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Abstract: In this work, meshless methods based on a radial basis function (RBF) are applied for
the solution of two-dimensional steady-state heat conduction problems with nonlocal multi-point
boundary conditions (NMBC). These meshless procedures are based on the multiquadric (MQ) RBF
and its modified version (i.e., integrated MQ RBF). The meshless method is extended to the NMBC
and compared with the standard collocation method (i.e., Kansa’s method). In extended methods,
the interior and the boundary solutions are approximated with a sum of RBF series, while in Kansa’s
method, a single series of RBF is considered. Three different sorts of solution domains are considered
in which Dirichlet or Neumann boundary conditions are specified on some part of the boundary
while the unknown function values of the remaining portion of the boundary are related to a discrete
set of interior points. The influences of NMBC on the accuracy and condition number of the system
matrix associated with the proposed methods are investigated. The sensitivity of the shape parameter
is also analyzed in the proposed methods. The performance of the proposed approaches in terms of
accuracy and efficiency is confirmed on the benchmark problems.

Keywords: meshless method; integrated MQ RBF; steady-state heat conduction equation

1. Introduction

The partial differential equations with nonlocal boundary conditions that emerged in the literature
have significant applications in the fields of engineering, astrophysics, and biology. Some of the first
nonlocal equations that appeared in the literature are encountered in the field of phase transition and
are related to theories due to Van der Waals, Ginzburg, Landau, and Cahn & Hilliard [1]. For instance,
such models with nonlocal spatial terms are encountered in the Ohmic heating production [2], in the
shear banding formation in metals being deformed under high strain rates [3,4], in the theory of
gravitational equilibrium of polytropic stars [5], in the investigation of the fully turbulent behavior
of real flows, using invariant measures for the Euler equation [6], in population dynamics [7],
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in modeling aggregation of cells via interaction with a chemical substance (chemotaxis) [8], and in
image processing [9].

Therefore, nonlocality is not a technical obstruction to scientific research but it provides the
essence of what happens in reality, and for that purpose, its mathematical study can provide very
useful predictions in many areas of applications. In general, nonlocal models provide more accurate
predictions compared to their local counterparts since they use all the available information regarding
the evolution of the inspected process.

Nonlocal boundary conditions have significant applications in engineering and biological sciences.
These nonlocal boundary conditions arise in mathematical models of various biological, physical,
and chemical processes. In addition, nonlocal boundary conditions also have wide applications in heat
conduction processes, control theory, chemical diffusion, population dynamics, blood flow problems,
underground water flow, and chemical engineering. Related references and examples of mathematical
models involving nonlocal boundary conditions can be found in [10–15]. Nonlocal boundary value
problems arise when the boundary values of the solution are not known on the boundaries. In such
circumstances, the solution at the boundaries is connected with the solution inside the given domain.
This type of formulation is placed in a separate class known as nonlocal boundary value problems.

It is sometimes better to impose nonlocal boundary conditions since the measurements needed by
a nonlocal boundary condition may be more precise than the measurement given by a local condition.
For example, consider the second order differential equation [12]

u′′(t) = g(t, u(t), u′(t)), (1)

subject to local boundary conditions

u(0) = 0, u′(1) = 0. (2)

Equation (2) is called a mixed type boundary condition because on t = 0, u is prescribed and the
derivative is prescribed on t = 1. Since we know that, in the process of numerical computation and
a scientific experiment, the value of u′(1) is more difficult to determine than that of u(ξ)−u(1)

ξ−1 where

(0 < ξ < 1); therefore, by replacing u′(1) in (2) with u(ξ)−u(1)
ξ−1 we have nonlocal boundary conditions:

u(0) = 0, u(1) = u(ξ). (3)

Equation (1) along with (3) is called a nonlocal boundary value problem. Equation (3) is called
two-point boundary condition which is a special type of multi-point boundary condition.

Meshless methods for the solutions of differential equations are being successfully applied in
various fields of science and engineering; therefore, they are more effective and suitable for complex
domains as compared to mesh-based numerical methods. Since a set of independent points is required
for meshless methods, they are often better suited for complex geometries. The computational costs
associated with mesh generation in mesh-based methods are high [16] as compared to meshless
methods. In comparison to meshless methods, other traditional numerical methods such as finite
difference methods, finite element methods, and finite volume methods are usually limited to problems
involving two or three spacial variables (space dimensions).

Literature suggests that multiquadric (MQ) RBF is considered the best in accuracy among different
types of RBFs; however, the shape of the function is controlled by shape parameter ε. The ε effects
the accuracy of the method where its optimal value can lead to good approximations. To determine
the optimal value of the ε is an open problem and there is no such mathematical theory developed
for optimal value of ε. Another drawback is the high condition number of the interpolation matrix.
The ill-conditional system matrix arises in the case of globally supported RBFs, as the separation
distance 1

2 maxi 6=j ‖xi − xj‖2, i, j = 1, 2, 3, . . . , N, between data points decreases for fixed values of
the shape parameter ε [17]. Many prominent researchers have used a different value of the shape
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parameter in the hope of accurately handling such problems. Both constant and variable shape
parameters are recommended. Hardy introduced the following shape parameter formula in [18]:

ε =
0.815 ∑N

j=1 dj

N
,

where N is number of collocation points and dj is the distance from the jth center to its nearest
neighbor. Later on, a smallest circle enclosing all data points is considered and the shape parameters
(ε = 1.25√

N
× diameter of this circle) were recommended in [19]. The shape parameter 2√

N
was used for

solution of nonlinear PDEs in [20]. In [21], two optimal values of the shape parameter 1.03 and 1.42
were recommended for MQ RBF, whereas for Gaussian basis, a range 0.003–0.03 was given, for solving
cantilever beam and perforated strip plate problems. In [11,22,23], it is concluded that splitting of
shape parameter into x- and y-axes give good results, i.e., εx = hx N2

x and εy = hyN2
y , where hx and hy

are positive constants, but the condition number of the collocation matrix is high. Different selection
procedures of shape parameter can also be found in [24–32].

In this paper, a meshless discretization technique based on MQ RBF and its modified form, i.e.,
integrated MQ RBF, is applied for the numerical solution of elliptic PDEs with nonlocal boundary
conditions (NBC). In the last few decades, the RBF-based collocation technique for the solution of
nonlocal boundary value problems has been a vital research area in many branches of science and
hence was successfully applied to solve such problems numerically [33–35]. A one-dimensional
hyperbolic equation with an integral boundary condition was studied in [36]. The two-dimensional
diffusion equation subject to a nonlocal condition involving a double integral along with Neumann’s
boundary conditions was formulated in a rectangular region. Such a problem is solved numerically
using a meshless collocation method [37]. In paper [38], the RBF-based collocation technique was
also applied to investigate the influences of nonlocal conditions on the optimal selection of shape
parameter ε, ill-conditioning, and accuracy of the method. A nonlocal, two-dimensional Poisson
equation was solved with two-point and integral boundary conditions; it was formulated on one
side of the rectangular region. Later, in [11], a comparison of the RBF-based collocation technique
with the Haar wavelet-based collocation technique was studied for the same problem. Due to the
splitting of the shape parameter into x and y directions, its distribution effect on the accuracy of the
problem at hand was also investigated. The influences of shape parameter ε and the distribution
of nodes on the accuracy of the RBF-based collocation technique were investigated by considering
the multidimensional linear elliptic equation with integral conditions [39]. Recently, the RBF-based
meshless method has been applied to elliptic PDEs with nonlocal multi-point boundary conditions
(NMBC) [40].

It is known that the meshless method can be successfully applied to solve such nonlocal problems.
However, it was shown (e.g., see paper [11,38,40]) that due to the nonlocal parameter γ, the condition
number κ of the system matrix involved and accuracy of the method are affected. It is shown
that the RBF-based collocation technique gives quite good results for the optimal value of shape
parameter [38,40]. On the other hand, for the optimal value of the shape parameter, the accuracy
and conditioning are also slightly affected by NBC. This paper aims to investigate the effect of this
parameter on the property of the RBF-based method using integrated MQ RBF.

Furthermore, some other applications of RBF are successfully implemented for parabolic and
elliptic interface problems [41–43], highly oscillatory integral equations [44–49], stokes equations with
interface conditions [50], and time-dependent PDEs[51].

Nowadays, integrated RBF(s) are successfully implemented in solving miscellaneous differential
equations. An MQ RBF integrated twice with a fixed value of shape parameter ε was used by [52]
to solve one-dimensional problems. Elliptic problems were solved by [53] through a multi-domain
integrated RBF collocation method. Higher-order ODEs and PDEs were solved by an integrated RBF
method in the papers [54,55]. Further detail about integrated RBFs can be found in [17,56–58].
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We have implemented four different methods based on radial basis functions, i.e., the Kansa
method (multi-quadric is a basis function) and the Kansa method (integrated-multi quadric is a basis
function), and we extended the method proposed in [59] (with these two different basis functions) to
the complicated nonlocal boundary value problems. For the first time, these methods were applied to
the nonlocal Neumann boundary value problems accurately, which can be very complicated in the
case of finite difference and finite element methods. An accurate numerical approximation for the
unknown boundary function has been obtained through these techniques.

The paper is distributed into five sections, including the present introductory Section 1.
In Section 2, we discuss the governing equations along with different types of boundary conditions.
In Section 3, the numerical procedure is described. Numerical experiments are given in Section 4.
Some conclusions are drawn in Section 5.

2. Governing Equation

A general form of the diffusion equation is given by [59]

k1,1(v̂)
∂2

∂x2 u(v̂) + 2k1,2(v̂)
∂2

∂x∂y
u(v̂) + k2,2(v̂)

∂2

∂y2 u(v̂) +
(

∂

∂x
k1,1(v̂) +

∂

∂y
k1,2(v̂)

)
∂

∂x
u(v̂)+(

∂

∂x
k1,2(v̂) +

∂

∂y
k2,2(v̂)

)
∂

∂y
u(v̂) = f (v̂), v̂ = (x, y) ∈ Ω.

(4)

The above model is subject to mixed boundary conditions:

• Classical Dirichlet boundary conditions:

u(v̂) = g(v̂), v̂ ∈ Γ1. (5)

• Nonlocal multipoint boundary conditions:

u(v̂)−
n

∑
l=1

γu(v̂?
l ) = h(v̂), v̂ ∈ Γ2, v̂? ∈ Ω?, (6)

where Ω? ⊂ Ω are set of discrete distinct scattered points inside the solution domain and n is the
number of these scattered points. Throughout the paper we will take n = 10; if not, it will be mentioned.
It is also assumed that the distribution of the points v̂?

l on the solution domain will be fixed. The given
functions are k1,1, k1,2, k2,2, f , g, h, and the parameter γ. Ω is the interior portion of the solution domain
and Γ = Γ1 ∪ Γ2 are the boundary parts of the solution domain such that Γ1 ∩ Γ2 = ∅ and Γ2 6= ∅.
The NBC defined on the boundary Γ2 is reduced to Dirichlet boundary condition when γ = 0.

3. The Numerical Scheme

Let us divide the solution domain into three disjoint sets. The set of inner distinct
scattered nodes:

Ω̂ = {(xj, yj)}N
j=1, (7)

and the set of distinct scattered boundary points:

Γ̂1 = {(xl1 , yl1)}
M1
l1=1, (8)

Γ̂2 = {(xl2 , yl2)}
M2
l2=1, (9)

such that Ω̂ ⊂ Ω, Γ̂1 ⊂ Γ1, and Γ̂2 ⊂ Γ2. N is the total number of data points inside the solution
domain and M = M1 + M2 is the total number of boundary points on the boundary Γ. We also assume
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that the points v̂? are not included in Ω̂, i.e., Ω? ⊂ Ω, but Ω? * Ω̂. Furthermore, throughout the
paper a given RBF inside the solution domain is denoted by

φi(v̂) = φ(‖v̂− v̂i‖2), (10)

where the centers v̂i = (xi, yi), i = 1, 2, . . . , N are distributed inside the solution domain. Similarly,
if the centers v̂k = (xk, yk), k = 1, 2, . . . , M are distributed on the boundary Γ, then the RBF on the
boundary is given by

φk(v̂) = φ(‖v̂− v̂k‖2). (11)

Recently, an RBF-based method was used to solve two-dimensional, steady-state PDEs with
three different types of boundary conditions (Dirichlet, Neumann, and Robin boundary conditions) in
anisotropic and inhomogeneous media [59]. In [59], an approximate solution was sought in the form

u(v̂) = ug(v̂) +
N

∑
i=1

λiψi(v̂), (12)

where basis ug(v̂) is a smooth function which satisfies the boundary conditions, and ψi(v̂) is a sum of
the given RBF. ωi(v̂), called the correcting function, is chosen such that:

φi(xk, yk) + ωi(xk, yk) = 0. (13)

It is to be noted that in paper [59], a trigonometric basis, a polynomial basis, and an RBF basis
were used to find the functions ug(v̂) and the correcting function ωi(v̂). However, we use here just
MQ RBF and integrated MQ RBF to find these functions.

This algorithm strictly divides the approximation of boundary conditions and the approximation
of the differential equation inside the solution domain in cases of Dirichlet, Neumann, and Robin
boundary conditions (for more detail see [59]). However, in the case of NBC the values of the
solution u on the boundary part Γ2 are related to the values at the interior points. Thus, boundary
conditions cannot be approximated separately because the values of the solution u at the boundary Γ2

are unknown.
Equation (12) can be rewritten in the form

u(v̂) =
M

∑
k=1

βkφk(v̂) +
N

∑
i=1

λi(φi(v̂) + ωi(v̂)), (14)

where

ωi(v̂) =
M

∑
k=1

Pk,iφk(v̂).

The correcting function ωi(v̂) is determined from condition (13). The unknown parameters
βk, k = 1, 2, 3, . . . , M, and λi, i = 1, 2, 3, . . . , N are determined by substituting (14) in the governing
Equation (4) and collocating at the interior and boundary points of the solution domain; i.e.,
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M

∑
k=1

βk{k1,1(v̂)
∂2

∂x2 φk(v̂) + 2k1,2(v̂)
∂2

∂x∂y
φk(v̂) + k2,2(v̂)

∂2

∂y2 φk(v̂) +
(

∂

∂x
k1,1(v̂) +

∂

∂y
k1,2(v̂)

)
∂

∂x
φk(v̂)+(

∂

∂x
k1,2(v̂) +

∂

∂y
k2,2(v̂)

)
∂

∂y
φk(v̂)}+

N

∑
i=1

λi{k1,1(v̂)
∂2

∂x2 (φi(v̂) + ωi(v̂)) + 2k1,2(v̂)
∂2

∂x∂y
(φi(v̂) + ωi(v̂))+(

∂

∂x
k1,1(v̂) +

∂

∂y
k1,2(v̂)

)
∂

∂x
(φi(v̂) + ωi(v̂)) +

(
∂

∂x
k1,2(v̂) +

∂

∂y
k2,2(v̂)

)
∂

∂y
(φi(v̂) + ωi(v̂))+

k2,2(v̂)
∂2

∂y2 (φi(v̂) + ωi(v̂))} = f (v̂), v̂ ∈ Ω̂,

M

∑
k=1

βkφk(v̂) = g(v̂), v̂ ∈ Γ̂1,

M

∑
k=1

βk

(
φk(v̂)−

n

∑
l=1

γφk(v̂
?
l )

)
−

N

∑
i=1

λi

(
n

∑
l=1

γφi(v̂?
l )

)
= h(v̂), v̂ ∈ Γ̂2.

(15)

The above system (15) is solved for the unknowns βk, k = 1, 2, 3, . . . , M, and λi, i = 1, 2, 3, . . . , N.
The approximate solution u is obtained by substituting these unknowns into (14). The numerical
implementation of this method contains two stages. At first stage, the correcting function ωi(v̂)
is approximated. At the second stage, the correcting function ωi(v̂) is used to solve system (15).
When φ(v̂) is MQ RBF, we named the method RCM1, and when it integrates MQ RBF, the method is
named IRCM1.

The standard collocation method known as Kansa’s approach is explained here. In Kansa’s
approach, the approximate solution is sought in the form

u(v̂) =
N+M

∑
i=1

λiφi(v̂), (16)

where the centers are distributed inside the solution domain and on the boundary, i.e., v̂i ∈ Ω̂∪ Γ̂1 ∪ Γ̂2.
By substituting (16) in (4), (5), and (6), we have

N+M

∑
i=1

λi{k1,1(v̂)
∂2

∂x2 φi(v̂) + 2k1,2(v̂)
∂2

∂x∂y
φi(v̂) + k2,2(v̂)

∂2

∂y2 (φiv̂) +
(

∂

∂x
k1,1(v̂) +

∂

∂y
k1,2(v̂)

)
∂

∂x
φi(v̂)+(

∂

∂x
k1,2(v̂) +

∂

∂y
k2,2(v̂)

)
∂

∂y
φi(v̂)} = f (v̂), v̂ ∈ Ω̂,

N+M

∑
i=1

λiφi(v̂) = g(v̂), v̂ ∈ Γ̂1,

N+M

∑
i=1

λi

(
φi(v̂)−

n

∑
l=1

γφi(v̂?
l )

)
= h(v̂), v̂ ∈ Γ̂2.

(17)

This system (17) of linear equations is solved for λi, (i = 1, 2, 3, . . . , N + M) to get the approximate
solution (16) of (4). In this procedure when φ(v̂) is MQ RBF, the method is named RCM2, and when it
integrates MQ RBF, the method is named IRCM2.

Integrated MQ RBF

It is shown in the numerical section that integrated RBF methods give quite a good result as
compared to standard non-integrated RBF methods. In order to achieve new basis for numerical
solution of differential equations, RBF is integrated six times with respect to r. In the present paper,
we will use MQ RBF as

MQ =
√

1 + (εor)2, (18)

where r is the Euclidean norm.
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Six-time integration of MQ RBF (18) with respect to r, gives the basis functions [17]

IMQ6 =

√
1+(εr)2{40(εr)6−1518(εr)4+1779(εr)2−128}+105εr sinh−1(εr){8(εr)4−20(εr)2+5}

201600ε6 . (19)

The parameter εo in (18) is a shape parameter but the symbol is changed to distinguish it from
the shape parameter in (19). In our study εo will represent the shape parameter for MQ and ε will
be denoted the shape parameter for IMQ6. The MQ RBF can be integrated easily using a computer
algebra system. In paper [17], the first four members of the integrated RBF family based on MQ RBF
were listed. The benefit of IMQ6 is that it is not very sensitive to the shape parameter as compared to
MQ. The IMQ6 basis function gives quite good results for a wide range of ε, but to find optimal ε is
still challenge in this case as well. In case of IMQ6 basis, the value of ε is taken ε = 80 in our study.
However, this value is not the optimal value of the shape parameter. In the case of MQ basis, we will
take the value of εo = 2; otherwise it will be mentioned during the investigation.

4. Numerical Experiments

In this section, the numerical results and the effect of nonlocal boundary condition (6) are
demonstrated for (4). We discuss here different types of RBF-based collocation methods, i.e., RCM1,
IRCM1, RCM2, and IRCM2. The effects of the shape parameters on the accuracy and κ of the system
matrices of the proposed methods are also investigated. This section shows that the proposed methods
IRCM1 and IRCM2 are less sensitive to the selection of shape parameters as compared to RCM1
and RCM2.

Various error measures are used to estimate the accuracy of the numerical method. Among them,
one is Lrms error norm which is defined as

Lrms =

√√√√ 1
N

N

∑
i=1

[u(v̂)− u(v̂)]2, (20)

where u(v̂) and u(v̂) represent the exact and the approximate solutions respectively. One can also check
the numerical stability of the method by κ of the system matrix involved. A well conditioned system
matrix has a small value of κ, while a system with larger value of κ indicates that it is ill-conditioned.
A built-in-function MATLAB command cond(...) is used for this purpose. The benchmark problems
having scattered interior points are taken from Halton set that utilizes the following MATLAB
commands.

R = haltonset(Dim), creates a Halton set on dimension Dim;
O = scramble(R,’RR2’) gives a duplicate set, and RR2 is a scramble type;
X = net(O,M) generates a M×Dim matrix containing the first M points in dimensions Dim from the
point set O.

Problem 1. The partial differential equation is given in (4) with constant coefficients k1,1(v̂) = −1 and
k1,2(v̂) = 0, and k2,2(v̂) = −1 reduces to a Poisson equation and the one studied in reference [40] with the
same nonlocal multipoint boundary condition. We consider the same problem with the same analytical solution

u(v̂) = x exp(y2 − 1). (21)

The domain is a unit rectangle having a cut of the radius R = 0.5, which is depicted in Figure 1 (left).
The functions f , g, and h are calculated according to the exact solution (21).

The representation of the solution domain and distribution of the nodes are depicted in Figure 1.
In Figure 1 (right), the distinct scattered points marked with black dot represent an interior portion of
the solution domain. The regularly distributed points marked with red dots represent the boundary
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parts Γ2, and the regularly distributed points marked with green dots represent the boundary parts Γ1.
The scattered points marked with red asterisk are the points of the set Ω?.
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Figure 1. Model domain for Test Problem (1).

In case of Test Problem (1), the effects of the shape parameters (ε or εo), the parameter γ,
and the nodes are shown in Figures 2 and 3 on the proposed methods using IMQ6 and MQ RBF
as basis functions. From these figures, we can see that the methods based on IMQ6 RBF are better in
accuracy and conditioning as compared to the methods based on MQ RBF. However, when the shape
parameter is large, κ of the methods based on MQ RBF is small but the accuracy of the methods is
low. The methods RCM1 and RCM2 also give quite good results for some value of εo (see Figure 3).
The proposed methods IRCM1 and IRCM2 give reasonable accuracy for a wide range of ε (see Figure 2).
Figure 3 (right) shows that the RCM2 is more accurate than the RCM1 for dense grid and εo = 2.
However, κ of RCM2 is worse than RCM1.

Figure 2 indicates that the IRCM1 is slightly better at conditioning than IRCM2. However, IRCM2 are
much more accurate for a small value of ε. When the value of ε increases, the error norms of the
methods get closer to each other (see Figure 2 (left)). The conditioning performances of both methods
IRCM1 and IRCM2 become better, up to certain limit when the value of ε increases. After this limit,
it does not much affect the κ of the coefficient matrix. The behavior of IMQ6 RBF is the same as the
MQ RBF, which gives quite good results for a small value of shape parameter along with high κ of the
coefficient matrix. Figures 2 (left) and 3 (left) also indicate that accuracy of the IRCM1 and IRCM2 is
better for a very wide range of the value of ε as compared to the RCM1 and RCM2.

The effect of the collocation nodes on the accuracy of the proposed methods based on IMQ6 basis
is also investigated. The value of the shape parameter is considered ε = 80. The methods IRCM1
and IRCM2 give quite good results. As the nodal points increase, we see good agreement between
solutions of IRCM1 and IRCM2 and the exact one. However, κ increases for dense nodes while keeping
the fixed value of the shape parameter ε = 80.

The NBC (6) is defined comparatively on a small part of the boundary. However, from
Figures 2 and 3 (middle), we see that the NBC has a fairly strong negative influence on the κ of the
coefficient matrices corresponding to the methods RCM1, RCM2, IRCM1, and IRCM2. However,
this influence is weak in case of IRCM1 and IRCM2 as compared to the methods RCM1 and RCM2.
From Figure 2 (middle), we can observe that both the methods IRCM1 and IRCM2 give the same
lowest and highest values of error norm. The highest and lowest error norms are 6.222× 10−7 and
6.184× 10−7 corresponding to γ = 2 and γ = 0. The influence of the NBC (6) is also weak on the κ of
the coefficient matrices corresponding to the methods IRCM1 and IRCM2 as compared to the methods
RCM1 and RCM2. When εo = 2 and ε = 80, the methods RCM1 and RCM2 are the most ill-conditioned,
and the absolute value of γ increases as compared to the methods IRCM1 and IRCM2.
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Figure 2. Test Problem 1, accuracy and κ versus ε, γm, and N: Γ̂1 = 60, Γ̂2 = 16, γ = 1, ε = 80,
and N = 94 when its influence is interestless.

0 100 200 300
10

−8

10
−6

10
−4

10
−2

L
rm

s

 

 

RCM1
RCM2

−1000 −500 0 500 1000
10

−7

10
−6

10
−5

10
−4

10
−3

 

 

RCM1
RCM2

0 1000 2000 3000
10

−10

10
−8

10
−6

10
−4

10
−2

 

 

RCM1
RCM2

0 100 200 300
10

0

10
5

10
10

10
15

10
20

κ

 

 

RCM1
RCM2

−1000 −500 0 500 1000

10
16

10
18

10
20

10
22

 

 

RCM1
RCM2

0 1000 2000 3000
10

14

10
16

10
18

10
20

10
22

 

 

RCM1
RCM2

εo γ N

Figure 3. Test Problem 1, accuracy and κ versus εo, γ, and N: Γ̂1 = 60, Γ̂2 = 16, γ = 1, εo = 2,
and N = 94 when its influence is interestless.
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Problem 2. Consider the equation given in (4) with variables coefficients k1,1(v̂) = 5(1 + x2 + y2),
k1,2(v̂) = 1 + xy

2 and k2,2(v̂) = 3(1 + x2 + y2). The functions f , g, and h are chosen such that the exact
solution gets the form [59]:

u(v̂) = cos(y) exp(x− y).

Here in this example, we have considered an irregular-shaped domain defined by

x = p(θ) cos(θ), y = p(θ) sin(θ), p(θ) =
5− cos(4θ)

5
, 0 ≤ θ ≤ 2π, (22)

where p(θ) is the radius of the domain which depends on the polar angle θ.
The representation of the domain for Test Problem 2 is depicted in Figure 4. In Figure 4 (left), the boundary

parts Γ2 (0 ≤ θ ≤ 2π/3) and Γ1 (2π/3 < θ < 2π) are represented by red dashed and green solid
lines respectively.
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Figure 4. Model domain for test problem 2.

The influences of the shape parameters, the parameter γ, and nodal points on the accuracy and
conditioning of the methods are shown in Figures 5 and 6. The accuracy of IRCM2 is good as compared
to the method IRCM1 for different values of shape parameter ε, as shown in Figure 5 (left). Both the
methods are most poorly ill-conditioned for a small value of shape parameter ε, while the method
IRCM2 gives high accuracy for a smaller value of ε than IRMC1. It can be observed from these figures
that the accuracy of the methods and κ of the coefficient matrices for a fixed value of ε increases
when the number of nodes increases. In contrast to the methods based on MQ RBF, the κ of the
coefficient matrices of IRCM1 and IRCM2 is small. This is because of ε which is large and is equal to
80. The system matrices of the proposed methods are ill-conditioned for a small value of ε. In addition,
the effect of the parameter γ on the methods IRCM1 and IRCM2 is also small. The method IRCM2
gives somewhat accurate results for all values of γ, even though the κ of the coefficient matrix of
IRCM1 is high for some values of γ as compared to the method IRCM2 (see Figure 5 (middle)).

For dense nodes, RCM2 gives quite good results for εo = 2 as compared to RCM1, as shown
in Figure 6. However, the results obtained from IRCM1 and IRCM2 and the conditioning of the
methods are much better there. Again in this example, the NBC (6) has a strong negative influence on
the conditioning of the methods based on MQ RBF. From Figure 6, we see a fluctuation in κ of the
coefficient matrices associated with the methods RCM1 and RCM2 and in error norms as the value of
γ changes. This fluctuation in error norms occurs due to the small value of εo.
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Figure 5. Test Problem 2, accuracy and κ versus ε, γ, and N: Γ̂1 = 94, Γ̂2 = 46, γ = 1, ε = 80,
and N = 320 when its influence is interestless.
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Figure 6. Test Problem 2, accuracy and κ versus εo, γ, and N: Γ̂1 = 94, Γ̂2 = 46, γ = 1, εo = 2,
and N = 320 when its influence is interestless.
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Problem 3. Reconsider the differential equation given in (4) with constant coefficients k1,1(v̂) = 3, k1,2(v̂) = 1.5,
and k2,2(v̂) = 2. The functions f , g, and h are chosen such that the exact solution gets the form [59]

u(v̂) = sin
(

x√
2

)
cosh

(
2
√

30
15

x−
√

30
10

y

)
.

The representation of the domain for Test Problem 3 is depicted in Figure 7. The curve Γ2 ∪ Γ1 is called
Cassini curve and is defined by parametric equation [59]:

x = 4
5 p(θ) cos(θ)− 1

5 , y = 4
5 p(θ) sin(θ), p(θ) =

(
cos(3θ) +

√
2− sin2(3θ)

)1/3
, 0 ≤ θ ≤ 2π, (23)

and rest of the terms have the same meanings as defined in Test Problem 2. We consider the Neumann boundary
condition on the boundary part Γ1. The normal component of the heat flux on the boundary is of the form:

−
(

k1,1(v̂)
∂

∂x
u(v̂) + k1,2(v̂)

∂

∂y
u(v̂)

)
nx −

(
k1,2(v̂)

∂

∂x
u + k2,2

∂

∂y
u(v̂)

)
ny = q(v̂), (24)

where q(v̂) is some given function. nx and ny are the components of unit outward normal vectors.
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Figure 7. Model domain for Test Problem 3.

Since it was shown in the paper [59] that an RBF approximation of the mixed connected boundary conditions,
i.e., Dirichlet boundary condition, is specified on some part of the boundary and Neumann condition, it is defined
on the rest of boundary, and is too low in accuracy. If we specified Neumann boundary condition on boundary
part Γ1, then the accuracy of the boundary condition would be too low. Since we used RBF approximation
(i.e., using MQ or IMQ6 RBF) to approximate the mixed connected boundary condition, i.e., the multi-point and
Neumann boundary condition, and the solution should be inside the domain. Hence, obviously, it would also
affect the approximate solution inside the solution domain. To avoid this problem, we used the same procedure as
was done above for the Dirichlet boundary condition but replaced the system of equation obtained from boundary
part Γ1 with

−
M

∑
k=1

βk{
(

k1,1(v̂)
∂

∂x
φk(v̂) + k1,2(v̂)

∂

∂y
φk(v̂)

)
nx +

(
k1,2(v̂)

∂

∂x
φk + k2,2

∂

∂y
φk(v̂)

)
ny}−

N

∑
i=1

λi{
(

k1,1(v̂)
∂

∂x
(φi(v̂) + ωi(v̂)) + k1,2(v̂)

∂

∂y
(φi(v̂) + ωi(v̂))

)
nx+(

k1,2(v̂)
∂

∂x
(φi(v̂) + ωi(v̂)) + k2,2

∂

∂y
(φi(v̂) + ωi(v̂))

)
ny} = q(v̂), v̂ ∈ Γ̂1.

(25)
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The influences of shape parameters (ε or εo), the parameter γ, and the number of nodes for Test
problem 3 are shown in Figures 8 and 9. It can be seen from Figures 8 and 9 (right) that the proposed
methods give good accuracy for dense grid whether the RBF basis is MQ or IMQ6. However, the κ

of the coefficient matrices associated with the methods RCM1 and RCM2 are high. From Figure 8
(top middle), we see that when γ = 0 the error norms of the methods IRCM1 and IRCM2 are
1.175× 10−6 and 1.226× 10−6 respectively.

Now we check the influence of the parameter γ on the methods IRCM1 and IRCM2 when the
shape parameter is small. The value of the shape parameter ε = 2 is taken for each problem. We see
from Figure 10 that IRCM2 give quite a good accuracy for a small value of shape parameter in all Test
Problems 1–3. The accuracy is good when the value of γ is zero or near to zero. It can be observed from
this figure that the κ and the accuracies of the proposed methods deteriorate when the absolute value of
γ increases. In contrast, when the value of shape parameter is high (i.e., ε = 80) the κ deteriorates but
the accuracy does not affect much when |γ| is increased (see middle of Figures 2, 5 and 8). The absolute
error of IRCM1 and IRCM2 of the unknown solution on the boundary part Γ2 is shown in Figure 11.
From this figure, we observed that both the methods IRCM1 and IRCM2 give quite good accuracy.
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Figure 8. Test Problem 3, accuracy and κ versus ε, γ and N: Γ̂1 = 67, Γ̂2 = 33, γ = 1, εo = 2, ε = 80,
and N = 312 when its influence is interestless.

Accuracy in terms of error norm and conditioning of the coefficient matrices corresponding to the
proposed methods is shown in Figure 12. The values of the parameters are ε = 150, εo = 2, and γ = 20.
We observed from this figure that the proposed methods based on integrated MQ RBF performed
well both in terms of accuracy and conditioning. We have also seen that different types of boundary
conditions (i.e., Dirichlet and Neumann conditions) do not much affect the conditioning and accuracy
of the proposed methods IRCM1 and IRCM2.
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Figure 9. Test Problem 3, accuracy and κ versus εo, γ and N: Γ̂1 = 67, Γ̂2 = 33, γ = 1, εo = 2,
and N = 312 when its influence is interestless.
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Figure 10. Test Problems 1–3, accuracy and κ versus γ and ε = 2.
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Figure 11. Test Problems 1–3, absolute errors |u(v̂)− u(v̂)| using the methods IRCM1 and IRCM2
versus x on boundary parts Γ2, ε = 80, and γ = 1.
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Figure 12. Test Problems 1–3, accuracy and κ versus N. ε = 150, εo = 2, and γ = 20.

5. Conclusions

The collocation methods based on MQ and IMQ6 were set up for the numerical solution of elliptic
NMBC with variable coefficients. The results of the propsed extended methods were compared with
Kansa’s approach. The method based on IMQ6 RBF is well conditioned as compared to the collocation
method based on MQ RBF (see Figure 11) for a large value of the shape parameter ε. However,
the methods IRCM1, IRCM2, RCM1, and RCM2 became ill-conditioned for small values of shape
parameter ε (see Figures 2, 3, 5, 6, 8, and 9) but the results are reasonably accurate. This approach
can be extended to a higher dimension easily. In addition, the proposed approach can be applied to
time-dependent PDEs with nonlocal multi-point boundary conditions.

Author Contributions: Conceptualization, Z.-u.-D.; Data curation, M.A. (Muhammad Ahsan); Formal
analysis, M.A. (Masood Ahmad); Formal analysis, Investigation, Funding acquisition, E.E.M.; Investigation,
M.A. (Masood Ahmad); Methodology, M.A. (Masood Ahmad); Validation, Writing—review & editing, Project
administration, A.-H.A.-A.; Resources, W.K.; Software, M.A. (Muhammad Ahsan); Supervision, Z.-u.-D.;
Visualization, M.A. (Muhammad Ahsan); Writing—review & editing, Z.-u.-D. All authors have read and agreed
to the published version of the manuscript.

Funding: Taif University Researchers Supporting project number (TURSP-2020/20), Taif University, Taif,
Saudi Arabia.

Acknowledgments: Taif University Researchers Supporting project number (TURSP-2020/20), Taif University,
Taif, Saudi Arabia. The authors of the papers are thankful to the reviewers for their valuable comments and



Mathematics 2020, 8, 2045 16 of 19

suggestions which are fully incorporated in the revised version. As a result, the quality of the paper has been
improved considerably. We appreciate their time and effort. Moreover, The first author appreciates the support
provided by CECOS University of IT and Emerging Sciences Peshawar Pakistan.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

PDEs partial differential equation equations
ODEs ordinary differential equation equations
NMBC nonlocal multipoint boundary conditions
NBC nonlocal boundary conditions
k1,1, k1,2, k2,1, k2,2 coefficients of the diffusion equation
RBFs radial basis functions
MQ multi-quadric
GMM global meshless method
LMM local meshless method
N number of collocation points
Nx number of collocation points along x-axis
Ny number of collocation points along y-axis
ε shape parameter
Ω computational domain
Ω̂ set of scattered nodes inside Ω
Ω∗ set of scattered nodes in Ω which is subset of Ω
Γ boundary of the domain
Γ̂1 set of scattered nodes on multi-point boundary
Γ̂2 set of scattered nodes on Dirichlet boundary
L∞ absolute maximum error
γ nonlocality parameter
f, g and h given known functions
RCM2 Kansa’s radial basis function based on mulitquadric
IRCM2 Kansa’s radial basis function based on integrated Mulitquadric
RCM1 radial basis function based on mulitquadric
IRCM1 radial basis function based on integrated Mulitquadric
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