermelo’s navigation
problem, for the navigation data (M, h), where h is the canonical Riemannian metric on the topological
cylinder h = dr2 + m2(r)dθ2, and W = A(r) ∂

∂r + B ∂
∂θ is a vector field on M. Observe that our wind is more

general than a Killing vector field, hence our theory presented here is a generalization of the classical
study of geodesics and cut locus for Randers metrics obtained as solutions of the Zermelo’s navigation
problem with Killing vector fields studied in [10,11] (see also [12] for another attempt to generalize the
Zermelo’s navigation problem). Nevertheless, by taking the wind W in this way, we obtain a quite general
Randers metric on M which is a Finsler metric of revolution and whose geodesics and cut locus can be
computed explicitly.

Our paper is organized as follows. In Section 2, we recall basics of Finsler geometry using the Randers
metrics that we will actually use in order to obtain explicit information on the geodesics behaviour and
cut locus structure. We introduce an extension of the Zermelo’s navigation problem for Killing winds
to a more general case W̃ = V + W, where only W is Killing. In Section 3, we show that the geodesics,
conjugate locus and cut locus can be determined in this case as well. In Sections 3.1 and 3.2, we address
the cases when β is closed one-form and W is F-Killing field, respectively.

In Section 4, we describe the theory of general Finsler surfaces of revolution. In the case this,
Finsler metric is a Riemannian one, we obtain the theory of geodesics and cut locus known already [13,14].

In Section 4.3, we consider the general wind W = A(r) ∂
∂r + B ∂

∂θ which obviously is not Killing with
respect to h, where A = A(r) is a bounded function and B is a constant and determine its geometry here.
Essentially, we are reducing the geodesics theory of the Finsler metric F̃, obtained from the Zermelo’s
navigation problem for (M, h) and W̃, to the theory of a Riemannian metric (M, α).

Moreover, in the particular case W̃ = A ∂
∂r + B ∂

∂θ in Section 4.4, where A, B are constants, the geodesic
theory of F̃ can be directly obtained from the geometry of the Riemannian metric (M, h). A similar
study can be done for the case W = A(r) ∂

∂r . We leave a detailed study of these Randers metrics to a
forthcoming research.

2. Finsler Metrics. The Randers Case

Finsler structures are one of the most natural generalization of Riemannian metrics. Let us recall here
that a Finsler structure on a real smooth n-dimensional manifold M is a function F : TM→ [0, ∞) which is
smooth on T̃M = TM \O, where O is the zero section, with the homogeneity property F(x, λy) = λF(x, y),
for all λ > 0 and all y ∈ Tx M. It is also requested that the Hessian matrix is strongly convex, i.e., the matrix

gij :=
1
2

∂2F2

∂yi∂yj (x, y) (2)

is positive definite at any point (x, y) ∈ TM.
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2.1. An Ubiquitous Family of Finsler Structures: The Randers Metrics

Originally introduced in general relativity, Randers metrics are the most natural family of Finsler
structures [1].

A Randers metric on a surface M is obtained by a rigid translation of an ellipse in each tangent plane
Tx M such that the origin of Tx M remains inside it.

Formally, on a Riemannian manifold (M, α), a Randers metric is a Finsler structure (M, F) whose
fundamental function F : TM→ [0, ∞) can be written as

F(x, y) = α(x, y) + β(x, y),

where α(x, y) =
√

aij(x)yiyj and β(x, y) = bi(x)yi, such that the Riemannian norm of β is less than 1, i.e.,

b2 := aijbibj < 1.
It is known that Randers metrics are solutions of the Zermelo’s navigation problem [15] which we

recall here.
Consider a ship sailing on the open sea in calm waters. If a mild breeze comes up, how should the ship be steered

in order to reach a given destination in the shortest time possible?
The solution was given by Zermelo in the case the open sea is an Euclidean space, by [16] in the

Riemannian case and studied in detailed in [17].
Indeed, for a time-independent wind W ∈ TM, on a Riemannian manifold (M, h), the minimizing

travel-time paths coincide with the geodesics of the Randers metric

F(x, y) = α(x, y) + β(x, y) =

√
λ‖y‖2

h + W0

λ
− W0

λ
,

where W = Wi(x) ∂
∂xi , ‖y‖2

h = h(y, y), λ = 1− ‖W‖2
h, and W0 = h(W, y). Requiring ‖W‖h < 1, we obtain

a positive definite Finslerian norm. In components, aij =
1
λ

hij +
Wi
λ

Wj

λ
, bi(x) = −Wi

λ
, where Wi = hijW j

(see [18] for a general discussion).
The Randers metric obtained above is called the solution of the Zermelo’s navigation problem for the

navigation data (M, h) and W.

Remark 1. Obviously, at any x ∈ M, the condition F(y) = 1 is equivalent to ‖y−W‖h = 1 fact that assures
that, indeed, the indicatrix of (M, F) in Tx M is obtained from the unit sphere of h by translating it along W(x)
(see Figure 1).
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Σh

ΣF

Figure 1. Randers metrics: a rigid displacement of an ellipse.

More generally, the Zermelo’s navigation problem can be considered where the open sea is a given
Finsler manifold (see [16]).

We have

Proposition 1. Let (M, F) be a Finsler manifold and W a vector field on M such that F(−W) < 1. Then the
solution of the Zermelo’s navigation problem with navigation data F, W is the Finsler metric F̃ obtained by solving
the equation

F(y− F̃W) = F̃, for any y ∈ TM. (3)

Indeed, if we consider the Zermelo’s navigation problem where the open sea is the Finsler manifold
(M, F) and the wind W, by rigid translation of the indicatrix ΣF, we obtain the closed, smooth, strongly
convex indicatrix ΣF̃, where F̃ is solution of the equation F

(
y
F̃
−W

)
= 1 which is clearly equivalent to (3)

due to positively of F̃ and homogeneity of F.
To get a genuine Finsler metric F̃, We need for the origin Ox ∈ Tx M to belong to the interior of

ΣF̃ = ΣF + W, that is F(−W) < 1.

Remark 2. Consider the Zermelo’s navigation problem for (M, F) and wind W, where F is a (positive-defined)
Finsler metric. If we solve the equation

F
(

y
F̃
−W

)
= 1⇔ F(y− F̃W) = F̃

we obtain the solution of this Zermelo’s navigation problem.
In order that F̃ is Finsler, we need to check:

(i) F̃ is strongly convex, and
(ii) the indicatrix of F̃ includes the origin Ox ∈ Tx M.

Since indicatrix of F̃ is the rigid translation by W of the indicatrix of F, and this is strongly convex, it follows
indicatrix of F̃ is also strongly convex.

Hence, we only need to check (ii).
Denote

BF(1) := {y ∈ Tx M : F(y) < 1}, B̃F̃(1) := {y ∈ Tx M : F̃(y) < 1}
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the unit balls of F and F̃, respectively.
The Zermelo’s navigation problem shows

BF̃(1) = BF(1) + W.

Thus,
Ox ∈ BF̃(1)⇔ Ox ∈ BF(1) + W ⇔ −W ∈ BF(1)⇔ F(−W) < 1.

Hence, indicatrix of F̃ include Ox, i.e., F(−W) < 1.

Proposition 2. Let (M, F = α + β) be a Randers space and W = Wi(x) ∂
∂xi a vector field on M. Then, the solution

of the Zermelo’s navigation problem, with navigation data (M, F) and W, is also a Randers metric F̃ = α̃ + β̃, where

ãij =
1
η

(
aij − bibj

)
+

(
Wi − bi[1 + β(W)]

η

)(Wj − bj[1 + β(W)]

η

)
,

b̃i = −
Wi − bi[1 + β(W)]

η
,

(4)

and η = [1 + β(W)]2 − α2(W), Wi = aijW j.

Proof of Proposition 2. Let us consider the equation

F
(

y
F̃
−W

)
= 1

which is equivalent to
F(y− F̃W) = F̃

due to positively of F̃ and 1-positive homogeneity of F.
If we use F = α + β, it follows

α(y− F̃W) = F̃− β(y− F̃W),

hence, by using the linearity of β, i.e., β(y − F̃W) = β(y)− F̃β(W), where β(y) = biyi, β(W) = biWi,
and squaring this formula, we get the equation

α2(y− F̃W) = [F̃(1 + β(W))− β(y)]2. (5)

Observe that
α2(y− F̃W) = α2(y)− 2F̃〈y, W〉α + F̃2α2(W), (6)

and
[F̃− β(y− F̃W)]2 = [1 + β(W)]2 F̃2 − 2F̃β(y)[1 + β(W)] + β2(y), (7)

substituting (6), (7) in (5) gives the quadratic equation

ηF̃2 + 2F̃〈y, W − B[1 + β(W)]〉α − [α2(y)− β2(y)] = 0, (8)



Mathematics 2020, 8, 2047 7 of 27

where 〈·, ·〉α is the scalar product with respect to the Riemannian metric α, B := bi ∂
∂xi = (aijbj)

∂
∂xi and

η := [1 + β(W)]2 − α2(W), i.e.,

〈y, W − B[1 + β(W)]〉α = aijyi(W j − bj[1 + β(W)]) = 〈y, W〉α − β(y)[1 + β(W)].

The discriminant of (8) is

D′ = {〈y, W〉α − β(y)[1 + β(W)]}2 + η[α2(y)− β2(y)].

Let us observe that F(−W) < 1 implies η > 0. Indeed,

F(−W) = α(W)− β(W) < 1⇔ α2(W) < [1 + β(W)]2

hence, η > 0.
Moreover, observe that

D′ = {η(aij − bibj) + (Wi − bi[1 + β(W)])(Wj − bj[1 + β(W)])}yiyj.

The solution of the quadratic Equation (8) is given by

F̃ =

√
〈y, W − B[1 + β(W)]〉2α + η[α2(y)− β2(y)]

η
− < y, W − B[1 + β(W)] >α

η
,

or, equivalently

F̃ =

√
{η(aij − bibj) + (Wi − bi[1 + β(W)])(Wj − bj[1 + β(W)])}yiyj

η
− {Wi − bi[1 + β(W)]}yi

η
,

that is, F̃ = α̃ + β̃, where ãij and b̃i are given by (4).
Observe that ãij is positive defined. Indeed, for any v ∈ TM, α̃2(v, v) = ãijvivj = η[α2(v)− β2(v)] +

〈v, W − B[1 + β(W)]〉2α.
On the other hand, since F = α + β is Randers metric, F(X) > 0 for any tangent vector X ∈ TM, thus

for X = v and X = −v we get α(v) + β(v) > 0 and α(v)− β(v) > 0, respectively; hence, α2(v)− β2(v) > 0
for any v ∈ TM.

This implies ãij is positive defined.

2.2. A Two Steps Zermelo’s Navigation

We have discussed in the previous section the Zermelo’s navigation when the open sea is a Riemannian
manifold and when it is a Finsler manifold, respectively.

In order to obtain a more general version of the navigation, we combine these two approaches as in
the following diagram (see Figure 2).
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(M, h) (M, F = α + β) (M, F̃ = α̃ + β̃)

V, ‖V‖h < 1

Step 1

W, F(−W) < 1

Step 2

W̃ = V + W, ‖W̃‖h < 1

Figure 2. The two steps Zermelo’s navigation.

Mathematically, we have

Theorem 1. Let (M, h) be a Riemannian manifold and V, W two vector fields on M.
Let us consider the Zermelo’s navigation problems on M with the following data

(I) Riemannian metric (M, h) with wind V + W and assume condition ‖V + W‖h < 1;
(II) Finsler metric (M, F) with wind W and assume W satisfies condition F(−W) < 1, where F = α + β is

the solution of the Zermelo’ s navigation problem for the navigation data (M, h) with wind V, such that
‖V‖h < 1,

respectively.
Then, the above Zermelo’s navigation problems (I) and (II) have the same solution F̃ = α̃ + β̃.

Proof of Theorem 1. Let us consider case (I), i.e., the sea is the Riemannian metric (M, h) with the wind
W̃ := V + W such that ‖V + W‖h < 1. The associated Randers metric through the Zermelo’s navigation
problem is given by α̃ + β̃, where

ãij :=
1
Λ

hij +

(
W̃i
Λ

)(
W̃j

Λ

)
, b̃i := −W̃i

Λ
, (9)

and Λ = 1− ‖W̃‖2
h = 1− ‖V + W‖2

h, W̃i = hijW̃ j.
Observe that (9) are actually equivalent to

ãij :=
1
Λ

hij +

(
V(h)

i + W(h)
i

Λ

)V(h)
j + W(j)

j

Λ

 ,

b̃i := −
W(h)

i
Λ
−

V(h)
i
Λ

,

(10)

where V(h)
i = hijV j and W(h)

i = hijW j.
Next, we will consider the case (II) which we regard as a two steps Zermelo type navigation:
Step 1. Consider the Zermelo’s navigation with data (M, h) and wind V, ‖V‖2

h < 1 with the solution
F = α + β, where

aij =
1
λ

hij +

(
V(h)

i
λ

)V(h)
j

λ

 , bi = −
V(h)

i
λ

,
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and λ = 1− ‖V‖2
h, V(h)

i = hijV j.
Step 2. Consider the Zermelo’s navigation with data (M, F = α + β) obtained at step 1, and wind W

such that F(−W) < 1, with solution F̃ = α̂ + β̂ (see Proposition 2), where

âij =
1
η
(aij − bibj) +

(
W(α)

i − bi[1 + β(W)]

η

)W(α)
j − bj[1 + β(W)]

η

 ,

b̂i = −
W(α)

i
η

(11)

with
η = [1 + β(W)]2 − α2(W), and W(α)

i = aijW j.

We will show that ãij = âij and b̃i = b̂i, respectively, for all indices i, j ∈ {1, . . . , n}. It is trivial to see
that Λ = λ− ‖W‖2

h − 2〈V, W〉h, where 〈·, ·〉h is the scalar product with respect to the Riemannian metric h.
Next, by straightforward computation we get

α2(W) = aijWiW j =
1
λ
‖W‖2

h +

(
h(V, W)

λ

)2

, β(W) = −h(V, W)

λ
.

It follows that

η =

[
1− h(V, W)

λ

]2

− 1
λ
‖W‖2

h −
h2(V, W)

λ2 = 1− 2
h(V, W)

λ
− 1

λ
‖W‖2

h,

hence, we get

η =
Λ
λ

. (12)

In a similar manner,

W(α)
i − bi[1 + β(W)]

η
=

1
η

hijW j

λ
+

V(h)
i
λ

V(h)
j W j

λ
+

V(h)
i
λ

(
1− h(V, W)

λ

) ,

hence, we obtain
W(α)

i − bi(1 + β(W))

η
=

W(h)
i + V(h)

i
Λ

,

that is b̃i = b̂i.
It can be also seen that

1
η
(aij − bibj) =

1
Λ

hij,

hence, ãij = âij and the identity of formulas (9) and (11) is proved. In order to finish the proof we show
that the conditions

(i) ‖V + W‖2
h < 1 and (ii) ‖V‖2

h < 1 and F(−W) < 1 are actually equivalent.
Geometrically speaking, the 2-steps Zermelo’s navigation is the rigid translation of Σh by V followed

by the rigid translation of ΣF by W. This is obviously equivalent to the rigid translation of Σh by
W̃ = V + W.
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The geometrical meaning of (i) is that the origin Ox ∈ Tx M is in the interior of the translated indicatrix
ΣF̃ (see Figure 3). On the other hand, the relation in (ii) shows that the origin Ox is in the interior of the
translated indicatrix Σh by V and ΣF1 by W.

y1

y2

0 V

W̃
W

Σh

Tx M

ΣF

ΣF̃

Figure 3. The h-indicatrix, F1-indicatrix and F-indicatrix.

This equivalence can also be checked analytically.
For initial data (M, h) and V, we obtain by Zermelo’s navigation the Randers metric F = α + β, where

aij =
1
λ

hij +

(
Vi
λ

)(Vj

λ

)
, bi = −

Vi
λ

,

with Vi = hijV j and λ = 1− ‖V‖2
h < 1.

Consider another vector field W and compute

F(−W) =

√
1
λ
‖W‖2

h +

(
ViWi

λ

)2

+
ViWi

λ

=
1
λ

[√
λ‖W‖2

h + h2(V, W) + h(V, W)

]
.

Let us assume F(−W) < 1, hence√
λ‖W‖2

h + h2(V, W) + h(V, W) < λ,

i.e.,

λ‖W‖2
h + h2(V, W) < [λ− h(V, W)]2

⇔ ‖W‖2
h < λ− 2h(V, W)⇔ ‖W + V‖2

h < 1.
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Conversely, if ‖V + W‖2
h < 1, by reversing the computation above, we obtain F(−W) < 1, provided

λ− h(V, W) > 0.
Indeed, observe that ‖V +W‖2

h < 1 actually implies λ− h(V, W) > 0, because 1−‖V‖2
h− h(V, W) =

1− h(V, V + W) > 0⇔ h(V, V + W) < 1.
However, using ‖V‖h < 1 and ‖V + W‖h < 1, the Cauchy–Schwartz inequality gives h(V, V + W) ≤

‖V‖h‖V + W‖h < 1.

Remark 3. The 2-steps Zermelo’s navigation problem discussed above, can be generalized to k-steps
Zermelo’s navigation.

Let (M, F) be a Finsler space and let W0, W1, . . . , Wk−1 be k linearly independent vector fields on M.
We consider the following k-step Zermelo’s navigation problem.

Step 0. F1 solution of (M, F0, W0) with F0(−W0) < 1, i.e.,
solution of F0

(
y
F1
−W0

)
= 1.

Step 1. F2 solution of (M, F1, W1) with F1(−W1) < 1, i.e.,
solution of F1

(
y
F2
−W1

)
= 1.

...
Step k− 1. Fk solution of (M, Fk−1, Wk−1) with Fk−1(−Wk−1) < 1, i.e.,

solution of Fk−1

(
y
Fk
−Wk−1

)
= 1.

Then, Fk is the Finsler metric obtained as solution of the Zermelo’s navigation problem with data F0, W̃ :=
W0 + · · ·+ Wk−1 with condition F0(−W̃) < 1.

3. Geodesics, the Conjugate and Cut Loci

We will study the relation between the geodesics behaviour of the Riemannian metrics h, α, F and F̃
in Figure 2.

3.1. The Case β Closed

We start with the case when β obtained in Step 1 is closed.

Proposition 3. Let (M, h) be a Riemannian manifold, V a vector field such that ‖V‖h < 1, and let F = α + β be
the solution of the Zermelo’s navigation with data (M, h) and V.

Then, dβ = 0 if and only if V satisfies the differential equation

dη = d log λ ∧ η, (13)

where η = Vi(x)dxi, Vi = hijV j, and λ = 1− ‖V‖2
h.

Proof of Proposition 3. Observe that bi = −Vi
λ is equivalent to λβ = −η, hence dλ ∧ β + λdβ = −dη and

using dβ = 0 we obtain
dλ ∧ β = −dη.

By using β = − 1
λ η, we get (13). The converse is easy to show taking into account that λ 6= 0.

Remark 4. The Equation (13) can be written in coordinates(
∂Vi

∂xj −
∂Vj

∂xi

)
dxi ∧ dxj =

(
∂ log λ

∂xi dxi
)
∧ (Vjdxj),
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that is,
∂Vi

∂xj −
∂Vj

∂xi =
∂ log λ

∂xi Vj −
∂ log λ

∂xj Vi.

In the 2-dimensional case, we get the 1st order PDE

∂V1

∂x2 −
∂V2

∂x1 = − 1
λ

[
∂hij

∂x1 V2 −
∂hij

∂x2 V1

]
ViVj −

2
λ

Vi
[

∂Vi

∂x1 V2 −
∂Vi
∂x2 V1

]
, i, j = 1, 2. (14)

It can easily be seen that in the case of a surface of revolution h = dr2 + m2(r)dθ2 the wind V = A(r) ∂
∂r is a

solution of (13) and of (14).

Theorem 2. Let (M, h) be a simply connected Riemannian manifold and V = Vi ∂
∂xi a vector field on M such that

‖V‖h < 1, and let F = α + β be the Randers metric obtained as the solution of the Zermelo’s navigation problem
with this data.

If V satisfies the differential relation
dη = d(log λ) ∧ η, (15)

where η = Vi(x)dxi, Vi = hijV j, then the followings hold good.

(i) There exists a smooth function f : M→ R such that β = d f .
(ii) The Randers metric F is projectively equivalent to α, i.e., the geodesics of (M, F) coincide with the geodesics of

the Riemannian metric α as non-parameterized curve.
(iii) The Finslerian length of any C∞ piecewise curve γ : [a, b]→ M on M joining the points p and q is given by

LF(γ) = Lα(γ) + f (q)− f (p), (16)

where Lα(γ) is the Riemannian length with respect to α of γ.
(iv) The geodesic γ is minimizing with respect to α if and only if it is minimizing with respect to F.
(v) For any two points p and q, we have

dF(p, q) = dα(p, q) + f (q)− f (p), (17)

where dα(p, q) is the Riemannian distance between p and q with respect to α of γ.
(vi) For an F-unit speed geodesic γ, if we put p := γ(0) and q := γ(t0), then q is conjugate to p along γ with

respect to F if and only if q is conjugate to p along γ with respect to α.
(vii) The cut locus of p with respect to F coincide with the cut locus of p with respect to α.

Proof of Theorem 2.

(i) Using Proposition 3, it is clear that the differential Equation (15) is equivalent to β closed 1-form, i.e.,
dβ = 0.

On the other hand, since M is simply connected manifold, any closed 1-form is exact, hence in this
case (15) is equivalent to β = d f .

(ii) Follows immediately from the classical result in Finsler geometry that a Randers metric α + β is
projectively equivalent to its Riemannian part α if and only if dβ = 0 (see for instance [1], p. 298).

(iii) The length of the curve γ[a, b]→ M, given by xi = xi(t) is given by

LF(γ) =
∫ b

a
F(γ(t), γ̇(t))dt =

∫ b

a
α(γ(t), γ̇(t))dt +

∫ b

a
β(γ, γ̇(t))dt

= Lα(γ) + f (q)− f (p)
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where we use∫ b

a
β(γ(t), γ̇(t))dt =

∫ b

a
d f (γ(t), γ̇(t))dt = f (γ(b))− f (γ(a)) = f (q)− f (p)

(see [19] for more details).
(iv) It follows from (iii).
(v) It follows immediately from (ii) and (iii) (see [19] for a detailed discussion on this type of distance).
(vi) From (ii), we know that α and F = α + β are projectively equivalent, i.e., their non-parameterized

geodesics coincide as set points. More precisely, if γ : [0, l] → M, γ(t) = (xi(t)) is an α-unit speed
geodesic, and γ : [0, l̃]→ M, γ(s) = (xi(s)) is an F-unit speed geodesic, then there exists a parameter
changing t = t(s), dt

ds > 0 such that γ(t) = γ(t(s)) with the inverse function s = s(t) such that
γ(s) = γ(s(t)).

Observe that if q = γ(a) then q = γ(ã), where t(ã) = a.

Let us consider a Jacobi field Y(t) along γ such thatY(0) = 0

〈Y(t), dγ
dt 〉α = 0,

and construct the geodesic variation γ : [0, a]× (−ε, ε)→ M, (t, u) 7→ γ(t, u) such that
γ(t, 0) = γ(t)

∂γ
∂u

∣∣∣
u=0

= Y(t).

Since the variation vector field ∂γ
∂u

∣∣∣
u=0

is a Jacobi field, it follows that all geodesics γu(t) in the

variation are α-geodesics for any u ∈ (−ε, ε).

Similarly with the case of base manifold, every curve in the variation can be reparametrized as an
F-geodesic. In other words, for each u ∈ (−ε, ε) it exists a parameter changing t = t(s, u), ∂t

∂s > 0
such that

γ(t, u) = γ(t(s, u), u).

We will compute the variation vector field of the variation γ(s, u) as follows

∂γ

∂u
(s, u) =

∂γ

∂t

∣∣∣
(t(s,u),u)

∂t
∂u

(s, u) +
∂γ

∂u

∣∣∣
(t(s,u),u)

.

If we evaluate this relation for u = 0 we get

∂γ

∂u
(s, 0) =

∂γ

∂t

∣∣∣
(t(s,0),0)

∂t
∂u

(s, 0) +
∂γ

∂u

∣∣∣
(t(s,0),0)

,

that is
Y(s) =

∂γ

∂t

∣∣∣
t(s,0),0

∂t
∂u

∣∣∣
(s,0)

+ Y
∣∣∣
(t(s,0),0)

∈ Tγ(s)M ≡ Tγ(t(s))M.
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For a point q = γ(a) = γ(ã), this formula reads

Y(ã) =
∂γ

∂t

∣∣∣
ã

∂t
∂u

∣∣∣
(ã,0)

+ Y(t(ã))

=
dγ

dt

∣∣∣
a

∂t
∂u

∣∣∣
(ã,0)

+ Y(a) ∈ Tγ(ã)M ≡ Tγ(a)M,
(18)

i.e., the Jacobi field Y(ã) is linear combination of the tangent vector ∂γ
∂t (a) and Y(a).

Let us assume q = γ(ã) is conjugate point to p along the F-geodesic γ, i.e., Y(ã) = 0. It results dγ
dt (a)

cannot be linear independent, hence Y(a) = 0, i.e., q = γ(a) is conjugate to p along the α-geodesic γ.

Conversely, if q = γ(a) is conjugate to p along the α-geodesic γ then (18) can be written as

Y(a) = Y(s(a))− dγ

ds
(s(a))

ds
dt

dt
du

and the conclusion follows from the same linearly independence argument as above.
(vii) Observe that Cutα(p) 6= ∅⇔ CutF(p) 6= ∅.

Indeed, if Cutα(p) = ∅ all α-geodesics from p are globally minimizing. Assume q ∈ CutF(p) and we
can consider q end point of CutF(p), i.e., q must be F-conjugate to p along the geodesic σ(s) from p
to q. This implies the corresponding point on σ(t) is conjugate to p, this is a contradiction.

Converse argument is identical.

Let us assume Cutα(p) and CutF(q) are not empty sets.

If q ∈ Cutα(p), then we have two cases:

(I) q is an end point of Cutα(p), i.e., it is conjugate to p along a minimizing geodesic γ from p to q.
Therefore q is the closest conjugate to p along the F-geodesic γ which is the reparameterization
of γ (see (vi)).

(II) q is an interior point of Cutα(p). Since the set of points in Cutα(p) founded at the intersection of
exactly minimizing two geodesics of same length is dense in the closed set Cutα(p), it is enough
to consider this kind of cut point. In the case q ∈ Cutα(p) such that there are two α-geodesics
γ1, γ2 of same length from p to q = γ1(a) = γ2(a), then from the statement (iv) it is clear that
the point q = γ1(ã) = γ2(ã) has the same property with respect to F.

Hence, Cutα(p) ⊂ CutF(p). This inverse conclusion follows from the same argument as above
by changing roles of α with F.

Remark 5. See [20] for a more general case.

3.2. The Case W Is F-Killing Field

Now we consider the case when the vector field W used in Step 2 is Killing. We recall the following
well-known result for later use.

Lemma 1 ([21,22]). Let F = α + β be the solution of Zermelo’s navigation problem with navigation data (h, V),
‖V‖h < 1.

Then the Legendre dual of F is the Hamiltonian function F∗ = α∗ + β∗ where α∗2 = hij(x)pi pj and
β∗ = Vi(x)pi. Here, (x, p) are the canonical coordinates of the cotangent bundle T∗M.

Moreover, gij(x, y)g∗ ik(x, p) = δk
j , where F2(x, y) = gij(x, y)yiyj and F∗2(x, p) = g∗ ij(x, p)pi pj.
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We also recall that a smooth vector field X on a Finsler manifold (M, F) is called Killing field if every
local one-parameter transformation group {ϕt} of M generated by X consists of local isometries, i.e.,

F(ϕt(x), (ϕt)∗,x (y)) = F(x, y), for all (x, y) ∈ TM and any t ∈ R,

where (ϕt)∗,x is the tangent map of ϕt at x.
This is equivalent with

dF(ϕt(q1), ϕt(q2)) = dF(q1, q2),

for any q1, q2 ∈ M and any given t, where dF is the Finslerian distance on M.
By straightforward computation we also have

Proposition 4. Let (M, F) be a Finsler manifold (any dimension) with local coordinates (xi, yi) ∈ TM and
X = Xi(x) ∂

∂xi a vector field on M. The following formulas are equivalent

(i) X is Killing field for (M, F);
(ii) LX̂ F = 0, where L is the symbol for the Lie derivative, and X̂ := Xi ∂

∂xi + yj ∂Xi

∂xj
∂

∂yi is the canonical lift of
X to TM;

(iii)
∂gij

∂xp Xp + gpj
∂Xp

∂xi + gip
∂Xp

∂xj + 2Cijp
∂Xp

∂xq yq = 0; (19)

(iv) Xi|j + Xj|i + 2Cp
ijXp|qyq = 0, where “ | ” is the h-covariant derivative with respect to the Chern connection.

The following result is similar in form to the Riemannian counterpart (the case when F is Riemannian),
but the proof in the Finsler case is new.

Lemma 2. With the notation in Lemma 1, the vector field W = Wi(x) ∂
∂xi on M is Killing field with respect to F if

and only if
{F∗, W∗} = 0,

where W∗ = Wi(x)pi and {·, ·} is the Poincaré bracket.

Proof of Lemma 2. Since W is Killing, we will use (19) in Proposition 4. Indeed, observe that the left hand
side is 0-homogeneous in the y-variable, hence this relation is actually equivalent to the contracted relation
by yiyj, i.e., (

∂gij

∂xp Wp + gpj
∂Wp

∂xi + gip
∂Wp

∂xj

)
yiyj = 0,

where we use Cijkyi = 0. We get the equivalent relation

∂gij

∂xp Wpyiyj + 2gpj
∂Wp

∂xi yiyj = 0. (20)

Observe that gijg∗
jk = δk

i is equivalent to
∂gij
∂xp g∗ ik = −gij

∂g∗ ik

∂xp , hence (20) reads

∂gij

∂xp Wp
(

g∗ ik pk

) (
g∗ jl pl

)
+ 2gpj

∂Wp

∂xi

(
g∗ ik pk

) (
g∗ jl pl

)
= 0

and from here

−gij
∂g∗ ik

∂xp Wp pkg∗ jl pl + 2gpj
∂Wp

∂xi

(
g∗ ik pk

) (
g∗ jl pl

)
= 0.
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We finally obtain

− ∂g∗ ik

∂xp Wp pi pk + 2g∗ jk ∂Wi

∂xj pi pk = 0. (21)

On the other hand, we compute

{F∗2, W∗} = {g∗ ij pi pj, Ws ps}

=
∂(g∗ ij pi pj)

∂pk

∂(Ws ps)

∂xk −
∂(g∗ ij pi pj)

∂xk
∂(Ws ps)

∂pk

=

(
∂g∗ ij

∂pk
pi pj + 2g∗ ik pi

)
∂Ws

∂xk ps −
∂g∗ ij

∂xk pi pjWk

= 2g∗ ik ∂Ws

∂xk pi ps −
∂g∗ ij

∂xk Wk pi pj

which is the same with (21). Here, we have used the 0-homogeneity of g∗ ij(x, p) with respect to p.
We also observe that for any functions f , g : T∗M→ R we have { f 2, g} = 2 f { f , g}.
Conversely, due to the zero-homogeneity of gij, it can be seen that (20) implies (19).
Therefore, the following are equivalent

(i) W is Killing field on (M, F);
(ii) LŴ F = 0;
(iii) formula (20);
(iv) formula (21);
(v) {F∗2, W∗} = 0;
(vi) {F∗, W∗} = 0,

and the lemma is proved.

We recall the following result.

Proposition 5 ([23]). Let (M, F) be a Finsler manifold and W = Wi(x) ∂
∂xi a Killing filed on (M, F) with

F(−W) < 1. If we denote by F̃ the solution of the Zermelo’s navigation problem with data (F, W), then the
following are true

(i) The F̃-unit speed geodesics P(t) can be written as

P(t) = ϕ(t, ρ(t)),

where ϕt is the 1-parameter flow of W and ρ is an F-unit speed geodesic.
(ii) For any Jacobi field J(t) along ρ(t) such that gρ̇(t)(ρ̇(t), J(t)) = 0, the vector field J̃(t) := ϕt∗(J(t)) is a

Jacobi field along P and g̃Ṗ(t)(Ṗ(t), J̃(t)) = 0.
(iii) For any x ∈ M and any flag (y, V) with flag pole y ∈ Tx M and transverse edge V ∈ Tx M, the flag curvatures

K and K̃ of F and F̃, respectively, are related by

K(x, y, V) = K̃(x, y + W, V)

provided y + W and V are linearly independent.

In the 2-dimensional case, since any Finsler surface is of scalar flag curvature (see for instance [1]),
we get
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Corollary 1. In the two-dimensional case, with the notations in Proposition 5, the Gauss curvatures K and K̃ of F
and F̃, respectively, are related by K(x, y) = K̃(x, y + W), for any (x, y) ∈ TM.

Lemma 3. Let (M, F) be a (forward) complete Finsler manifold, and let W be a Killing field with respect to F.
Then, W is a complete vector field on M, i.e., for any x ∈ M the flow ϕx(t) is defined for any t.

Proof of Lemma 3. Since W is Killing field, it is clear that its flow ϕ preserves the Finsler metric F and the
field W. In other words, for any p ∈ M, the curve α : (a, b)→ M, α(t) = ϕx(t) has constant speed.

Indeed, it is trivial to see that

d
dt

F(γ(t), Wγ(t)) =
∂F
∂xi

dγi

dt
+

∂F
∂yi

∂Wi

∂xk
dγk

dt

=
∂F
∂xi Wi +

∂F
∂yi

∂Wi

∂xk Wk = LW F(W) = 0.

It means that the F-length of α is b− a, i.e., finite, hence by completeness it can be extended to a
compact domain [a, b], and therefore α is defined on whole R. It results W is complete.

Theorem 3. Let (M, F) be a Finsler manifold (not necessary Randers) and W = Wi(x) ∂
∂xi a Killing field for F,

with F(−W) < 1.
If F̃ is the solution of the Zermelo’s navigation problem with data (M, F) with the wind W then the followings

hold good:

(i) The point P(l) is F̃-conjugate to P(0) along the F̃-geodesic P(t) = ϕ(t, ρ(t)) if and only if the corresponding
point ρ(l) = ϕ(−l,P(l)) is the F-conjugate point to P(0) = ρ(0) along ρ.

(ii) (M, F) is (forward) complete if and only if (M, F̃) is (forward) complete.
(iii) If ρ is a F-global minimizing geodesic from p = ρ(0) to a point q̂ = ρ(l), then P(t) = ϕ(t, ρ(t)) is an F̃-global

minimizing geodesic from p = P(0) to q = P(l), where l = dF(p, q̂).
(iv) If q̂ ∈ cutF(p) is a F-cut point of p, then q = ϕ(l, q̂) ∈ cutF̃(p), i.e., it is a F̃-cut point of p, where

l = dF(p, q̂).

Proof of Theorem 3.

(i) Since ϕt(·) is a diffeomorphism on M (see Lemma 3), it is clear that its tangent map ϕt∗ is a regular
linear mapping (Jacobian of ϕt is non-vanishing). Then, Lemma 5 shows that J̃ vanishes if and only if
J vanishes, and the conclusion follow easily.

(ii) Let us denote by expp : Tp M → M and ẽxpp : Tp M → M the exponential maps of F and F̃,
respectively. Then, P(t) = ϕ(t, ρ(t)) implies

ẽxpp(ty) = ϕt ◦ expp(t[y−W(p)]). (22)

If (M, F) is complete, Hopf–Rinow theorem for Finsler manifolds implies that for any p ∈ M,
the exponential map expp is defined on all of M. Taking into account Lemma 3, from (22) it follows

ẽxpp is defined on all of Tp M, and again by Hopf–Rinow theorem we obtain that F̃ is complete.
The converse proof is similar.

(iii) Firstly observe that l = dF(p, q̂) = dF(p, q), since q̂ = ρ(l) = ϕ(−l,P(l)) = ϕ(−l, q) and q = P(l) =
ϕ(l, ρ(l)) = ϕ(l, q̂).

We will proof this statement by contradiction (see Figure 4).
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Figure 4. Riemannian and Finsler geodesics in Zermelo’s navigation problem.

For this, let us assume that, even though ρ is globally minimizing, the flow-corresponding geodesic
P from p to q is not minimizing anymore. In other words, there must exist a shorter minimizing
geodesic Ps : [0, l0] → M from p to q = Ps(l0) such that dF̃(p, q) = l0 < l. (We use the subscript s
for short).

We consider next, the F-geodesic ρs : [0, l0] → M obtained from P by flow deviation, i.e., ρs(t) =

ϕ(−t,Ps(t)), and denote q0 = ρs(l0) = ϕ(−l0,P(l0)). Then, triangle inequality in pq0q̂ shows that

LF(ρ) ≤ LF(ρs) + LF(ξ),

where we denote by ξ the flow orbit from W through q oriented from q0 to q̂. In other words
ξ̇(t) = −W, and using the hypothesis F(−W) < 1, it follows

LF(ξ) =
∫ b

a
F(−W)dt < b− a = LF(ρ)−LF(ρs). (23)

By comparing relations (22) with (23) it can be seen that this is a contradiction, hence P must be
globally minimizing.

(iv) It follows from (iii) and the definition of cut locus.

Remark 6. Observe that statements (iii) and (iv) are not necessary and sufficient conditions. Indeed, from the proof
of (iii) it is clear that for proving ρ global minimizer implies P global minimizer we have used condition F(−W) < 1,
which is equivalent to the fact that F̃-indicatrix includes the origin of Tp M, a necessary condition for F̃ to be positive
defined (see Remark 2).

Likewise, if we want to show that P global minimizer implies ρ global minimizer, we need F(W) < 1, that is,
the indicatrix ΣF translated by −W must also include the origin, i.e., the metric F̃2 defined by F(y + F̃2W) = F̃2,
with the indicatrix ΣF̃2

= ΣF −W is also a positive defined Finsler metric.
In conclusion, if we assume F(−W) < 1 and F(W) < 1, then the statements (iii) and (iv) in Theorem 3 can be

written with “if and only if”.

Lemma 4. Let F = α + β be the solution of Zermelo’s navigation problem with navigation data (h, V).
Then a vector field W on M is Killing with respect to F = α + β if W is Killing with respect to h and

[V, W] = 0, where [·, ·] is the Lie bracket.
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Proof of Lemma 4. The proof is immediate from Lemmas 1 and 2. Indeed, W is Killing on (M, F) if
and only if {F∗, W∗} = 0, hence {α∗ + β∗, W∗} = {α∗, W∗}+ {β∗, W∗} = 0. If {α∗, W∗} = 0, i.e., W is
Killing with respect to h and {β∗, W∗} = {V∗, W∗} = 0. Let us observe that {V∗, W∗} = 0 is actually
equivalent to [V, W] = 0. Geometrically, this means that the flows of V and W commute locally, then the
conclusion follows.

Observe that in local coordinates the conditions in Lemma 4 readsWi:j + Wj:i = 0

∑n
i=1

(
∂Wk

∂xi Vi − ∂Vk

∂xi Wi
)
= 0,

where the subscript “:” means the covariant derivative with respect to the Levi–Civita connection of h.
By combining Theorems 2 and 3, we obtain

Theorem 4. Let (M, h) be a simply connected Riemannian manifold and V = Vi ∂
∂xi , W = Wi ∂

∂xi vector fields on
M such that

(I) V satisfies the differential relation
dη = d(log λ) ∧ η, (24)

where η = Vi(x)dxi, Vi = hijV j;
(II) W is Killing with respect to h and the Lie bracket [V, W] = 0.

Then

(i) The F̃-unit speed geodesics P(t) are given by

P(t) = ϕ(t, ρ(t)),

where ϕ is the flow of W and ρ(t) is an F-unit speed geodesic.

Equivalently,
P(t) = ϕ(t, γ(s(t))),

where γ(s) is an α-unit speed geodesic and s = s(t) is the parameter change t =
∫ s

0 F
(

γ(τ), dγ
dτ

)
dτ.

(ii) The point P(l) is conjugate to P(0) = p along the F̃-geodesic P(t) if and only if the corresponding point
q̂ = ρ(l) = ϕ(−l,P(l)) on the F-geodesic ρ is conjugate to p, or equivalently, q̂ is conjugate to p along the
α-geodesic from p to q̂.

(iii) If q̂ ∈ Cutα(p), then q = ϕ(l, q̂) ∈ CutF̃(p), where l = dF̃(p, q̂) = dF(p, q̂) + f (q̂)− f (p).

Remark 7. Informally, we may say that the cut locus of p with respect to F is the W-flow deformation of the cut
locus of p with respect to F, that is, the W-flow deformation of the cut locus of p with respect to α, due to Theorem 2,
statement (vii).

4. Surfaces of Revolution

4.1. Finsler Surfaces of Revolution

Let (M, F) be a (forward) complete oriented Finsler surface, and W a vector field on M, whose
one-parameter group of transformations {ϕt : t ∈ I} consists of F-isometries.

If ϕt is not the identity map, then it is known that W must have at most two zeros on M.
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We assume hereafter that W has no zeros, hence from Poincaré–Hopf theorem it follows that M is a
surface homeomorphic to a plane, a cylinder or a torus. Furthermore, we assume that M is the topological
cylinder R× S1.

By definition it follows that, at any x ∈ M \ {p}, Wx is tangent to the curve ϕx(t) at the point
x = ϕx(0). The set of points OrbW(x) := {ϕt(x) : t ∈ R} is called the orbit of W through x, or a parallel
circle and it can be seen that the period τ(x) := min{t > 0 : ϕt(x) = x} is constant for a fixed x ∈ M.

Definition 1. A (forward) complete oriented Finsler surface (M, F) homeomorphic to R× S1, with a vector field
W that has no zero points, is called a Finsler cylinder of revolution, and ϕt a rotation on M.

It is clear from our construction above that W is Killing field on the surface of revolution (M, F).

4.2. The Riemannian Case

The simplest case is when the Finsler norm F is actually a Riemannian one.
A Riemannian cylinder of revolution (M, h) is a complete Riemannian manifold M = R× S1 = {(r, θ) :

r ∈ R, θ ∈ [0, 2π)} with a warped product metric

h = dr2 + m2(r)dθ2. (25)

of the real line (R, dr2) and the unit circle (S1, dθ2).
Suppose that the warping function m is a positive-valued even function.
Recall that the equations of an h-unit speed geodesic γ(s) := (r(s), θ(s)) of (M, h) are

d2r
ds2 −mm′

(
dθ
ds

)2
= 0

d2θ
ds2 + 2 m′

m
dr
ds

dθ
ds = 0

, (26)

with the unit speed parameterization condition(
dr
ds

)2
+ m2

(
dθ

ds

)2
= 1. (27)

It follows that every profile curve {θ = θ0}, or meridian, is an h-geodesic, and that a parallel {r = r0}
is geodesic if and only if m′(r0) = 0, where θ0 ∈ [0, 2π) and r0 ∈ R are constants. It is clear that two
meridians do not intersect on M and for a point p ∈ M, the meridian through p does not contain any cut
points of p, that is, this meridian is a ray through p and hence dh(γ(0), γ(s)) = s, for all s ≥ 0.

We observe that (26) implies

dθ(s)
ds

m2(r(s)) = ν, ν is constant, (28)

that is, the quantity dθ
ds m2 is conserved along the h-geodesics.

If γ(s) = (r(s), θ(s)) is a geodesic on the surface of revolution (M, h), then the angle φ(s) between γ̇

and the profile curve passing through a point γ(s) satisfy Clairaut relation m(r(s)) sin φ(s) = ν.
The constant ν is called the Clairaut constant (see Figure 5).
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0−meridianπ −meridian

θ0 −meridian

y

parallels

Figure 5. The angle φ between γ̇ and a meridian for a cylinder of revolution.

We recall the Theorem of cut locus on cylinder of revolution from [13].

Theorem 5. Let (M, h) be a cylinder of revolution with the warping function m : R→ R being a positive valued
even function, and the Gaussian curvature Gh(r) = −

m′′(r)
m(r) is decreasing along the half meridian. If the Gaussian

curvature of M is positive on r = 0, then the structure of the cut locus Cq of a point θ(q) = 0 in M is given
as follows:

1. The cut locus Cq is the union of a subarc of the parallel r = −r(q) opposite to q and the meridian opposite to q
if |r(q) < r0| := sup{r > 0|m′(r) < 0} and ϕ(m(r(q))) < π, i.e.,

Cq = θ−1(π) ∪ (r−1(−r(q)) ∩ θ−1[ϕ(m(r(q))), 2π − ϕ(m(r(q)))]).

2. The cut locus Cq is the meridian θ−1(π) opposite to q if ϕ(m(r(q))) ≥ π or if |r(q)| ≥ r0.

Here, the function ϕ(ν) on (inf m, m(0)) is defined as

ϕ(ν) := 2
∫ 0

−ξ(ν)

ν

m
√

m2 − ν2
dr = 2

∫ ξ(ν)

0

ν

m
√

m2 − ν2
dr,

where ξ(ν) := min{r > 0|m(r) = ν}.

Remark 8.

1. It is easy to see that if the Gauss curvature Gh < 0 everywhere, then h-geodesics cannot have conjugate points.
It follows that in the case the h-cut locus of a point p ∈ M is the opposite meridian to the point.

2. See [14] for a more general class of Riemannian cylinders of revolution whose cut locus can be determined.

4.3. Randers Rotational Metrics, the Case W̃ = A(r) ∂
∂r + B ∂

∂θ

In the present section, we will consider the two steps Zermelo’s navigation on the topological cylinder
for some special vector fields V and W. The diagram in Figure 2 becomes now
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Let (M, h) be the Riemannian metric (25) on the topological cylinder M = {(r, θ) : r ∈ R, θ ∈ [0, 2π)}
such that the Gaussian curvature Gh 6= 0, i.e., m(r) is not linear function. We will make this assumption all
over the paper.

Let us start by computing explicitly the Randers metrics F and F̃ appearing in Figure 6.

(R× S1, h) (R× S1, F = α + β) (R× S1, F̃ = α̃ + β̃)

V = A(r) ∂
∂r

Step 1

W = B ∂
∂θ

Step 2

W̃ = A(r) ∂
∂r + B ∂

∂θ : not Killing field

Figure 6. The two steps Zermelo’s navigation.

Proposition 6. Let (M, h) be the topological cylinder R× S1 with its Riemannian metric h and let W̃ = A(r) ∂
∂r +

B ∂
∂θ , be a vector filed on M where A = A(r) is smooth function on R, B constant, such that A2(r)− B2m2(r) < 1.

Then

(i) The solution of the Zermelo’s navigation problem for (M, h) and wind W̃ is the Randers metric F̃ = α̃ + β̃,
where

(ãij) =
1

Λ2

(
1− B2m2(r) BA(r)m2(r)
BA(r)m2(r)) m2(r)(1− A2(r))

)
, (b̃i) =

1
Λ

(
−A(r)
−Bm2(r)

)
, (29)

and Λ := 1− ‖W̃‖2
h = 1− A2(r)− B2m2(r) > 0.

(ii) The solution of Zermelo’s navigation problem for the data (M, h) and wind V = A(r) ∂
∂r , such that A2(r) < 1,

is the Randers metric F = α + β, where

(aij) =
1

λ2

(
1 0
0 λm2(r)

)
, (bi) =

1
λ

(
−A(r)

0

)
, (30)

and λ := 1− ‖V‖2
h = 1− A2(r) > 0.

(iii) The solution of Zermelo’s navigation problem for (M, F = α + β), with α and β given in (30), and wind
W = B ∂

∂θ , such that F(−W) < 1, is the Randers metric F̃ = α̃ + β̃ given in (29).

Proof of Proposition 6.

(i) The solution of Zermelo’s navigation problem with (M, h) and W̃ = (W̃1, W̃2) = (A(r), B) is obtained
from (9) with Λ = 1− ‖W̃‖2

h = 1− A2(r)− B2m2(r).

Taking into account that W̃i = hijW̃ j, it follows (W̃1, W̃2) = (A(r), Bm2(r)) and a straightforward
computation leads to (29).

(ii) Similar with (i) using (M, h) and V = (V1, V2) = (A(r), 0), hence (V1, V2) = (A(r), 0) and λ =

1− ‖V‖2
h = 1− A2(r).

(iii) Follows from Theorem 1. We observe that Λ = 1− A2(r)− B2m2(r) > 0 is actually equivalent to
A2(r) < 1 and F(−W) < 1.

Indeed,

1− A2(r)− B2m2(r) > 0⇒ 1− A2(r) > B2m2(r) > 0⇒ A2(r) < 1,
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and

B2m2(r) < 1− A2(r)⇒ Bm(r)√
1− A2(r)

< 1⇒ F(−W) < 1,

where we use F(−W) =
√

a22(−B)2 = Bm(r)√
1−A2(r)

.

Remark 9.

1. Observe that we actually perform a rigid translation of the Riemannian indicatrix Σh by W̃, which is actually
equivalent to translating Σh by V followed by the translation of ΣF by W (see Remark 2).

2. Observe that the Randers metric given by (29) on the topological cylinder R× S1 is rotational invariant,
hence (M, α̃ + β̃) is a Finslerian surface of revolution. This type of Randers metrics are called Randers
rotational metrics. Indeed, let us denote mF(r) := F( ∂

∂θ |(r,θ)). Observe that in the case A(r) is an odd or even
function, the function mF(r) is an even function such that mF(0) > 0.

Theorem 4 implies

Theorem 6. Let (M, h) be the topological cylinder R× S1 with the Riemannian metric h = dr2 + m2(r)dθ2 and
W̃ = A(r) ∂

∂r + B ∂
∂θ , A2(r) + B2m2(r) < 1. If we denote by F̃ = α̃ + β̃ the solution of Zermelo’s navigation

problem for (M, h) and W̃, then the followings are true.

(i) The F̃-unit speed geodesics P(t) are given by

P(t) = (r(s(t)), θ(s(t)) + B · s(t)),

where γ(s) = (r(s), θ(s)) is α-unit speed geodesic and t = t(s) is the parametric change t =∫ s
0 F(γ(τ), γ̇(τ))dτ.

(ii) The point q = P(l) is conjugate to P(0) = p along the F̃-geodesic P if and only if q̂ = (r(q), θ(q)− B · l) is
conjugate to p with respect to α along the α-geodesic from p to q̂.

(iii) The point q̂ ∈ Cutα(p) is an α-cut point of p if and only if q = (r(q̂), θ(q̂) + B · l) ∈ CutF̃(p),
where l = dF̃(p, q).

Proof of Theorem 6. First of all, observe that V = A(r) ∂
∂r and W = B ∂

∂θ satisfy conditions (i), (ii) in the
hypothesis of Theorem 4.

Indeed, since (M, h) is surface of revolution and V = (A(r), 0), it results that η = A(r)dr is closed
form, hence (24) is satisfied.

Moreover, W = B ∂
∂θ is obviously Killing field with respect to h, and it is trivial to see that [V, W] =[

A(r) ∂
∂r , B ∂

∂θ

]
= 0.

The statements (i)–(iii) follow now from Theorem 4 and the fact that the flow of W = B ∂
∂θ is just

ϕt(r, θ) = (r, θ + Bt) for any (r, θ) ∈ M, t ∈ R.
In this case, β(W) = 0, hence F(−W) = F(W) = α(W) < 1, hence (iii) is necessary and

sufficient condition.

We have reduced the geometry of the Randers type metric (M, F̃) to the geometry of the Riemannian
manifold (M, α), obtained from (M, h) by (30).
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Example 1. Let us observe that there are many cylinders (M, h) and winds W̃ satisfying the condition A2(r) +
B2m2(r) < 1 in Theorem 6.

For instance, let us consider the topological cylinder R× S1 with the Riemannian metric h = dr2 + m2(r)dθ2

defined using the warp function m(r) = e−r2
.

Consider the smooth function A : R→
(
− 1√

2
, 1√

2

)
, A(r) = 1√

2
r√

r2+1
and any constant B ∈

(
− 1√

2
, 1√

2

)
.

Then, A2(r) + B2m2(r) < 1
2 + B2m2(r) ≤ 1

2 + B2 < 1.
In this case, F̃ = α̃ + β̃ is given by

(ãij) =
1

Λ2

1− B2e−2r2 B√
2

re−2r2
√

r2+1

B√
2

re−2r2
√

r2+1
1
2
(r2+2)e−2r2

r2+1

 , (b̃i) =
1
Λ

− 1√
2

r√
r2+1

−Be−2r2

 ,

where Λ = 1
2

r2+2
r2+1 − B2e−2r2

.
Observe that F = α + β is given by

(aij) =
1
λ

1 0

0 λe−2r2

 , (bi) =
1
λ

− 1√
2

r√
r2+1

0

 ,

where λ = 1
2

r2+2
r2+1 .

Moreover, we have

Corollary 2.

(i) With notations in Theorem 6, if there exist a smooth function A : R → (−1, 1) and a constant B such that
A2(r) + B2m2(r) < 1 and if Gα(r) < 0 everywhere, then the α-cut locus and the F = α + β cut locus of a
point p ∈ M is the opposite meridian to the point p.

Moreover, the F̃ = α̃ + β̃ cut locus of p = (r0, θ0) is the deformed opposite meridian by the flow of the vector
field W = B ∂

∂θ .
(ii) With the notations in Theorem 6, if there exist a smooth function A : R→ (−1, 1) and a constant B such that

A2(r) + B2m2(r) < 1, Gα(r) is decreasing along any half meridian and Gα ≥ 0, then the α-cut locus and the
F-cut locus of a point p = (r0, θ0) are given as in Theorem 5.

Moreover, the F̃-cut locus of p is obtained by the deformation of the cut locus described in Theorem 5 by the
flow of W = B ∂

∂θ .

Proof of Corollary 2.

(i) It follows from Proposition 6 and Theorem 6.
(ii) Likewise, it follows by combining Proposition 6 and Remark 8, part 1.

Remark 10. It is not trivial to obtain concrete examples satisfying conditions (I) and (II) in Corollary 2 in the case
A not constant. We conjecture that such examples exist leaving the concrete construction for a forthcoming research.
The case A = constant is treated below.
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4.4. The Case Special W̃ = A ∂
∂r + B ∂

∂θ

Consider the case W̃ = (W̃1, W̃2) = (A, B), where A and B are constants, on the topological cylinder
M = {(r, θ) : r ∈ R, θ ∈ [0, 2π)}. Here, m : R→ [0, ∞) is an even bounded function such that m2 < 1−A2

B2 ,
|A| < 1, B 6= 0.

Proposition 6 and Theorem 6 can be easily rewritten for this case by putting A(r) = A = constant.
We will not write them again here.

Instead, let us give some special properties specific to this case. A straightforward computation gives:

Proposition 7. Let (M, h) be the Riemannian metric of the cylinder R× S1, and let W̃ = A ∂
∂r + B ∂

∂θ , with A, B
real constants such that m2 < 1−A2

B2 , |A| < 1, B 6= 0.
Then, the followings are true.

(i) The Gauss curvatures Gh and Gα of (M, h) and (M, α), respectively, are proportional, i.e.,

Gh(r) =
1

λ2 Gα(r),

where α is the Riemannian metric obtained in the solution of the Zermelo’s navigation problem for (M, h) and
V = A ∂

∂r .
(ii) The geodesic flows Sh and Sα of (M, h) and (M, α), respectively, satisfy

Sh = Sα + ∆,

where ∆ = A2mm′(y2)2 ∂
∂y1 is the difference vector field on TM endowed with the canonical coordinates

(r, θ; y1, y2).

Indeed, observe that since h = dr2 + m2(r)dθ2 and α2 = 1
λ2 dr2 + m2(r)

λ dθ2, with λ = 1 − A2,

the non-vanishing Christoffel symbols γi
jk and

α
Γ i

jk of h and α are

γ1
22 = −mm′, γ2

12 =
m′

m
, and

α
Γ 1

22 = −mm′ + A2mm′,
α
Γ 2

12 =
m′

m
,

(31)

respectively. The Gauss curvatures of h and α follows by direct computation using the usual formulas and
(i) follows.

From here it also follows that the geodesic spray coefficients of h and α are

G1
h = γ1

jkyjyk = −mm′(y2)2, G2
h = γ2

jkyjyk = 2
m′

m
y1y2 and

G1
α =

α
Γ 1

jkyjyk = (−mm′ + A2mm′)(y2)2, G2
α =

α
Γ 2

jkyjyk = 2
m′

m
y1y2,

respectively, hence the geodesic spray coefficients of h and α are

Sh = yi ∂

∂xi − Gi
h

∂

∂yi = y1 ∂

∂x1 + y2 ∂

∂x2 + mm′(y2)2 ∂

∂y1 − 2
m′

m
y1y2 ∂

∂y2 and

Sα = yi ∂

∂xi − Gi
α

∂

∂yi = y1 ∂

∂x1 + y2 ∂

∂x2 + mm′(y2)2 ∂

∂y1 − 2
m′

m
y1y2 ∂

∂y2 − A2mm′(y2)2 ∂

∂y1 ,
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respectively, hence the formula for ∆ in (ii). Here, we denote (r, θ; y1, y2) the canonical coordinates of
T(R× S1).

Moreover, from Theorem 6 we have

Theorem 7. In this case, if (M, h) is a Riemannian metric on the cylinder M = R× S1 with bounded warp
function m(r) <

√
1−A2

B , where A, B are constants, |A| < 1, B 6= 0, and wind W̃ = A ∂
∂r + B ∂

∂θ , then the following
hold good.

(I) If Gh(r) < 0 everywhere, then

(i) the α-cut locus of a point p is the opposite meridian.
(ii) the F-cut locus of a point p is the opposite meridian, where F = α + β,

(aij) =
1

λ2

(
1 0
0 λm2(r)

)
, (bi) =

1
λ

(
−A

0

)
,

and λ := 1− ‖V‖2
h = 1− A2 > 0,

(iii) the F̃-cut locus of a point p is the twisted opposite meridian by the flow action ϕt(r, θ) = (r, θ + Bt).

(II) With the notations in Theorem 6 let us assume that (M, h) has Gaussian curvature satisfying Gh(r) is
decreasing along any half meridian [0, ∞) and Gh(0) ≥ 0. Then, in this case, the cut locus of F̃ = α̃ + β̃ is a
subarc of the opposite meridian is of the opposite parallel deformed by the flow of W = B ∂

∂θ .

Example 2. There are many examples satisfying this theorem. For instance, the choice m(r) = e−r2 ≤ 1 gives
Gh(r) = −4r2 + 2 which is decreasing on [0, ∞) and Gh(0) = 2 > 0. Any choice of constants A, B such that
1 <

√
1−A2

B , i.e., A2 + B2 < 1 is suitable.

Remark 11. A similar study can be done for the case B = 0.

Remark 12. The extension to the Randers case of the Riemannian cylinders of revolution and study of their cut
loci [14] can be done in a similar manner.

5. Conclusions

Finsler structures are more general than the Riemannian ones in the sense that the lengths of opposite
vectors (for instance X and −X) are not equal, the distance between two points is not symmetric, and the
geodesics are not reversible. These basic differences induce other differences in the study of the conjugate
and cut loci, respectively. Despite of the difficulties in studying the geodesics theory on an arbitrary
Finsler manifold, we have shown that in the case of a Finsler surface of revolution, things simplify.
Especially in the Randers case, we are able to obtain a quite detailed description of geodesics, their local
and global behaviour, conjugate and cut loci due to the Zermelo’s navigation description of Randers spaces.
Nevertheless, we have shown that the control of all these geometrical objects is possible in a more general
case than the classical Killing wind case appearing in [18], for example.
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