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Abstract: Metaheuristics have become a widely used approach for solving a variety of practical
problems. The literature is full of diverse metaheuristics based on outstanding ideas and with proven
excellent capabilities. Nonetheless, oftentimes metaheuristics claim novelty when they are just
recombining elements from other methods. Hence, the need for a standard metaheuristic model is
vital to stop the current frenetic tendency of proposing methods chiefly based on their inspirational
source. This work introduces a first step to a generalised and mathematically formal metaheuristic
model, which can be used for studying and improving them. This model is based on a scheme
of simple heuristics, which perform as building blocks that can be modified depending on the
application. For this purpose, we define and detail all components and concepts of a metaheuristic
(i.e., its search operators), such as heuristics. Furthermore, we also provide some ideas to take into
account for exploring other search operator configurations in the future. To illustrate the proposed
model, we analyse search operators from four well-known metaheuristics employed in continuous
optimisation problems as a proof-of-concept. From them, we derive 20 different approaches and use
them for solving some benchmark functions with different landscapes. Data show the remarkable
capability of our methodology for building metaheuristics and detecting which operator to choose
depending on the problem to solve. Moreover, we outline and discuss several future extensions of
this model to various problem and solver domains.

Keywords: metaheuristic; continuous optimisation; mathematical model

1. Introduction

Metaheuristics (MHs) are well-known alternatives to exact methods, which are excessively
rigid and sometimes unsuitable for most practical applications. Even so, MHs are not as recent
as we thought—we have been using them since we started understanding the world [1]. Heuristics
(and metaheuristics), as well as mathematics, are akin to pre-loaded and hidden tools that our brains
contain, and which have been barely uncovered by us. Nevertheless, MHs have evolved as a concept
(more slowly than mathematics) passing through several paradigms and “novelty” phases over the
last century [2,3]. The scientific community has developed several powerful algorithms under the
metaheuristic scheme, which have been combined by several researchers to explore other methods.

Mathematics 2020, 8, 2046; doi:10.3390/math8112046 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-4494-7864
https://orcid.org/0000-0003-3408-2166
https://orcid.org/0000-0002-8821-7137
https://orcid.org/0000-0002-5320-0773
https://orcid.org/0000-0003-3902-5582
http://dx.doi.org/10.3390/math8112046
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/11/2046?type=check_update&version=3


Mathematics 2020, 8, 2046 2 of 23

These procedures were oft-named (now less) as “new” or ’‘novel” metaheuristics. This, after all, is not
entirely accurate and represents a bad practise [4,5]. However, the literature contains a plethora of
information for researchers and practitioners to plough and structure MHs as a scientific field. Such a
“revolution” is currently ongoing as Sörensen et al. described in their overview of the MH history [1].

It is challenging to find a standard metaheuristic model or framework that allows designers to
focus on studying different strategies to coin powerful and problem-specific methods. For instance,
a researcher could propose a brand new method inspired by pink dolphins based on his/her
environment, whilst, coincidentally, another researcher from a distant country reports a mathematically
similar procedure but inspired in greater kudu bulls. (This is a fictional example. We do not know if
such metaheuristics exist.) Therefore, how can we notice their similarities without running extensive
computations? How can we compare these methods against others? Can we identify and classify them
based only on their mathematical procedures? Before describing some approaches for such a model,
we must accept that the No-Free-Lunch theorem [6] reigns supreme. Hence, there is not a MH with
remarkable performance for all problem domains. One of the most popular approaches to a generalised
model can be found in Genetic Algorithms (GAs), which is defined as a family because different genetic
operators can be chosen for a particular implementation [7]. This arrangement also exists for other
metaheuristics, such as Differential Evolution (DE) algorithms [8]. In both cases (i.e., GAs and DEs),
the iterative procedure is represented by two or three operations over a population (a collection of
probes) exploring a problem domain after being initialised. Note that operations within a family
may have the same objective. Still, they differ in how much additional information is required to
generate a new candidate solution. For example, DE/rand-to-best-and-current/3/exp implements more
elaborate mutation and crossover operations than DE/rand/1/bin [8]. Recall the general convention
DE/x/y/z, where x stands for the particular vector positions involved in the perturbation of each
individual, y indicates the number of vector position differences regarded in the perturbation,
and z means the kind of crossover employed after mutation. Plus, a distinct strategy for exploring
MHs is by using Genetic Programming (GP) to choose between alternative operations, from those
proposed in the literature. For instance, Miranda et al. redesigned the well-known Particle Swarm
Optimisation (PSO) via a GP-based design schemes to solve 60 continuous benchmark problems [9].
However, this strategy is not straightforward enough to extend it to other metaheuristics. Another
relevant methodology for combining MHs and then generating powerful optimisation algorithms
is hybridisation [10,11]. A hybrid is not only a combination of two or more metaheuristics, but it
can also contemplate non-heuristic-based algorithms, e.g., Nelder–Mead Simplex [12]. Nonetheless,
hybrid methods are under the umbrella of the metaheuristics. Hassan and Pillay proposed a procedure,
powered by a GA, for automating the design of a hybrid metaheuristic for a given template, and with
a predefined collection [13]. More related examples, based on design patterns, can also be found in the
literature [14,15]. These focus on tuning specific operators into a metaheuristic template. Further quite
exciting strategies, which also go beyond the metaheuristic model, are hyper-heuristics (HHs) [16].
These methods combine heuristics to render a procedure capable of solving a given optimisation
problem. Some authors have taken advantage of this fact for setting a process by selecting two or more
simple heuristics to provide MHs with excellent performance in particular problems [17]. Nevertheless,
there is not a concrete mathematical model that serves as a guideline for systematic and rigorous
research on metaheuristics. Based on the aforementioned section, we can infer three exciting facts:
(i) A metaheuristic is formed by operators no matter their nature; (ii) These operators are combined
following a blueprint; (iii) These operators possess parameters that can be pre- or post- tuned when
assembling the metaheuristic.

In this work, we consider these facts, as well as further inferences from several MHs of the
state-of-the-art. Our goal: to take a step towards a generalised metaheuristic model. This formal model
will facilitate comparisons and avoid reinventing the wheel when studying metaheuristics. Moreover,
it will provide a standardised framework to automate metaheuristic generation. We focus our
modelling, in this preliminary work, in the particular case of solving continuous optimisation problems
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with population-based methodologies. However, as we remark, the proposed model can be extended to
any problem and procedure by addressing their particular circumstances. For example, to implement
this model for metaheuristics in integer programming, the simple heuristics must search within an
integer space instead of a continuous one. To illustrate our model, as a proof-of-concept, we select
four well-known metaheuristics and employ their components as building blocks for generating new
metaheuristics. These MHs are tested on some benchmark problems with different landscape domains.

This paper has three major contributions, as follows:

1. Presents the first approach to a formal mathematical model to describe a metaheuristic in terms
of building blocks for tackling continuous optimisation problems. It provides standardisation for
researchers to easily identify the similarities and differences between metaheuristics, preventing
researchers from reinventing the wheel.

2. Highlights the effectiveness of combining building blocks to generate metaheuristics to provide
problem-specific solutions.

3. Yields a methodology to investigate the effect of search operators.

The remainder of this document is organised as follows. Section 2 introduces the theoretical
foundations, where we detail all the concepts employed to develop the proposed model. Subsequently,
Section 3 explains the derivation of the model, starting from the basics and increasing in complexity as
the section progresses. Here, we include a full description of each component in the model, as well as
their properties and graphical representation based on the signal-flow diagram from control theory.
Section 4 shows how this model can be applied to the metaheuristics, reported in the literature to deal
with continuous optimisation problems, for obtaining their building blocks (simple heuristics). Then,
Section 5 exemplifies how to use such building blocks to spawn metaheuristics systematically and
formally, via the proposed model. These MHs are implemented to solve several benchmark continuous
optimisation problems with different dimensionalities and features. Finally, Section 6 summarises the
most relevant conclusions and lays out some paths for future work.

2. Theoretical Foundations

In this section, we begin by presenting the foundations of the proposed model, which is detailed
in the forthcoming lines. Several of these concepts may seem trivial, but some of them have slightly
different definitions depending on the discipline that uses them. For example, “heuristic” and
“metaheuristic” may be interchangeable terms in some combinatorial problems, such as Job-Shop
Scheduling or Knapsack. However, they may have distinctive meanings in other areas. Thus, and to
avoid controversies, we describe the rules and definitions adopted for formulating the standard model,
in this first approach, focused on continuous optimisation problems.

2.1. Optimisation

Optimisation is one of the most common abstract procedures that all living species on earth,
conscious or unconscious, perform in their daily activities. In layman terms, it mainly refers to the
decisions made to achieve the best result of a problem or event. In this work, we use the definition of
an optimisation problem given by a feasible domain and an objective function to minimise. These two
components are described below.

Definition 1 (Minimisation problem). Let X ⊆ S be a feasible domain, since S is an arbitrary domain,
and let f (~x) be an objective function to be minimised, known as cost function, defined on a set X 6= ∅ such as
f (~x) : ~x ∈ X→ R. Thus, a minimisation problem represented with the tuple (X, f ) is stated as

~x∗ = argmin
~x∈X

{ f (~x)} , (1)
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where ~x∗ ∈ X is the optimal vector (or solution) that minimises the objective function within the feasible domain,
i.e., f (~x∗) ≤ f (~x), ∀~x ∈ X.

Remark 1 (Particular domain). This feasible domain is somehow a general representation of any domain
delimited by simple constraints, which can be extended to a more complex one by considering constraints of
different nature.

Remark 2 (Maximisation problem). In several applications, the objective function models the revenue, profit
or utility of a process, so this function needs to be maximised. Let f̂ (~x) be the utility function such that we can
state the optimisation problem with (1) by using a simple transformation such as f (~x) = − f̂ (~x).

Remark 3 (Multi-objective problem). When dealing with several objective functions, one must handle several
considerations about the optimal solution. Nevertheless, in one way or another, it is always possible to transform
the objective set into a single objective optimisation function such that it can be enclosed in (1).

In this work, we focus on continuous optimisation problems from the mathematical programming
models according to the classification presented by Talbi [18] and Rao [19]. For these problems, we say
that S = RD with D as the dimensionality of the problem. In many practical engineering applications,
the problem domain is known a priori and its dimensionality is related to the number of design
variables [19].

2.2. Heuristics

Heuristics are procedures designed to interact (create, evaluate or modify) a (candidate) solution,
using a certain level of knowledge, for a given problem domain. The keyword “designed” indicates that
the rules followed by such a procedure are based on practical experience, an inspirational source, or just
a systematic process. The most popular implementation of heuristics are related to combinatorial
optimisation problems [16], whilst there is relatively scarce information for continuous ones [20].
For the sake of clarity, we categorise the heuristics into three groups, taking as a starting point the
ideas of [16,20]. These categories are based on the word “procedure”, from the Definition given
at the beginning of this paragraph. Generally speaking, this involves a sequence of actions to do
something. Such a sequence may contain a single instruction or multiple instructions that do not
necessarily follow a sequential pattern. Thus, a heuristic is said to be low-level, when it comprises a
single fixed action; mid-level, when it describes a sequence of fixed instructions; high-level, when it
is a configuration of variable orders. These categories are related to simple heuristics, metaheuristics,
and hyper-heuristics, respectively. It is not infrequent to find some authors who use “heuristics” to
refer to “metaheuristics”, and others call the partial solutions of a “hyper-heuristic” a “metaheuristic”.
All of them are surprisingly right, but it is quite tricky: one must know the conditions in which they
are working to avoid an unnecessary headache. These types of heuristics are certainly heuristics per se,
although they operate in different conditions and domains. However, since most heuristics use a set of
search agents or populations, we must first establish the following concepts:

Definition 2 (Population). Let X(t) be a finite set of N candidate solutions for an optimisation problem (X, f ),
cf. Definition 1, at time t in an iterative procedure, i.e., X(t) = {~x1(t),~x2(t), . . . ,~xN(t)}. Then, ~xn(t) ∈ X

denotes the n-th candidate solution or search agent of, say, the population X(t) of size N.

Definition 3 (Best solution). Let Z(t) be an arbitrary set of solutions, which can be designated as—e.g., the
entire population Z(t) = X(t), the n-th neighbourhood Z(t) = Yn(t), and the historical evolution of
the n-th candidate Z(t) = {~xn(0),~xn(1), . . . ,~xn(t)}. Therefore, let ~x∗(t) ∈ Z(t) be the best solution in
Z(t)—i.e., ~x∗(t) = argmin { f (Z(t))}.
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3. Formulation

Consider the simplest case of continuous optimisation: the quadratic problem (X, f ), defined as

f (~x) = ~xᵀ~x =
D

∑
i1

x2
i , ∀~x ∈ X = RD, D ∈ Z++, (2)

and solved with the well-known Newton method, based on a gradient operator hN : X 7→ X, given by

~x(t + 1) , hN{x(t)}
= ~x(t)− (H f (~x(t)))−1∇ f (~x(t)),

(3)

since∇ f (~x(t)) and H f (~x(t)) are the gradient and Hessian of f (~x) evaluated in the position ~x(t) found
at the iteration t. It is common knowledge that it only requires one step to update the initial position
~x(0) ∈ X to the optimum. To illustrate this, we first determine ∇ f (~x) and H f (~x) as shown,

∇ f (~x) = 2~x, and H f (~x) = 2ID, (4)

since ID is the D×D identity matrix. By evaluating these terms in~x(t) and plugging into (4), we obtain

~x(t + 1) = ~x(t)− (2ID)
−1 (2~x(t)) =~0. (5)

As mentioned, this approach requires only one step to reach the optimum located at ~x∗ = ~0,
no matter what the initial position ~x(0) was.

In the next step, we consider an arbitrary but continuous and differentiable objective function
f (~x). We can still use the Newton heuristic after calculating ∇ f (~x) and H f (~x). It is also known that,
under such conditions, this operator requires a good initial position to ensure its convergence to the
optimum [19]. So, we need to somehow provide such a position—for example, by using a random
generator, an outcome from another search operator, or just empirical information. Without loss
of generality, it can be assumed that an initialisation operator hi : RD 7→ X performs such a task,
which gives

~x(0) , hi{X}. (6)

Therefore, the first position ~x(1) is found by using the Newton search operator hN as follows

~x(1) , hN{x(0)} = (hN ◦ hi){X}, (7)

since ◦ is the operator composition. Hence, it is straightforward to specify how to determine the t-th
candidate solution by applying the Newton operator consecutively—i.e.,

~x(t) , (hN ◦ hN ◦ · · · ◦ hN︸ ︷︷ ︸
t

◦ hi){X}, (8)

As may be seen, when implementing a sequence of operations (iterated operators), one expects to
reach the optimal solution after t = T iterations, ∀ T ∈ (1, ∞). However, that is not true even in the
example above, which is a small step forward from the simplest case, where any local optimum could
serve as a stagnation pit. For that reason, a metric, convergence measurement, or simply an iteration
counter should be considered as a stopping criterion. In general terms, we say that this functionality is
fulfilled by a finalisation heuristic h f : X 7→ H that evaluates one or more criteria for choosing which
operator comes next. Considering the present example, h f can be represented as

h f (hN){~x} ,
{

he{~x}, if c f (~x, f (~x), . . . ) = 1,

h f ◦ hN{~x}, otherwise,
(9)
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where c f : (X,R, . . . ) 7→ Z2 is a criteria evaluation function, and he ∈ H is the identity operator, such
that ~x = he{~x}, ∀~x ∈ X. Bear in mind that the argument of h f (h) in (9), h = hN, indicates the operator
which will be chosen if c f returns zero.

Revisiting (8) and including this finalisation heuristic, we obtain the candidate solutions ~x(t) for
each iteration t = 0, 1, 2, . . . , T − 1, T, as follows,

~x(0) , hi{X},
~x(1) , h f {~x(0)} = (h f ◦ hN ◦ hi){X},
~x(2) , h f {~x(1)} = (h f ◦ hN ◦ hN ◦ hi){X},

...

~x(T − 1) , h f {~x(T − 2)} = (h f ◦ hN ◦ · · · ◦ hN︸ ︷︷ ︸
T−1

◦ hi){X},

~x(T) , h f {~x(T − 1)} = (h f ◦ hN ◦ · · · ◦ hN ◦ hN︸ ︷︷ ︸
T

◦ hi){X}.

(10)

Notice that each iteration depends on the h f decision, this operator resolves whether applying
hN or he according to the criteria verification c f , as specified in (9). Assuming that the T-th iteration
corresponds to the candidate solution where convergence criteria are fulfilled, the step T + 1 yields

~x(T + 1) , h f {~x(T)} = (he ◦ hN ◦ hN ◦ · · · ◦ hN︸ ︷︷ ︸
T

◦ hi){X},

= ~x(T) ≈ ~x∗,
(11)

which means the T-th candidate solution is close to the optimal solution, ~x(T) ≈ ~x∗, according to a
criterion c f specified for h f .

Therefore, three kinds of operators are required to describe the Newton method for solving any
continuous and differentiable optimisation problem. These are the initialisation operator hi, the search
operator hN, and the finalisation operator h f . A key point of using the last two operators is recursion,
which can be inducted from (10). So, taking into account the previous analysis, we can represent the
Newton method based on these operators, and as the triple (3-tuple),

MN , 〈hi, hN, h f 〉 = h f (hN) ◦ hi, (12)

Note that the disposition in the triple is causal in terms of the operator to apply, while the
composition on the right-hand side is anti-causal. Thus, rewriting (11) in terms of MN, we have that

~x∗ ≈ MN{X}. (13)

Now, let us consider an arbitrary continuous problem which may not be differentiable. In this
case, this gradient-based operator hN cannot be implemented as before, so we must select a suitable
operator to accomplish the optimisation work. For a given search operator hj, carefully chosen from the
literature or designed to address this particular problem, we can easily extend the expression in (12),
as follows

Mj , 〈hi, hj, h f 〉 = h f (hj) ◦ hi. (14)

At this point, we consider a further assumption: hj is possibly incapable of dealing with a
challenging problem by itself. Hence, we rethink the extension of (14) considering a sequence
of v search operators, represented as a set H = {h1, h2, . . . , hv} ∈ Hv, to replace hj in (14).
However, applying this set requires that we perform a sequence of composition operations, such
as h1 ◦ h2 ◦ · · · ◦ hv ∈ H, which is also an operator, say hj ∈ H; in other words, the operators are closed
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under the composition. So, it is not necessary to use a complex notation for hj, which can be a single
operator or the result of an operator sequence. Furthermore, Equation (14) represents any optimisation
method based on search operators, or even, just operators. As we illustrate in the following sections,
this expression is powerful enough to describe almost all metaheuristics reported in the literature,
at least for continuous optimisation problems, whilst also serving for designing new ones.

The remainder of this section details the operators (or simple heuristics) and formally defines the
first approach to the generalised metaheuristic model, which is the goal of this work. Without loss of
generality, such a model is given in (14), though it can also be extended to hyper-heuristics. Lastly,
several examples of operators and metaheuristics from the literature are discussed.

3.1. Simple Heuristics

As we may notice, the operators hi, h1, . . . , hv, and h f are simple heuristics (SHs). What does
that mean? They are the atomic units or building blocks in terms of search techniques that directly
interact with either the problem domain, the solution state, or both. SHs are commonly categorised as
constructive and perturbative. As their names suggest, a constructive heuristic generates new candidate
solutions from scratch whereas a perturbative heuristic modifies existing ones [21]. Although these
categories enclose the initialisation hi and search hj operators, ∀j ∈ {1, v}, we deem it necessary to
consider an additional one to describe the finalisation operator h f .

Definition 4 (Simple Heuristic). Let H be a set of simple heuristics, or heuristic space, with a composition
operation ◦ : H×H 7→ H and an identity heuristic he ∈ H. Let Hi,Ho,H f ⊂ H be subsets of heuristics that
produce a new solution, modify an existing solution, and choose between two operators, respectively.

Definition 5 (Initialiser). Let hi : S 7→ X ⊆ S be a simple heuristic that generates a candidate solution
within the search space ~x ∈ X from scratch—i.e., ~x = hi{X}. S represents an arbitrary domain, for which the
case of continuous optimisation corresponds to S = RD. Then, let Hi ⊂ H\{he} be the set of initialisers that
satisfies the following properties:

1. Composition: ∀ h1, h2 ∈ Hi, h1 ◦ h2 ∈ Hi;
2. Last-hit: ∀ h1, h2 ∈ Hi, h1 ◦ h2 = h1;
3. Associative: ∀ h1, h2, h3 ∈ Hi, (h1 ◦ h2) ◦ h3 = h1 ◦ (h2 ◦ h3);
4. Non-commutative: ∀ h1, h2 ∈ Hi, h1 ◦ h2 6= h2 ◦ h1.

The most common initialiser in the literature is to randomly place an agent within the feasible search
space—e.g., using the uniform distribution.

Remark 4 (Last-hit). Note that using the second property into the third, we get (h1 ◦ h2) ◦ h3 = h1 ◦ (h2 ◦
h3) = h1. This is the essential part of an initialiser because it generates a new candidate solution within the
feasible region X ⊆ S. So, if multiple initialisers are applied in the same composition sequence, only the effect of
the last one is preserved, the others are neglected.

Definition 6 (Search Operator). Let ho : X 7→ X be a simple heuristic that modifies a candidate position
~x ∈ X, i.e., ~x′ = ho{~x}. Then, let Ho ⊂ H be the set of search operators that satisfies the following properties:

1. Composition: ∀ h1, h2 ∈ Ho, h1 ◦ h2 ∈ Ho;
2. Identity element: ∀ h1 ∈ Ho, h1 ◦ he = he ◦ h1 = h1;
3. Inverse element: ∀ h1 ∈ Ho, ∃ h−1

1 : h1 ◦ h−1
1 = he;

4. Associative: ∀ h1, h2, h3 ∈ Ho, (h1 ◦ h2) ◦ h3 = h1 ◦ (h2 ◦ h3);
5. Non-commutative: ∀ h1, h2 ∈ Ho, h1 ◦ h2 6= h2 ◦ h1.

Remark 5 (Perturbators and Selectors). A search operator mostly comprises two basic operations:
perturbation and selection. Hence, let hp, hs ∈ Ho be simple heuristics that modify (~y = hp{~x}) and
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update (~x = hs{~y}) the current solution ~x ∈ X called perturbator and selector, respectively. A perturbator
always precedes a selector, so a search operator corresponds to ho = hs ◦ hp. In many implementations,
selectors may require additional information to operate—for example, the current best position in the
population and a neighbourhood. Some examples of selection criteria found in the literature are Direct, Greedy,
and Metropolis update.

Remark 6 (Inverse Element). The inverse element (heuristic) h−1 ∈ Ho for h ∈ Ho could be hard to
be determined analytically, mainly because h can use random numbers sampled from different distributions
and unpredictable decisions, for example. Nevertheless, this element is readily available when, in a practical
implementation, it is needed to recover a previous candidate solution after applying a search operator. In simple
terms, this element serves to represent a step back in a solution process.

Definition 7 (Finaliser). Let h f : X×Z2 7→ H be a simple heuristic that evaluates the current solution quality
and chooses which search operator to apply. To do so, it uses information about the solution state (e.g., the current
solution, its fitness value, the current iteration, the previous candidate solutions, and other measurements) in a
criteria function c f : (X,R, . . . ) 7→ Z2. Then, h f ∈ H f is called a finaliser and is defined as

h f (h0; h1){~x} ,
{

h1{~x}, if c f (~x, f (~x), . . . ) = 1,

h f ◦ h0{~x}, otherwise,
(15)

since h0 and h1 are two search operators selected according to c f . When h1 = he, the identity operator, the finaliser
can be specified as h f (h0) = h f (h0; he).

Remark 7 (Features). Regard that finalisers H f ⊂ H are somewhat more intricate than the other heuristics.
They can be interpreted as condition-controlled loops (while-loops) because of their recursion behaviour when
the criteria function is not satisfied. These simple heuristics are commonly used as strategies to control a
search procedure.

Lastly, we have introduced several key concepts about simple heuristics assuming that they
generate, modify, and evaluate a single candidate solution. This behaviour is frequently observed in
several combinatorial domains, as well as in “classical” algorithms of a different nature, such as the
Newton method and Simulated Annealing. However, this can be impractical for modern methods
designed for touring the problem domain using a population of points (agents, probes, particles,
amongst others). Nevertheless, the described way of representing simple heuristics covers either
using a single point ~x ∈ X, a group of N points X ∈ X× N (cf. Definition 2), or even subgroups,
as discussed below.

3.2. First Approach to a Generalised Metaheuristic Model

Metaheuristics are commonly defined as just heuristics or master strategies which control
simple heuristics. Amongst these methods, one can list some widely recognised techniques
because they have proven their capabilities in several implementations [3,5]. Some examples
include Simulated Annealing (SA), Genetic Algorithm (GA), Differential Evolution (DE), Particle
Swarm Optimisation (PSO), Cuckoo Search Algorithm (CSA), Deterministic Spiral Optimisation
Algorithm (DSOA), and Symbiotic Organism Search (SOS) [22]. Nonetheless, these methods can
be represented, as mentioned at the beginning of this section, by considering the simple heuristic
components from Section 3.1. In the following definitions, we outline how these “building blocks” serve
to describe well-known metaheuristics or to construct new ones, not under a particular bio-inspirational
source of knowledge, but in a mathematical sense.
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Definition 8 (Metaheuristic). Let H : S → X be an iterative procedure called metaheuristic that renders
an optimal solution ~x∗ for a given optimisation problem (X, f ), cf. Definition 1. A metaheuristic can be
mathematically defined in terms of three basic components as shown,

MHo , 〈hi, ho, h f 〉 = h f (ho) ◦ hi, (16)

since hi ∈ Hi is an initialiser, h f ∈ H f is a finaliser, and ho ∈ Ho is a search operator, according to Definition 4.

Remark 8. (Cardinality) An inherent property of metaheuristics is the cardinality, which is defined as the
number of search operators it implements, i.e., disregarding the initialiser and finaliser; ergo #MHj = #hj = v.
By way of standardisation, we denote a metaheuristic and its cardinality as MHv, where MH1 = MH.

Figure 1 depicts an example of an arbitrary metaheuristic using a block-diagram representation,
which is very illustrative in terms of the SHs used. This kind of representation is suitable for basic
metaheuristics, where the number of search operators is somehow small, but not flexible enough
for intricate configurations. For instance, think about a population that is split into neighbourhoods,
which search within the problem domain through different operators.

Figure 1. Block-diagram of a metaheuristic composed by an initialiser hi, v perturbators hj,p and
selectors hj,s, ∀ j ∈ {1, . . . , v}, and a finaliser h f .

Therefore, we propose an alternative representation based on signal-flow diagrams from control
theory. This allows for a more general representation of a metaheuristic closed under the Definition 8.
Table 1 shows the three essential components from simple heuristics. For these diagrams, the line
represents the state of the problem solution. Such a line begins with an initialiser (first row), which is
displayed as an arrow to indicate causality. But the line can also pass through a search operator, depicted
as a circular node (second row). When the finaliser (third row) deems it appropriate, the process ends.
Otherwise, the current solution returns to a search operator (feedback dashed stroke).

Table 1. Elements based on signal-flow diagrams for representing simple heuristics.

Simple Heuristic Symbol Element Definition

Initialiser hi 5

Search Operator ho 6

Finaliser h f 7

With these elements, we can reproduce most metaheuristics reported in the literature, or even
go beyond that and into creating new ones. Figure 2a displays the representation for a common
metaheuristic with a search operator ho, according to Definition 8. Bear in mind that this SO can be
either a single operator or an equivalent of any SO configuration. For instance, Figure 2b illustrates
a cascade sequence of v SOs, whereas Figure 2c represents a parallel configuration of 3(v − 2) + 2
SOs. The former is pretty simple and easy to find in methods like PSO, SA, and DSOA with v = 1,
and DE, GA, and CSA with v = 2. The latter is not as exotic. The most straightforward example
of this configuration is PSO, including neighbourhoods or swarm topologies. Hence, h1 and hv are
search operators that split and merge, respectively. The population (of candidate solutions) into
these subpopulations, are modified by the same SO—i.e., h2,j = h2, ∀ j ∈ {1, 2, 3}. In this example,
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the cardinality v equals three. Notice that such a split is shown in Figure 2c with thinner strokes.
Another example case of this configuration is Artificial Bee Colony (ABC), where the “swarm” is
divided into three kinds of agents which perform specific functions [23]. Now, according to Figure 2a,
is it possible to state a metaheuristic with either multiple initialisers, finalisers, or both? The short
answer is yes. However, we can not guarantee that such a MH outperforms others from the literature.
So, appropriate experiments must be carried out.

(a)

(b) (c)

Figure 2. Example of (a) the metaheuristic representation based on signal-flow diagrams, where ho can
be obtained from (b) a cascade or (c) a parallel composition.

4. Analysis of Selected Metaheuristics

In this section, we use the components discussed for the generalised model approach
to describe four selected well-known metaheuristics from the literature. These are Simulated
Annealing (SA) [24], Particle Swarm Optimisation (PSO) [25,26], Genetic Algorithm (GA) [27],
and Differential Evolution (DE) [8]. Because some MHs employ similar selectors, and to avoid repeating
information, we first present three of the most common selectors found in the literature.

Consider a candidate position ~yn∈ X obtained through any perturbator hp ∈ Ho from the current
position of the n-th agent ~xn(t)∈ X(t) and further information about the solution state, such as the
fitness difference between the candidate and current solutions, ∆ fn = f (~yn) − f (~xn(t)), amongst
others. Thence, ~yn is accepted to be the new position ~xn(t + 1)∈ X(t + 1) via a selector hs ∈ Ho, as is
now described.

Definition 9 (Direct selection). The new position ~xn(t) for the n-th agent is straightforwardly designated
equal to ~yn—i.e.,

~xn(t + 1) = ~yn. (17)

Definition 10 (Greedy selection). The new position ~xn(t) for the n-th agent is assigned equal to ~yn if it
improves the current position (i.e., ∆ fn ≤ 0), thus

~xn(t + 1) =

{
~yn, if ∆ fn ≤ 0,

~xn(t), otherwise,
(18)

where the sign “≤” prefers to escape or overcome a large plateaux [8].

Definition 11 (Metropolis selection). The new position for the n-th agent is set equal to ~yn if it improves the
current position (i.e., ∆ fn ≤ 0). Should it be worsened (∆ fn > 0), ~yn is selected with a given probability of
acceptance, as shown in

~xn(t + 1) =

~yn, if (∆ fn ≤ 0) ∨
(

r < e
− ∆ fn(t)

kBΘ(t)

)
,

~xn(t), otherwise,
(19)
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since kB ∈ R+ is the Boltzmann’s constant and Θ(t) : Z+ → R+ is the temperature which decreases slowly,
such as Θ(t) = Θ0(1− c)t, with Θ0 � 1 as the initial temperature, c ∈ (0, 1) as the decreasing (cooling)
ratio, and t ∈ Z+ as the current iteration [28]. Some default values used for these parameters are kB = 1.0,
Θ0 = 1000, and c = 0.01. It is worth noting that this is only a flavour of this selection scheme, and there are
several variations of it in the literature [29].

Furthermore, and before going into detail, we regard that the continuous problem domain is
normalised between −1 and 1—i.e., X = [−1, 1]D. Additionally, we consider that all MHs use an
initialiser based on a Random Sampling perturbator and a Direct selector (Definition 9).

Definition 12 (Random Sampling). A candidate solution is obtained through

~yn =~r, (20)

where~r ∈ RD is a vector of i.i.d. random numbers with~r 3 ri ∼ U (−1, 1).

4.1. Simulated Annealing (SA)

SA was introduced by Kirkpatrick et al. for solving combinatorial optimisation problems [24],
but it has also been implemented in other domains [28,29]. It was the first metaheuristic inspired in a
nonlinear physical process—i.e., the annealing—which refers to the thermal treatment of materials
for promoting its recrystallisation [30]. This technique is mainly composed of one Search Operator
based on the Random Search perturbator and the Metropolis selector (Definition 11). This perturbator
is described as follows.

Definition 13 (Random Search). A candidate solution is determined by a random search operation, as
shown in

~yn = ~xn(t) + α~r, (21)

where α ∈ (0, 1] is the step size factor and~r ∈ RD is a vector of i.i.d. random numbers with either U (−1, 1) or
another probability distribution, such as the normal standard N (0, 1) and symmetric Lévy stable L(1.5) ones.

4.2. Particle Swarm Optimisation (PSO)

Kennedy and Eberhart proposed PSO as a population-based methodology that takes advantage of
social and individual interactions between agents for exploring a problem domain [25]. Swarm particles
have two primary components, position and velocity, which are updated on each iteration via a simple
kinematic expression [26]. In terms of search operators, PSO only implements one that comprises the
Swarm Dynamic perturbator and the Direct selector (Definition 9).

Definition 14 (Swarm Dynamic). The candidate position for the n-th agent is determined via the swarm
dynamic operation, such as

~yn = ~xn(t) +~vn(t), (22)

where~vn(t) corresponds to the velocity of this individual. This velocity can be calculated via different approaches,
and PSO variants with slight to radical changes being prolific. The simplest and most common one, broadly
implemented in several practical problems, corresponds to

~vn(t) = α0~vn(t− 1) + α1φ1~r1 � (~xn,∗(t)−~xn(t)) + α2φ2~r2 � (~x∗(t)−~xn(t)), (23)

since αi ∈ (0, 1] are velocity scale coefficients, ∀ i ∈ {0, 1, 2}, φ1, φ2 ∈ (0, 4], are known as the self and swarm
confidence coefficients, respectively, and~rj ∈ RD are i.i.d. random vectors with U (0, 1), ∀ j ∈ {1, 2} [31].
~vn(t− 1) stands the previous velocity of the n-th agent, whilst ~xn,∗(t) and ~x∗(t) are the best position found by
each individual and by the entire population, respectively.
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Remark 9 (Velocity Approach). Two approaches branch out from (23) by carefully selecting the coefficient
values—i.e., inertial and constricted—as shown below.

• Inertial approach: α0 ∈ (0, 1) is called inertia weight and α2 = α3 = 1 (they are neglected). In several
implementations, α0 is employed as a fixed parameter, but in others, it is defined as a time-dependent
function, or a uniform random variable [32,33].

• Constrained approach: α0 = α1 = α2 = χ since χ is known as the constriction factor determined by

χ =
2κH(φ− 4)

φ− 2−
√

φ(φ− 4)
+
√

κ (1− H(φ− 4)) , (24)

where H : R→ Z2 is the Heaviside step function with H(0) = 0, κ ∈ (0, 1], and φ = φ1 + φ2 [26,32].

4.3. Genetic Algorithm (GA)

GA was developed by Holland, De Jong, and others in the early ages of computing
machines [34,35]. This algorithm comprises a sequence of two search operators inspired on the
evolutionary mechanisms of genes of organisms [27]. The first SO consists of the Genetic Crossover
perturbator and the Direct selector (Definition 9), and the second one of the Genetic Mutation
perturbator and the Greedy selector (Definition 10); these perturbators are detailed next.

Definition 15 (Genetic Crossover). This operator works on a ranked version of the population X̂(t) w.r.t.
the cost function value—i.e., X̂(t) = {~̂x1, . . . , ~̂xN} with f (~̂x1) < · · · < f (~̂xN). Many authors refer to such a
preliminary adjustment as natural selection [27]. Subsequently, a candidate position is rendered by a genetic
crossover operation through

~yn = ~m� ~̂xz1 + (1− ~m)� ~̂xz2 , ∀ z1, z2 ∈ {1, . . . , M}, n ∈ {M + 1, . . . , N}, (25)

where z1 and z2 are mutually exclusive indices from the population—i.e., z1 6= z2, and ~m ∈ RD
+ is a mask vector.

Besides, M = bmpNe is the mating pool size since mp ∈ (0, 1] is the portion of the best ranked agents from the
population of size N. The parent indices z1 and z2 are obtained via a pairing scheme, whereas the mask vector ~m
is determined by a crossover mechanism.

Remark 10 (Pairing Scheme). Let z1 and z2 be the parent indices chosen by using a pairing scheme from
the mating pool. Consider that p ∼ UP{a, b} indicates a positive integer randomly chosen between a and b,
with 0 < a < b, by sampling a given probability distribution P(q) : Z++ 3 [a, b]→ [0, 1] ∈ R+; when P(q)
is unspecified, it is assumed to be the uniform distribution—i.e., P(q) = 1/(b− a + 1). The most common
pairing schemes from the literature for determining zi ∀ i ∈ {1, 2}, are listed below [27,34].

• Random pairing:
zi ∼ U{1, M}

• Rank weighting pairing:

zi ∼ UPR{1, M} with PR(m) =
2(M + 1−m)

(M + 1)M
, ∀m ∈ {1, . . . , M}

• Roulette wheel pairing:

zi ∼ UPC{1, M} with PC(m) =
| f (~̂xm)− f (~̂xM+1)|∣∣∣∑M

k=1 f (~̂xk)
∣∣∣ , ∀m ∈ {1, . . . , M}

• Tournament pairing:

zi = wk ∈WT with k ∼ UPT{1, MT}, and PT(k) = pT(1− pT)
k,
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since WT = {wj ∼ U{1, M}|(∀ j = 1, . . . , MT) ∧ (w1 < · · · < wMT )} and pT ∈ (0, 1].

Remark 11 (Crossover Mechanism). The mask vector ~m is commonly assumed in the range [0, 1]D, as we do
in this work. However, some researchers incorporate values beyond such a range. This vector can be determined
via diverse crossover mechanisms [27]. The most common ones are presented below.

• Single-point crossover:

~m = H(d1 −~s) with d1 ∼ U{1, D} and ~s = (1, 2, . . . , D)ᵀ

• Two-points crossover:

~m = H(d1 −~s)− H(d2 −~s) with d1 ∼ U{1, D}, d2 ∼ U{d1 + 1, D}, and~s = (1, 2, . . . , D)ᵀ

• Uniform crossover:
~m = H(~r− 0.5) with ~r 3 ri ∼ U (0, 1)

• Blend crossover:
~m =~r with ~r 3 ri ∼ U (0, 1)

• Linear crossover:
~m = β1~1 and 1− ~m = β2~1 with β1, β2 ∈ R and ~1 ∈ ZD

1

Definition 16 (Genetic Mutation). This operator also works on a ranked version of the population X̂(t) w.r.t.
the cost function value—i.e., X̂(t) = {~̂x1, . . . , ~̂xN} with f (~̂x1) < · · · < f (~̂xN). Hence, the candidate position
is found by implementing a genetic mutation such as

~yn = ~m�~xn(t) + α(1− ~m)�~r, ∀ n ∈ {dpeNe, . . . , N}, (26)

where ~m = H(pm − ~q) is a mask vector, α ∈ (0, 1] is the spatial step size, ~r and ~q are vectors of i.i.d.
random numbers with distribution U (−1, 1) and U (0, 1), respectively, pe ∈ [0, 1] is the elite portion
of the population (i.e., the top bpeNc ranked individuals), and pm ∈ (0, 1] is the mutation probability.
Furthermore, most researchers implement different probability distributions for mutating agents in continuous
optimisation [27]. Some feasible options are the normal standard distribution ~r 3 ri ∼ N (0, 1) and the
symmetric Lévy stable distribution~r 3 ri ∼ L(1.5).

4.4. Differential Evolution (DE)

DE was proposed by Price and Storn for solving global optimisation problems [36]. This technique
is considered as a stochastic population-based direct search algorithm whose performance depends
mainly on the chosen mutation and crossover strategies [8,37]. They are different from those of GA and
implemented in reverse order. Differential operators can be interpreted as particular cases, in a weak
sense, of the genetic ones. Hence, the first operator comprises the Differential Mutation perturbator and
the Direct selector (Definition 9), and the second one is based on the Differential Crossover perturbator
and the Greedy selector (Definition 10).

Definition 17 (Differential Mutation). The candidate position is determined by using the differential mutation
operator as displayed

~yn = ~m +
M

∑
m=1

αm
(
~xz2m−1(t)−~xz2m(t)

)
, (27)

where ~m is the target vector which depends on the mutation scheme, M ∈ Z+ stands the number of random
differences or perturbations, and αm ∈ (0, 3) is a constant factor, ∀m ∈ {0, . . . , M}. Plus, zi ∀ i ∈ Z+ is an
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integer with uniform random distribution between 1 and N, where N is the population size, then zi ∼ U{1, N}
with zi /∈ ⋃j∈Z+−{i} zj.

Remark 12 (Mutation Scheme). The most representative schemes for determining ~m in a differential mutation,
according to [8], are:

• rand:
~m = ~xz0(t)

• best:
~m = ~x∗(t)

• current-to-best:
~m = ~xn(t) + α0(~x∗(t)−~xz0(t))

• rand-to-best-and-current:
~m = ~xz0(t) + α0(~x∗(t)−~xn(t))

Since ~x∗ is the best position found in the population, and α0 and z0 parameters are determined according to
the previous definition.

Definition 18 (Differential Crossover). The candidate position is achieved by performing the differential
crossover operation given by

~yn = ~m�~yn + (1− ~m)�~xn(t), (28)

where � is the Hadamard–Schur’s product, and ~m ∈ ZD
2 is the crossover mask vector calculated, such as

~m = H(pCR −~r), by employing H : RD → ZD
2 as the element-wise Heaviside step function with H(0) = 1,

~r ∈ RD is a vector of i.i.d. uniformly random variables in [0, 1],~r 3 ri ∼ U (0, 1), and pCR is the crossover
probability that depends of the constant CR ∈ (0, 1].

Remark 13 (Crossover Type). The crossover probability indicates if an element mutates, and its formula
varies according to the crossover type [38], as described below.

• Binomial crossover:

pCR = CR
(

1− 1
D

)
+

1
D

• Exponential crossover:

pCR =
1− CRD

D(1− CR)

4.5. Summary

In this section, we described four well-known metaheuristics in terms of the proposed
model—i.e., their search operators—which are composed by a perturbator and a selector (Definition 6).
Figure 3 illustrates them and details their simple heuristics. To complement the information, Table 2
summarises the corresponding control parameters. We classify such parameters as those of variation
and tuning. The former group concerns those parameters that can dramatically change the behaviour
of the operator, and the latter corresponds to those that refine the search procedure. According to the
variation parameters, the analysed perturbators can easily be regarded as families of simple heuristics.
For instance, consider the Random Search perturbator; two (or more) implementations can be made by
varying only the probability distribution function to use—e.g., Uniform, Normal, or Lévy distribution.



Mathematics 2020, 8, 2046 15 of 23

Figure 3. Representation of the selected metaheuristics using the proposed model and their search
operators (perturbators and selectors).

Table 2. Search operators extracted from four well-known metaheuristics in the literature. Values or
ranges for variation and tuning parameters, as well as selectors, are chosen from those commonly
employed in the literature.

Perturbation Heuristic Def. Variation Parameters Tuning Parameters Selection Heuristic

Random Search, hRS 13 ~r 3 ri ∼ U (−1, 1) α ∈ (0, 1] Metropolis, hM (Definition 11)

Swarm Dynamic, hPS 14
Velocity approach,
~ri 3 ri,j ∼ U (0, 1) ∀ i ∈ {1, 2}

α0 ∈ (0, 1), φ1, φ2 ∈ (0, 4],
κ ∈ [0, 1] Direct, hD (Definition 9)

Genetic Crossover, hGC 15 Pairing Scheme a,
Crossover Mechanism b mp ∈ (0, 1] Direct, hD (Definition 9)

Genetic Mutation, hGM 16 ~r 3 ri ∼ U (−1, 1) α ∈ (0, 1], pe ∈ [0, 1],
pm ∈ (0, 1] Greedy, hG (Definition 10)

Differential Mutation, hDM 17 Mutation Scheme αm ∈ (0, 3) ∀m ∈ {0, M},
M ∈ Z+

Direct, hD (Definition 9)

Differential Crossover, hDC 18 Crossover Type c CR ∈ (0, 1] Greedy, hG (Definition 10)
a Pairing schemes: random, rank weighting, roulette wheel, and tournament pairing. Tournament pairing
requires two additional parameters such as MT ∈ {2, 3} and pT ∈ (0, 1]. b Crossover mechanisms: single-point,
two-points, uniform, blend, and linear crossover. Linear crossover requires two additional parameters, such
as β1, β2 ∈ R. c Crossover types: binomial and exponential.

5. Numerical Examples

In this section, we illustrate as a proof-of-concept how to use the proposed model for the
metaheuristics tackling continuous optimisation problems. As a disclaimer, the scope of this work is
not to show which metaheuristic performs best, nor to conduct a comprehensive study about their
features. Those works are undoubtedly vital. Nevertheless, they must be carried out as independent
research, as is customary in the literature. We invite the reader to consult [39], where we implemented
an approach based on hyper-heuristics to tailor metaheuristics using the same, but not so formal,
building block idea. Instead, our purpose is to provide researchers and practitioners with a modular
and formal way to explore innovative methodologies and topologies.

We implemented the perturbators and selectors indicated in Table 2 using the parameter values
displayed in Table 3. We defined twenty metaheuristics, ten of cardinality one, and the other ten of
cardinality two, using the same random initialiser as commented above. Table 4 details the search
operators that give place to those metaheuristics, according to the conventional topology (see Figure 3).
It is worth mentioning that the last column of Table 4 provides a possible name, following a systematic
nomenclature, for each one of these configurations, except for the well-known metaheuristics such
as SA, PSO, GA, and DE. This nomenclature is quite simple and can be defined with two rules. First,
the perturbator is written in a capital letter, whereas the selector initial is given in lowercase. Second,
whenever there are two or more search operators, they are concatenated with a dash. Moreover,
Table 5 presents the selected problems that we tackled with the aforementioned metaheuristics, each
of them over search spaces in two, ten, and fifty dimensions. All optimisation procedures performed
100 iterations and were repeated 50 times for guaranteeing statistical significance.

All the numerical experiments were carried out on a personal laptop computer with Intel Core i5
dual-core processor @ 2 GHz and 8 Gb LPDDR3 RAM @ 1867 MHz. They were coded in Python v3.7
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using the package CUSTOMHyS v1.0 (freely available at https://github.com/jcrvz/customhys.git),
which facilitates the implementation of metaheuristics through search operators as building blocks.

Table 3. Parameters chosen for each implemented perturbator.

Perturbation Heuristic Variation Parameters Tuning Parameters

Random Search, hRS ~r 3 ri ∼ U (−1, 1) α = 1.0
Swarm Dynamic, hPS Inertial approach,~ri 3 ri,j ∼ U (0, 1) ∀ i ∈ {1, 2} α0 = 1.0, φ1 = 2.54, φ2 = 2.56

Genetic Crossover, hGC
Tournament Pairing with MT = 2 and pT = 1.0,
Single-point Crossover mp = 0.4

Genetic Mutation, hGM ~r 3 ri ∼ U (−1, 1) α = 1.0, pe = 0.1, pm = 0.25
Differential Mutation , hDM Scheme DE/current-to-best/ αm = 1.0, ∀m ∈ {0, M}, M = 1
Differential Crossover, hDC Binomial Crossover CR = 0.2

Table 4. Metaheuristics built by defining the cascade sequence of search operators.

Conf. Search Operator, ho Nameho,1 ho,2

1 hRS ◦ hM – SA (or RSm)
2 hPS ◦ hD – PSO (or PSd)
3 hGC ◦ hD – GCd
4 hGM ◦ hG – GMg
5 hDM ◦ hD – DMd
6 hDC ◦ hG – DCg
7 hRS ◦ hG – RSg
8 hPS ◦ hM – PSm
9 hGC ◦ hM – GCm

10 hDM ◦ hM – DMm

11 hGC ◦ hD hGM ◦ hG GA (or GCd-GMg)
12 hDM ◦ hD hDC ◦ hG DE (or DMd-DCg)
13 hRS ◦ hM hPS ◦ hD SA-PSO
14 hPS ◦ hD hRS ◦ hM PSO-SA
15 hGC ◦ hD hDC ◦ hG GCd-DCg
16 hDM ◦ hD hGM ◦ hG DMd-GMg
17 hPS ◦ hD hDC ◦ hG PSO-DCg
18 hRS ◦ hM hDC ◦ hG SA-DCg
19 hGC ◦ hD hRS ◦ hM GCd-SA
20 hPS ◦ hD hDC ◦ hM PSO-DCm

Figure 4 shows the fitness orders obtained for each problem when solved through all 20 MHs.
The first problem, Sphere, corresponds to the simplest one. When considering the two-dimensional
case, Figure 4a, it is easy to identify search operator configurations that behave undesirably. This is
the simplest case used in the literature. However, not all metaheuristics report a low fitness order.
For example, the MH comprising the Differential Crossover (DC) perturbator and the Greedy (g)
selector achieved a fitness order above two for most runs—i.e., f (~x∗) > 100. On the contrary, the PSO
variant using the Metropolis selector (PSm) stands out, even over the vanilla PSO. Another point
worthy of remark is that the metaheuristic PSO-DCg, which has a cardinality of two, improves the
performance of PSO. Notice that the second search operator is the worst one when it is used as a
standalone metaheuristic. However, it seems to act like a refiner when it is applied as a second step;
remember that this one comes from DE, where it is also the second SO. The combination of PSO and
SA, in any order, renders better results than using these metaheuristics by themselves. When increasing
the number of dimensions, Figure 4a, performances remain somewhat stable. In this case (Sphere 10D),
PSOm also renders the best fitness values, surmounting the other metaheuristics in almost 50% of the
tests. For the last case—i.e., when the number of dimensions is 50 (Figure 4a)—we detect that this
metaheuristic is no longer the best. GA achieves the lowest fitness values, followed by GCd, GCm,
GCd-DCg, and GCd-SA. Recall that GA can be rewritten as GCd-GMg. Therefore, it is evident that

https://github.com/jcrvz/customhys.git
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those MHs with distinctive low fitness values include the Genetic Crossover perturbator, which seems
to have significant capabilities for big dimensional problems. It is also curious to note that this simple
heuristic does not exhibit a significant performance for the scenarios with low dimensionality—i.e., two
and ten dimensions.

Table 5. Selected benchmark functions.

Function Expression, f (~x) : RD 7→ R Domain, X ⊆ RD Representation in 2D

Sphere [40] f (~x) =
D

∑
i=1

x2
i [−100, 100]D

Stochastic [41] f (~x) =
D

∑
i=1

ri

∣∣∣∣xi −
1
i

∣∣∣∣ , ri ∼ U (0, 1) [−5, 5]D

Schaffer N3 [42] f (~x) =
D− 1

2
+

D−1

∑
i=1

sin2 (cos |xi + xi+1|)− 0.5
(1 + 0.001(xi + xi−1))2 [−100, 100]D

The aforementioned pattern is easily observed for the Stochastic function in all
dimensions—cf. Figure 4b. Notice that even for the two-dimensional case, GA beats the other
metaheuristics. Are methods based on Genetic Crossover a better option for high-dimensional smooth
problems and noisy multi-modal problems? This is an interesting fact that seems to arise from these
problems. However, it is a hypothesis that still needs to be proven. Indeed, Figure 4c shows the results
obtained for the function Schaffer N3, which exhibits a landscape that is somehow between that of
the other two (see Table 5). For the two-dimensional case, also shown in Figure 4c, there is a marked
difference between GCd, DCg, GCm, and GCd-DCg, and the others. These three render the largest
(worst) fitness orders. They all share the base of a crossover perturbator, either a genetic or differential
one. However, when combining them with search operators of a different nature, the undesired
behaviour seems to be alleviated, as shown by DE (or DMd-DCg), DMd-GMg, PSO-DCg, SA-DCg,
GCd-SA, and PSO-DCm. Despite this, the best results were obtained by using PS-based metaheuristics,
such as PSO, PSm, PSO-DCg, and PSO-DCm. Lastly, by visually analysing the 10D and 50D cases in
Figure 4c, it is easy to recognise a pattern. Although the Genetic Crossover perturbations play a role
for achieving the lowest fitness orders, in this case, benefits start at ten dimensions. Note that GA also
finds the best solution for these problems.
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(a) Sphere (b) Stochastic

(c) Schaffer

Figure 4. Violin-plots of the fitness orders, log10( f (~x∗)), obtained for each metaheuristic built
when solving a given problem. Mean and median are indicated by the red and green vertical
strokes, respectively.

It is important to remark that the above discussion was focused on the lowest value that each MH
reaches. Such a value may be somewhat related to the accuracy, but keeping in mind that it occurs
with a certain probability. Regarding Figure 4, one notices that for higher dimensions, the violins for
low values are much longer than those for the two-dimensional case. This fact is attributed to the
precision of the method. For example, results for SA in Figure 4c at 50D, provide more confidence
than those for GA; but SA does not have the same chance of reaching lower fitness orders. At this
point, the trade-off between accuracy and precision becomes evident, which has been discussed in
plenty of works [43–45]. A straightforward solution for this issue consists of defining a metric for
deciding which metaheuristic to choose as the best one. A simple but meaningful measurement is the
sum of the median and the interquartile range, as proposed in [39]. So, we rank all MHs studied for
each particular problem and dimension through this criterion, obtaining Figure 5. This heatmap heeds
which methodology outperforms the others (number one), and also shows the worst metaheuristic
(number twenty). Several inferences stem from these data. For instance, GCd-SA performs the best
when tackling the ten-dimensional Schaffer N3 function, which is quite hard to observe from the 10D
case in Figure 4a. Nonetheless, it makes sense as its mean and median performances are quite similar
to that of GA, which was visually chosen as the best one. Even so, the performance of GCd-SA spans
over a region more than 50% smaller; hence, it is more precise.
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Figure 5. Rank of the metaheuristics based on the median and interquartile range of the fitness values
obtained when solving Sphere, Stochastic, and Schaffer N3, both for 2, 10, and 50 dimensions.

Finally, it is essential to observe how these metaheuristics perform through each step of
their solving procedure. So, we select some illustrative cases from Figure 5. Figure 6 displays the
fitness evolution when solving three problems: Sphere 2D, Stochastic 10D, and Schaffer N3 50D.
These problems can be interpreted as a low, medium, and great difficulty, respectively. Similarly,
we choose metaheuristics at the first, tenth, and twentieth positions of their corresponding ranking
(Figure 5). For each problem, we plot fitness evolution in green, blue, and red strokes, which correspond
to the best, mid, and lowest-ranked solvers, respectively. Each curve stands as one of the 50 runs
carried out for each problem. It is noteworthy that the worst election of search operator for building
metaheuristics exhibits a stagnation behaviour. A critical and highly undesired convergence can
be observed in the most straightforward problem, the two-dimensional Sphere function, where the
DCg-based metaheuristic does not evolve at any iteration; see Figure 6a. Such a dynamic is also noticed
in the fifty-dimensional Schaffer N3 in Figure 6c. Apart from this, the best performing MH displays
convergence curves that evolve with a desirable pattern, as Figure 6a,b show. Another critical remark
emerges from the GA curves in Figure 6c, where only five runs reach fitness values below 21, before the
100 iterations mark. This figure also depicts the stagnation of more than half of the runs after the
25th iteration. Such a dynamic confirms the information provided by the corresponding violin plot in
Figure 4c.
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(a) Sphere 2D (b) Stochastic 10D (c) Schaffer N3 50D

Figure 6. Fitness evolution for some selected metaheuristics solving the problems Sphere 2D, Stochastic
10D, and Schaffer N3 50D. Green, blue, and red strokes are used for the best, mid, and lowest ranked
solvers, respectively.

6. Summary

This work introduced the first approach to a generalised metaheuristic model, which serves
as a standard model for studying and improving existing metaheuristics (MHs) for continuous
optimisation problems. We described this model based on building blocks given from simple heuristics,
which are specified as to avoid controversies with other definitions. We revisited several MHs and
detected their essential parts, in terms of heuristics and how they interact throughout the search
procedure. These simple heuristics were classified into three groups: initialisers, search operators (SOs),
and finalisers. We also identified that a perturbator and a selector yield a search operator. Our model
underlines the rules for considering not only one SO, but any given number. Indeed, along with
the theoretical framework proposed for this model, we introduced a graphical representation based
on signal-flow diagrams, where SOs are the central elements. We realised that our model is not
only capable of describing well-known metaheuristics, but it serves to explore other alternatives,
such as hyper-heuristics. It is also flexible enough to allow for more complex topologies of Search
Operators, such as those in parallel, for example. We analysed four well-known metaheuristics from the
literature and detected their SOs based on the proposed model. These MHs were Simulated Annealing
(SA), Particle Swarm Optimisation (PSO), Genetic Algorithm (GA), and Differential Evolution (DE).
Therefore, as a numerical example, we employed these operators to build twenty metaheuristics
(including the four original ones), in terms of the proposed model. The MHs comprised ten MHs
of cardinality one, and ten of cardinality two, where cardinality is defined as the number of search
operators in cascade. We used these MHs for solving three benchmark continuous problems in three
different dimensionalities, as a proof-of-concept. Our data revealed that some search operators have
the ability to deal with a certain kind of problem, rendering outstanding performances. Additionally,
this led to the conclusion that other search operators perform poorly when used as standalone
metaheuristics, but become excellent when combined with another operator.

This model provides a great starting point for several future investigations. The most direct
one is the automated generation of problem-specific metaheuristics by using either Hyper-Heuristics
(HHs) or Machine Learning (ML) algorithms. Moreover, it is possible to explore non-heuristic-based
Search Operators (SOs), such as Neural Networks. Additionally, the model allows investigating
different topologies for the SOs, as well as inferring the behavioural patterns of a SO for problem
characteristics through Data Science (DS) strategies. These possible paths will contribute to enhancing
and proposing not only better metaheuristics but heuristic-based methods. For instance, the proposed
model can be extended with ease to implement Hyper-Heuristics (HHs) for solving any optimisation
problem. In this work, we focused on continuous optimisation problems, which are immersed in many
practical applications, though not all. For example, Integer Programming (IP) and Combinatorial
Optimisation (CO) problems are not included here. Even so, an extension to cover IP should
be relatively straightforward as it shares many similarities with the proposed model. However,
a meticulous analysis must be carried out for CO problems. It is well-known that metaheuristics
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are dependent on the problem domain nature, but such a dependency is a heritage from the search
operators that compose them. Hence, for defining metaheuristics to tackle any problem from a
particular domain, the proposed framework can be adjusted with ease by analysing the operators of the
proposed metaheuristics in such a domain. With that in mind, another domain worth mentioning for
future works is the multi-objective optimisation problems. In these, we need to adjust the selectors to
classify or sort, as Pareto-based algorithms do, the population between dominated and non-dominated.
Recall that selectors are responsible for guiding the search step-by-step for the whole search procedure.
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The following abbreviations are used in this manuscript:

DC Differential Crossover
DE Differential Evolution
DM Differential Mutation
GA Genetic Algorithm
GC Genetic Crossover
GM Genetic Mutation
MH Metaheuristic
PS Particle Swarm
PSO Particle Swarm Optimisation
RS Random Search
SA Simulated Annealing
SH Simple Heuristic
SO Search Operator
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