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Abstract: We introduce a new projection and contraction method with inertial and self-adaptive
techniques for solving variational inequalities and split common fixed point problems in real Hilbert
spaces. The stepsize of the algorithm is selected via a self-adaptive method and does not require
prior estimate of norm of the bounded linear operator. More so, the cost operator of the variational
inequalities does not necessarily needs to satisfies Lipschitz condition. We prove a strong convergence
result under some mild conditions and provide an application of our result to split common null point
problems. Some numerical experiments are reported to illustrate the performance of the algorithm
and compare with some existing methods.

Keywords: variational inequalities; pseudomonotone; self adaptive stepsize; extragradient method;
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1. Introduction

Let H be a real Hilbert space induced with norm ‖ · ‖ and inner product 〈·, ·〉. Let Ω be a nonempty,
closed and convex subset of H and A : Ω → H be an operator. We study the Variational Inequality
Problem (shortly, VIP) defined by

find x∗ ∈ Ω such that 〈Ax∗, u− x∗〉 ≥ 0 ∀u ∈ Ω. (1)

The solution set of (1) is denoted by S . The VIP is a powerful tool for studying many nonlinear
problems arising in mechanics, optimization, control network, equilibrium problems, and so forth;
see References [1–3]. Due to this importance, the problem has drawn the attention of many researchers
who had studied its existence of solution and proposed various iterative methods such as the
extragradient method [4–9], subgradient extragradient method [10–14], projection and contraction
method [15,16], Tseng’s extragradient method [17,18] and Bregman projection method [19,20] for
approximating its solution in various dimensions.
The operator A : Ω→ H is said to be

1. β-strongly monotone on Ω if there exists β > 0 such that

〈Ax− Ay, x− y〉 ≥ β‖x− y‖ ∀x, y ∈ Ω;

2. monotone on Ω if
〈Ax− Ay, x− y〉 ≥ 0 ∀x, y ∈ Ω;
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3. γ- strongly pseudo-monotone on Ω if there exists η > 0 such that

〈Ax, y− x〉 ≥ 0⇒ 〈Ay, y− x〉 ≥ γ‖x− y‖2,

for all x, y ∈ Ω;
4. pseudo-monotone on Ω if for all x, y ∈ Ω

〈Ax, y− x〉 ≥ 0⇒ 〈Ay, y− x〉 ≥ 0;

5. L- Lipschitz continuous on Ω if there exists a constant L > 0 such that

‖Ax− Ay‖ ≤ L‖x− y‖, ∀x, y ∈ Ω.

When L ∈ (0, 1), then A is called a contraction;
6. weakly sequentially continuous if for any {xn} ⊂ H such that xn ⇀ x̄ implies Axn ⇀ Ax̄.

It is easy to see from (1)⇒ (2)⇒ (4) and (1)⇒ (3)⇒ (4), but the converse implications do not
hold in general; see, for instance Reference [16,19].

For solving the VIP (1) in finite dimensional spaces, Korpelevich [21] introduced the Extragradient
Method (EM) as follows: 

x0 ∈ Ω ⊂ Rn,

yn = PΩ(xn − βAxn),

xn+1 = PΩ(xn − βAyn),

(2)

where β ∈
(

0, 1
L

)
, PΩ is the metric projection from H onto Ω and A : Ω → H is a monotone and

L-Lipschitz operator. See, for example, References [4,5,22,23], for some extension of the EM to infinite
dimensional Hilbert spaces. A major drawback in the EM is the that one needs to calculate at least two
projections onto the closed convex set Ω per each iteration which can be very complicated if Ω does not
have a simple structure. Censor et al. [10,11] introduced an improved method called the Subgradient
Extragradient Method (SEM) by replacing the second projection in the EM with a projection onto a
half-space as follows: 

x0 ∈ H,

yn = PΩ(xn − βAxn),

Γn = {ω ∈ H : 〈(xn − βAxn)− yn, ω− yn〉 ≤ 0},
xn+1 = PΓn(xn − βAyn),

(3)

where β ∈
(

0, 1
L

)
. The authors proved that the sequence generated by (3) converges weakly to a

solution of the VIP. Furthermore, He [24] introduced a Projection and Contraction Method (PCM)
which does not involves a projection onto the half-space as follows:

x0 ∈ H,

yn = PΩ(xn − βAxn),

Θ(xn, yn) = (xn − yn)− β(Axn − Ayn),

xn+1 = xn − ηγnΘ(xn, yn),

(4)

where η ∈ (0, 2), β ∈
(

0, 1
L

)
and γn = 〈xn−yn ,Θ(xn ,yn)〉

‖Θ(xn ,yn)‖2 . He [24] also proved that the sequence {xn}
generated by (4) converges weakly to a solution of VIP. The PCM (4) has been modified by many author
who proved its strong convergence to solution of the VIP; see for instance References [16,18,25,26].
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In particular, Cholamjiak et al. [27] introduced the following inertial PCM for solving the VIP with
pseudomonotone operator:



x0, x1 ∈ H,

wn = xn + θn(xn − xn−1),

yn = PΩ(wn − βAwn),

Θ(wn, yn) = (wn − yn)− λ(Awn − Ayn),

γn = 〈wn−yn ,Θ(wn ,yn)〉
||Θ(wn ,yn)||2

,

zn = wn − ηγnΘ(wn, yn),

xn+1 = (1− αn − δn)xn + αnzn,

(5)

where η ∈ (0, 2), β ∈
(

0, 1
L

)
, {τn} ⊂ (0, ∞) such that τn = o(αn), where {αn} ⊂ (a, 1− δn), for some

a > 0, {δn} ⊂ (0, 1), θ > 0 and θn is chosen such that 0 ≤ θn ≤ θ̄n and

θ̄n =

min
{

θ, τn
‖xn−xn−1‖

}
if xn 6= xn−1,

θ otherwise.
(6)

The authors of Reference [27] proved that the sequence {xn} generated by Algorithm (5) converges
strongly to a solution of the VIP provided the condition limn→∞

θn
αn
‖xn − xn−1‖ = 0 is satisfied.

Note that the inertial extrapolation term θn(xn − xn−1) in (5) is regarded as a means of improving
the speed of convergence of the algorithm. This process was first introduced by Polyak [28] as a
discretization of a two-order time dynamical system and has been employed by many researchers;
see for instance References [16,17,25,29–34].

The viscosity approximation method was introduced by Moudafi [35] for finding the fixed point
of a nonexpansive mapping T, that is, finding x ∈ H such that Tx = x. We denote the set of fixed
points of T by F (T) = {x ∈ H : Tx = x}. Let f : H → H be a contraction, for an arbitrary x0 ∈ H,
let {xn} be generated recursively by

xn+1 = αn f (xn) + (1− αn)Txn, n ≥ 0, (7)

where {αn} ⊂ (0, 1). Xu [36] later proved that if {αn} satisfies some certain conditions, the sequence
{xn} generated by (7) converges to the unique fixed point of T which are also solution of the
variational inequality

〈(I − f )x∗, x− x∗〉 ≥ 0, ∀x ∈ F (T). (8)

Moreover, the problem of finding a common solution of VIP and fixed point problem for a
nonlinear mapping T, that is,

find x∗ ∈ Ω such that x∗ ∈ S ∩ F (T), (9)

become very important in optimization theory due to its possible applications to mathematical models
whose constraints can be modeled as both problems. In particular, such models can be found in
practical problems such as signal processing, network resources allocation, image recovery, see for
instance, References [37–39].
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Recently, Thong and Hieu [25] introduced the following modified SEM for solving (9):

x0 ∈ H

yn = PΩ(xn − βAxn),

Γn = {ω ∈ H : 〈xn − βAxn − yn, ω− yn〉 ≤ 0},
zn = PΓn(xn − βAyn),

xn+1 = (1− αn − βn)zn + βnSzn,

(10)

and 

x0 ∈ H

yn = PΩ(xn − βAxn),

Γn = {ω ∈ H : 〈xn − βAxn − yn, ω− yn〉 ≤ 0},
zn = PΓn(xn − βAyn),

xn+1 = (1− βn)αnzn + βnSzn,

(11)

where β ∈
(

0, 1
L

)
, S : H → H is a κ-demicontractive mapping with κ ∈ [0, 1) and {αn}, {βn} ⊂ (0, 1).

The authors proved that the sequences generated by (10) and (11) converges strongly to a solution
of (9) under certain mild conditions. Also Dong et al. [31] introduced an inertial PCM for solving (9)
for a nonexpansive mapping S as follows:

x0, x1 ∈ H,

wn = xn + θn(xn − xn−1),

yn = PΩ(wn − βAwn),

Θ(wn, yn) = (wn − yn)− β(Awn − Ayn),

γn = 〈wn−yn ,Θ(wn ,yn)〉
||Θ(wn ,yn)||2

,

xn+1 = (1− αn)wn + αnS(wn − ηγnΘ(wn, yn)),

(12)

where η ∈ (0, 2), β ∈
(

0, 1
L

)
, {θn} is a non-decreasing sequence with θ1 = 0, 0 ≤ θn ≤ θ < 1 and

σ, δ > 0 are constants such that

δ >
θ2(1 + θ) + θσ

1− θ2 , and 0 < α ≤ αn ≤
[δ− θ((1 + θ) + θδ + σ)]

δ[1 + θ(1 + θ) + θδ + σ]
= ᾱ. (13)

We note that Algorithm (12) improves (10) and (11), however, it incurred the following drawbacks:

(i) the stepsize β depends on a prior estimate of the Lipschitz constant L which is very difficult to
determine in practice. Moreover in many practical problems, the cost operator may not even
satisfies Lipschitz condition; see, for example, Reference [19];

(ii) the condition (13) weaken the convergence of the algorithm;
(iii) the algorithm converges weakly to a solution of (9).

Motivated by these results, in this paper, we introduce a new inertial projection and contraction
method for finding a common solution of VIP and split common fixed point problem, that is,

find x ∈ Ω such that x ∈ S ∩ F (T) and Dx ∈ F (U), (14)

where H1, H2 are real Hilbert spaces, Ω ⊂ H1 is nonempty closed convex set, D : H1 → H2 is a
bounded linear operator, T : H1 → H1 and U : H2 → H2 are $-demicontractive mappings. It should
be observed that when H1 = H2, and U = D = I (identity operator on H2), then Problem (14) reduced
to (9). Thus (14) is general than (9). Our algorithm is designed such that the stepsize is determined by
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an Armijo line-search technique and its convergence does not require prior estimate of the Lipschitz
constant. We also employ a generalized viscosity method and proved a strong convergence result
for the sequence generated by our algorithm under certain mild conditions. We then provide some
numerical examples to illustrate the performance of our algorithm. We highlight some contributions
in this paper as follows:

• The authors of References [18,25–27,32] introduced some inertial PCMs which required a prior
estimate of the Lipschitz constant of the operator A. It is known that finding such estimate is
very difficult which also slows down the rate of convergence of the algorithm. In this paper, we
propose a new inertial PCM which does not require a prior estimate of the Lipschitz constant of A.

• The authors of Reference [16] proposed an effective PCM for solving pseudomonotone VIP in real
Hilbert space. When αn = θn = 0 in our Algorithm 1, we obtained the method of Reference [16].

• In Reference [26], the author proposed a hybrid inertial PCM for solving monotone VIP in real
Hilbert spaces. This method required computing extra projection onto the intersection of two
closed convex subsets of H which can be computationally costly. Our algorithm performs only
one projection onto C and no extra projection onto any subset of H.

2. Preliminaries

In this section, some basic definitions and results which are needed for establishing our results
would be given. In the sequel, H is a real Hilbert space, Ω is nonempty, closed and convex subset of
H, we write xn → x to denotes {xn} converges strongly to x and xn ⇀ x to denotes {xn} converges
weakly to x.

The metric projection of x ∈ H onto C is defined as the necessary unique vector PΩ(x) satisfying

||x− PΩx|| ≤ ||x− y|| ∀ y ∈ Ω.

It is well known that PΩ has the following properties (see, e.g., Reference [40]).

(i) For each x ∈ H and v ∈ Ω,

v = PΩx ⇔ 〈x− v, v− y〉 ≥ 0, ∀y ∈ Ω. (15)

(ii) For any x, y ∈ H,
〈PΩx− PΩy, x− y〉 ≥ ||PΩx− PΩy||2.

(iii) For any x ∈ H and y ∈ C,

||PΩx− y||2 ≤ ||x− y||2 − ||x− PΩx||2. (16)

For any real Hilbert space H, it is known that the following identities hold
(see, e.g., Reference [41]).

Lemma 1. For all u, v ∈ H, then

(i) ||u + v||2 = ||u||2 + 2〈u, v〉+ ||v||2,
(ii) ||u + v||2 ≤ ||u||2 + 2〈v, u + v〉,
(iii) ||λu + (1− λ)v||2 = λ||u||2 + (1− λ)||v||2 − λ(1− λ)||u− v||2, ∀λ ∈ [0, 1].

The following are types of nonlinear mappings we considered:

Definition 1 ([42]). A mapping T : H → H is called

(i) nonexpansive if
||Tu− Tv|| ≤ ||u− v||, ∀ u, v ∈ H;
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(ii) quasi-nonexpansive mapping if F (T) 6= ∅ and

||Tu− z|| ≤ ||u− z||, ∀ u ∈ H, z ∈ F (T);

(iii) µ-strictly pseudocontractive if there exists a constant µ ∈ [0, 1) such that

||Tu− Tv||2 ≤ ||u− v||2 + µ||(I − T)u− (I − T)v||2 ∀ u, v ∈ H;

(iv) $-demicontractive mapping if there exists $ ∈ [0, 1) and F (T) 6= ∅ such that

||Tu− z||2 ≤ ||u− z||2 + $||u− Tu||2, ∀ u ∈ H, z ∈ F (T).

It is well known that the demicontractive mappings posseses the following property.

Lemma 2. ([38], Remark 4.2, p. 1506) Suppose F(T) 6= ∅ where T is a $-demicontractive self-mapping on
H. Define Tλ := (1− λ)I + λT where λ ∈ (0, 1]. Then

(i) Tλ is a quasi-nonexpansive mapping if λ ∈ [0, 1− $];
(ii) F(T) is closed and convex.

Lemma 3 ([7]). Let Ω be a nonempty closed and convex subset of a real Hilbert space H. For any w ∈ H and
λ > 0, we denote

rλ(w) := w− PΩ(w− λAw), (17)

then
min{1, λ}||r1(w)|| ≤ ||rλ(w)|| ≤ max{1, λ}||r1(w)||.

Lemma 4 ([6]). Given x ∈ H and beta ≥ γ > 0. Then we obtain

‖u− PΩ(u− βAu)‖
β

≤ ‖u− PΩ(u− γAu)‖
γ

, (18)

and
‖u− PΩ(u− γAu)‖ ≤ ‖u− PΩ(u− βAu)‖.

Lemma 5. ([43], Lemma 2.1) Consider the VIP (1) with Ω being a nonempty closed convex subset of H and
A : Ω→ H is pseudomonotone and continuous. Then w ∈ S if and only if

〈Ax, x− w〉 ≥ 0 ∀x ∈ Ω.

Lemma 6 ([44]). Let S : C → H be a nonexpansive mapping and T = (I − αµF)S, where F is k-Lipschitz,
η-strongly monotone and α ∈ (0, 1]. Then T is a contraction map if 0 < µ < 2η

k2 , that is,

‖Tu− Tv‖ ≤ (1− ατ)‖u− v‖ ∀u, v ∈ H,

where τ = 1−
√

1− µ(2η − µk2) ∈ (0, 1].

Lemma 7. ([45], Lemma 3.1) Let {ān} and {cn} be sequences of nonnegative real numbers such that

ān+1 ≤ (1− δ̄n)ān + bn + cn, n ≥ 1,

where {δ̄n} is a sequence in (0, 1) and {bn} is a real sequence. Assume that ∑∞
n=0 cn < ∞. Then, the following

results hold:

(i) If bn ≤ δ̄n M for some M ≥ 0, then {ān} is a bounded sequence.



Mathematics 2020, 8, 2039 7 of 29

(ii) If ∑∞
n=0 δ̄n = ∞ and lim supn→∞

bn

δ̄n
≤ 0, then limn→∞ ān = 0.

Lemma 8. ([42], Lemma 3.1) Given a sequence of real numbers {an} such that there exists a subsequence
{ani} of {an} with ani < ani+1 for all i ∈ N. Let {mk} be integers defined by

mk = max{j ≤ k : aj < aj+1}.

Then {mk} is a non-decreasing sequence verifying limn→∞ mn = ∞, and for all k ∈ N, the following
estimate hold:

amk ≤ amk+1, and ak ≤ amk+1.

3. Results

In this section, we propose a new inertial projection and contraction for solving pseudomonotone
variational inequality and split common fixed point problem.

Let H1, H2 be real Hilbert spaces, Ω be a nonempty closed convex subset of H1, D : H1 → H2 be a
bounded linear operator, A : H1 → H1 be a pseudomonotone operator which is weakly sequentually
continuous in Ω, T : H1 → H1 and U : H2 → H2 be $i demicontractive mappings with i = 1, 2
respectively. Let f : H1 → H1 be a contraction mapping with constant k ∈ (0, 1) and B : H1 → H1 be a
Lipschitz and strongly monotone operator with coefficients λ ∈ (0, 1) and σ > 0 respectively such that
νk < τ̄ = 1−

√
1− ξ(2σ− ξλ2) for ν ≥ 0 and ξ ∈

(
0, 2σ

λ2

)
. Suppose the solution set

Γ = {x ∈ Ω : x ∈ S ∩ F (T) and Dx ∈ F (U)} 6= ∅.

Let {δn}, {θn}, {ζn} be sequences in (0, 1) and {τn} ⊂ (0, 1) such that

(C1) limn→∞ δn = 0, and ∑∞
n=0 δn = +∞;

(C2) 0 < lim infn→∞ θn ≤ lim supn→∞ θn < 1;
(C3) 0 < lim infn→∞ ζn ≤ lim supn→∞ ζn < 1− $1;
(C4) τn = o(δn), that is, limn→∞

τn
δn

= 0.

We now present our algorithm as follows:

Remark 1. Note that we are at a solution of Problem (14) if wn = yn = zn. In our convergence analysis,
we will implicitly assumed that this does not occur after finite iterations so that our algorithm produces infinite
sequences for the convergence analysis. More so, we show in the next result that the stepsize defined by (22)
is well-defined.

Lemma 9. Suppose {xn} is generated by Algorithm 1. Then there exists a non-negative integer `n

satisfying (22). In addition

γn ≥
(1− ϑ)

(1 + ϑ)2 . (19)

Proof. Let rρ`n (wn) = wn − PΩ(wn − ρ`n Awn) = 0 for some `n ≥ 0. Take `n = l0 for which (22) is
satisfied. Suppose for some `1 > 0, r

ρ`1 6= 0 and assume that (22) does not hold, that is,

ρ`1 ||Awn − A(PΩ(wn − ρ`1 Awn))|| > ϑ||r
ρ`1 (wn)||.
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Using Lemma 3 and since ρ ∈ (0, 1), we have

||Awn − A(PΩ(wn − ρ`1 Awn))|| >
ϑ

ρ`1
||r

ρ`1 (wn)||

≥ ϑ

ρ`1
min{1, ρ`1}||r1(wn)||

= ϑ||r1(wn)||. (20)

Recall that PΩ is continuous , then PΩ(wn − ρ`1 Awn) → PΩ(wn) as `1 → ∞. Now, we consider
the following possible cases.

Algorithm 1: GVIPCM
Initialization: Choose η ∈ (0, 2), ρ, ϑ ∈ (0, 1), ε, `n > 0, x0, x1 ∈ H be pick arbitrarily.
Iterative steps: Given the iterates xn−1 and xn, α > 3, for each n ≥ 1, calculate the xn+1 iterate
as follows.

Step 1: Choose αn such that 0 ≤ αn ≤ ᾱn where

ᾱn =

min
{

n−1
n+α−1 , τn

‖xn−xn−1‖

}
, if xn 6= xn−1,

n−1
n+α−1 , otherwise.

(21)

Step 2: Compute

wn = xn + αn(xn − xn−1),

yn = PΩ(wn − βn Awn),

where βn = ρ`n and `n is the smallest non-negative integer satisfying

βn‖Awn − Ayn‖ ≤ ϑ‖wn − yn‖. (22)

If wn = yn : Set wn = zn and go to Step 4. Else: do Step 3.
Step 3: Calculate

Θ(wn, yn) = wn − yn − βn(Awn − Ayn),

γn =


〈wn−yn ,Θ(wn ,yn)〉
‖Θ(wn ,yn)‖2 if Θ(wn, yn) 6= 0,

0, otherwise,

zn = wn − ηγnΘ(wn, yn). (23)

Step 4: Calculate xn+1 as follows

un = (I − µnD∗(I −U)D)zn,

xn+1 = δnν f (xn) + θnxn + ((1− θn)I − δnξB)Tζn un, (24)

where Tζn = (1− ζn)I + ζnT for ζn ∈ (0, 1) and

µn =

min
{

ε, (1−$2)‖(I−U)Dzn‖2

‖D∗(I−U)Dzn‖2

}
if Dzn 6= U(Dzn),

ε otherwise.
(25)
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Case I: Suppose wn ∈ Ω. Then wn = PΩ(wn). Since r
ρ`1 (wn) 6= 0 and ρ`1 ≤ 1, it follows from

Lemma 3 that

0 < ‖r
ρ`1 (wn)|| ≤ max{1, ρ`1}‖r1(wn)‖

= ‖r1(wn)‖.

Passing to the limit as `1 → ∞ in (20), we obtain

0 = ‖Awn − Awn‖ ≥ ϑ‖r1(wn)‖ > 0. (26)

Then, we arrived at a contradiction and so (22) is valid.
Case II: Assume that wn /∈ Ω, then

ρ`1‖Awn − Ayn‖ → 0 as `1 → ∞.

Also

lim
`1→∞

ϑ‖r
ρ`1 (wn)‖ = lim

`1→∞
ϑ‖wn − PΩ(wn − ρ`1 Awn)‖

= ϑ‖wn − PΩ(wn)‖ > 0.

This is a contraction. Therefore, we conclude that the line search (22) is well defined.
Furthermore, from (22), we have

〈wn − yn, Θ(wn, yn)〉 = 〈wn − yn, wn − yn − βn(Awn − Ayn)〉
= ‖wn − yn‖2 − βn〈wn − yn, Awn − Ayn〉
≥ ‖wn − yn‖2 − βn‖wn − yn‖‖Awn − Ayn‖
≥ ‖wn − yn‖2 − ϑ‖wn − yn‖2

= (1− ϑ)‖wn − yn‖2. (27)

Also

‖Θ(wn, yn)‖ = ‖wn − yn + βn(Ayn − Awn)‖
≤ ‖wn − yn‖+ βn‖Ayn − Awn‖
≤ (1 + ϑ)‖wn − yn‖.

Hence, from (27) and (28) we have

γn =
〈wn − yn, Θ(wn, yn)〉
‖Θ(wn, yn)‖2

≥ (1− ϑ)

(1 + ϑ)2 .

Lemma 10. Let {xn} be the sequence generated by Algorithm 1. Then {xn} is bounded.
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Proof. Let w∗ ∈ Γ, then w∗ ∈ S , T(w∗) = w∗ and U(Dw∗) = Dw∗. Thus, we have

‖zn − w∗‖2 = ‖wn − w∗ − ηγnΘ(wn, yn)‖2

= ‖wn − w∗‖2 − 2ηγn〈wn − w∗, Θ(wn − yn)〉+ ‖ηγnΘ(wn, yn)‖2

= ‖wn − w∗‖2 − 2ηγn〈wn − yn, Θ(wn, yn)〉 − 2ηγn〈yn − w∗, Θ(wn, yn)〉
+η2γ2

n‖Θ(wn, yn)‖2.

(28)

Since A is pseudomonotone and w∗ ∈ S , then

〈Ayn, yn − w∗〉 ≥ 0. (29)

Also from (15), we have
〈wn − βn Awn − yn, yn − w∗〉 ≥ 0. (30)

Since βn > 0 and combining (28) and (29), we obtain

〈wn − βn Awn − yn, yn − w∗〉+ βn〈Ayn, yn − w∗〉 ≥ 0.

This implies that
〈wn − yn − βn(Awn − Ayn), yn − w∗〉 ≥ 0.

Hence
〈yn − w∗, Θ(wn, yn)〉 ≥ 0. (31)

Then from (28) and (31), it follows that

‖zn − w∗‖2 ≤ ‖wn − w∗‖2 − 2ηγn〈wn − yn, Θ(wn, yn)〉+ η2γ2
n‖Θ(wn, yn)‖2.

Using the definition of γn, we obtain

‖zn − w∗‖2 ≤ ‖wn − w∗‖2 − 2ηγn〈wn − yn, Θ(wn, yn)〉+ η2γn〈wn − yn, Θ(wn, yn)〉
= ‖wn − w∗‖2 − η(2− η)〈wn − yn, Θ(wn, yn)〉. (32)

More so from (23), we get

γn〈wn − yn, Θ(wn, yn)〉 = ‖γnΘ(wn, yn)‖2

=
1
η2 ‖wn − zn‖2. (33)

Substituting (33) into (32), we have

‖zn − w∗‖2 ≤ ‖wn − w∗‖2 − 2− η

η
‖wn − zn‖2. (34)

Since η ∈ (0, 2), then we obtain

‖zn − w∗‖2 ≤ ‖wn − w∗‖2.
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Furthermore using Lemma 1(i), we have

‖un − w∗‖2 = ‖zn − w∗ − µnD∗(I −U)Dzn‖2

= ‖zn − w∗‖2 − 2µn〈D∗(I −U)Dzn, zn − w∗〉+ µ2
n‖D∗(I −U)Dzn‖2

= ‖zn − w∗‖2 − 2µn〈(I −U)Dzn, Dzn − Dw∗〉+ µ2
n‖D∗(I −U)Dzn‖2

= ‖zn − w∗‖2 − 2µn〈(I −U)Dzn, Dzn − Dw∗ − (I −U)Dzn + (I −U)Dzn〉+ µ2
n‖D∗(I −U)Dzn‖2

= ‖zn − w∗‖2 − 2µn〈(I −U)Dzn, U(Dzn)− Dw∗〉 − 2µn‖(I −U)Dzn‖2 (35)

+µ2
n‖D∗(I −U)Dzn‖2

= ‖zn − w∗‖2 − µn(‖Dzn − Dw∗‖2 − ‖(I −U)Dzn‖2 − ‖U(Dzn)− Dw∗‖2)

−2µn‖(I −U)Dzn‖2 + µ2
n‖D∗(I −U)Dzn‖2

= ‖zn − w∗‖2 − µn‖Dzn − Dw∗‖2 − µn‖(I −U)Dzn‖2 + µn‖U(Dzn)− Dw∗‖2

+µ2
n‖D∗(I −U)Dzn‖2

≤ ‖zn − w∗‖2 − µn‖Dzn − Dw∗‖2 − µn‖(I −U)Dzn‖2 + µn(‖Dzn − Dw∗‖2 + $2‖(I −U)Dzn‖2)

+µ2
n‖D∗(I −U)Dzn‖2

= ‖zn − w∗‖2 − µn

[
(1− $2)‖(I −U)Dzn‖2 − µn‖D∗(I −U)Dzn‖2

]
.

Using (25), we obtain

‖un − w∗‖2 ≤ ‖zn − w∗‖2.

Moreover

‖Tζn un − w∗‖2 = ‖(un − w∗) + ζn(Tun − un)‖2

= ‖un − w∗‖2 − 2ζn〈un − w∗, un − Tun〉+ ζ2
n‖un − Tun‖2 (36)

≤ ‖un − w∗‖2 − ζn(1− $1)‖un − Tun‖2 + ζ2
n‖un − Tun‖2

= ‖un − w∗‖2 − ζn(1− $1 − ζn)‖un − Tun‖2.

Using condition (C3), we obtain

‖Tζn un − w∗‖2 ≤ ‖un − w∗‖2.

Therefore from Lemma 6, we have

‖xn+1 − w∗‖ = ‖δn(ν f (xn)− w∗) + θn(xn − w∗) + ((1− θn)I − δnξB)(Tζn un − w∗)‖

≤ δn‖ν f (xn)− w∗‖+ θn‖xn − w∗‖+ ‖((1− θn)I − δnξB)Tζn un − ((1− θn)I − δnξB)w∗‖

= δn(‖ν( f (xn)− f (w∗))‖+ ‖ν f (w∗)− w∗‖) + θn‖xn − w∗‖

+(1− θn)

∥∥∥∥(I − δn

1− θn
ξB
)

Tζn un −
(

I − δn

1− θn
ξB
)

w∗
∥∥∥∥

≤ δnνk‖xn − w∗‖+ δn‖v f (w∗)− w∗‖+ θn‖xn − w∗‖ (37)

+(1− θn)

(
1− δn

1− θn
τ̄

)
‖Tζn un − w∗‖

≤ δnνk‖xn − w∗‖+ δn‖v f (w∗)− w∗‖+ θn‖xn − w∗‖+ (1− θn − δn τ̄)‖un − w∗‖

≤ δnνk‖xn − w∗‖+ δn‖v f (w∗)− w∗‖+ θn‖xn − w∗‖+ (1− θn − δn τ̄)‖wn − w∗‖

≤ (δnνk + θn)‖xn − w∗‖+ δn‖ν f (w∗)− w∗‖+ (1− θn − δn τ̄)(‖xn − w∗‖+ αn‖xn − xn−1‖)

= [(δnνk + θn) + (1− θn − δn τ̄)]‖xn − w∗‖+ δn‖ν f (w∗)− w∗‖+ (1− θn − δn τ̄)αn‖xn − xn−1‖

= (1− δn(τ̄ − νk))‖xn − w∗‖+ δn(τ̄ − νk)
[ ‖ν f (w∗)− w∗‖

τ̄ − νk

+

(
1− θn − δn τ̄

τ̄ − νk

)
× αn

δn
‖xn − xn−1‖

]
.
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Putting

σn =

(
1− θn − δnτ̄

τ̄ − νk

)
× αn

δn
‖xn − xn−1‖,

it follows from condition (C4) that limn→∞ σn = 0, this {σn} is bounded. Let

M1 = max

{
‖ν f (w∗)− w∗‖

τ̄ − νk
, sup

n∈N
σn

}
.

Thus from (37), we obtain

‖xn+1 − w∗‖ ≤ (1− δn(τ̄ − νk))‖xn − w∗‖+ δn(τ̄ − νk)M1. (38)

Putting ān = ‖xn+1 − w∗‖, δ̄n = δn(τ̄ − νk), M = M1 and cn = 0 in Lemma 7(i), it follows
from (38) that {‖xn − w∗‖} is bounded. This implies that {xn} is bounded and consequently,
{wn}, {yn}, {un} are bounded too.

Lemma 11. Let {wnj} and {ynj} be subsequences of the sequences {wn} and {ynj} generated by Algorithm 1,
respectively, such that xnj ⇀ x̄ ∈ Ω. Suppose ‖xnj − ynj‖ → 0 as j→ ∞. Then

(i) 0 ≤ lim infj→∞〈Awnj , w− wnj〉 for all w ∈ Ω;
(ii) x̄ ∈ S .

Proof. (i) Since ynj = PΩ(wnj − βnj Awnj), then from (15), we have

〈wnj − βnj Awnj − ynj , w− ynj〉 ≥ 0 ∀w ∈ Ω. (39)

Thus, we have

〈wnj − ynj , w− ynj〉 ≤ βnj〈Awnj , w− ynj〉
= βnj〈Awnj , wnj − ynj〉+ βnj〈Awnj , w− wnj〉 ∀w ∈ Ω.

Hence

1
βnj

〈wnj − ynj , w− ynj〉+ 〈Awnj , ynj − wnj〉 ≤ 〈Awnj , w− wnj〉 ∀w ∈ Ω. (40)

Next, we consider the following possible cases based on {βnj}.
Case I: Assume that lim infj→∞ βnj = 0. Let vnj = PΩ(wnj − βnj`

−1 Awnj). Note that βnj`
−1 > βnj ,

hence by using Lemma 4, we obtain

‖wnj − vnj‖ ≤
1
`
‖wnj − ynj‖ → 0 as j→ ∞.

More so, vnj ⇀ x̄ ∈ Ω, which implies that {vnj} is a bounded sequence. By the uniform continuity
of A, we have

‖Awnj − Avnj‖ → 0 as j→ ∞. (41)

Thus
1
ϑ
‖Awnj − Avnj‖ >

‖wnj − vnj‖
βnj`

−1 . (42)

Combining (41) and (42), we have

lim
j→∞

‖wnj − vnj‖
βnj`

−1 = 0.
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More so, from (15), we get

〈wnj − βnj`
−1 Awnj − vnj , w− vnj〉 ≤ 0 ∀w ∈ Ω.

Hence

1
βnj`

−1 〈wnj − vnj , w− vnj〉+ 〈Awnj , vnj − wnj〉 ≤ 〈Awnj , w− wnj〉 ∀w ∈ Ω.

Taking limit of the above inequality as j→ ∞, then we get

lim inf
j→∞

〈Awnj , w− wnj〉 ≥ 0.

Case II: On the other hand, suppose lim infj→∞ βnj > 0. Passing limit to (40) and noting that
‖wnj − ynj‖ → 0 as j→ ∞, we have

lim inf
j→∞

〈Awnj , w− wnj〉 ≥ 0 ∀w ∈ C.

This established (i). Next we show (ii).
Now let {ε j} ⊂ (0, 1) such that ε j → 0 as j → ∞. For each j ≥ 1, we denote by N the smallest

non-negative integer such that

〈Awnj , y− wnj〉+ ε j ≥ 0 ∀j ≥ N,

where the existence of N follows from (i). Thus

〈Awnj , y + ε jknj − wnj〉 ≥ 0 ∀j ≥ N,

for some knj ∈ H1 satisfying 1 = 〈Awnj , knj〉. Since A is pseudomonotone, we have

〈(Ay + ε jknj), y + ε jknj − wnj〉 ≥ 0 ∀j ≥ N.

This implies that

〈Ay, y− wnj〉 ≥ 〈Ay− (Ay + ε jknj), y + ε jknj − wnj〉 − ε j〈Ay, knj〉 ∀j ≥ N. (43)

Since j→ ∞ and A is continuous, then the right-hand side of (43) tends to zero and thus, we obtain

lim inf
j→∞

〈Ay, y− wnj〉 ≥ 0 ∀y ∈ Ω.

Then
〈Ay, y− x̄〉 = lim

j→∞
〈Ay, y− wnj〉 ≥ 0 ∀y ∈ Ω.

Hence, in view of Lemma 5, we obtain that x̄ ∈ S .

Lemma 12. Let {xn} be the sequence generated by Algorithm 1. Then the following inequality holds for all
w∗ ∈ Γ and n ∈ N :

Sn+1 ≤ (1− ᾱn)Sn + ᾱnbn + cn,

where Sn = ‖xn −w∗‖2, ᾱn = δn(τ̄−2νk)
1−δnνk , bn = 2〈ν f (w∗)−w∗ ,xn+1−ξBw∗〉

τ̄−2νk , cn = (1−θn−δn τ̄)
1−δnνk αn M2‖xn − xn−1‖.
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Proof. Clearly

‖wn − w∗‖2 = ‖xn − w∗ + αn(xn − xn−1)‖2

= ‖xn − w∗‖2 + α2
n‖xn − xn−1‖2 + 2αn〈xn − w∗, xn − xn−1〉 (44)

= ‖xn − w∗‖2 + α2
n‖xn − xn−1‖2 + αn(‖xn − w∗‖2 + ‖xn − xn−1‖2 − ‖xn−1 − w∗‖2)

≤ ‖xn − w∗‖2 + 2αn‖xn − xn−1‖2 + αn(‖xn − w∗‖+ ‖xn−1 − w∗‖)‖xn − xn−1‖

≤ ‖xn − w∗‖2 + αn M2‖xn − xn−1‖,

where M2 = supn≥0{2‖xn − xn−1‖+ ‖xn − w∗‖+ ‖xn−1 − w∗‖}. Also

‖xn+1 − w∗‖2 = ‖δn(ν f (xn)− ξBw∗) + θn(xn − w∗) + ((1− θn)I − δnξB)(Tζn un − w∗)‖2

≤ ‖θn(xn − w∗) + ((1− θn)I − δnξB)(Tζn un − w∗)‖2 + 2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉

≤ θ2
n‖xn − w∗‖2 + (1− θn − δn τ̄)2‖Tζn un − w∗‖2 + 2θn(1− θn − δn τ̄)‖xn − w∗‖‖Tζn un − w∗‖

+2δnν‖ f (xn)− f (w∗)‖‖xn+1 − w∗‖+ 2δn〈ν f (w∗)− ξBw∗, xn+1 − w∗〉 (45)

≤ θn‖xn − w∗‖2 + (1− θn − δn τ̄)‖Tζn un − w∗‖2 + 2δnνk‖xn − w∗‖‖xn+1 − w∗‖

+2δn〈ν f (w∗)− ξBw∗, xn+1 − w∗〉

≤ θn‖xn − w∗‖2 + (1− θn − δn τ̄)‖un − w∗‖2 + 2δnνk‖xn − w∗‖‖xn+1 − w∗‖

+2δn〈ν f (w∗)− ξBw∗, xn+1 − w∗〉

≤ θn‖xn − w∗‖2 + (1− θn − δn τ̄)‖wn − w∗‖2 + δnνk(‖xn − w∗‖2 + ‖xn+1 − w∗‖)

+2δn〈ν f (w∗)− ξBw∗, xn+1 − w∗〉.

Using (44) in the expression above, we get

‖xn+1 − w∗‖2 ≤ θn‖xn − w∗‖2 + (1− θn − δn τ̄)(‖xn − w∗‖2 + αn M2‖xn − xn−1‖)

+δnνk(‖xn − w∗‖2 + ‖xn+1 − w∗‖) + 2δn〈ν f (w∗)− ξBw∗, xn+1 − w∗〉

= (1− δn(τ̄ − νk))‖xn − w∗‖2 + (1− θn − δn τ̄)αn M2‖xn − xn−1‖+ δnνk‖xn+1 − w∗‖

+2δn〈ν f (w∗)− ξBw∗, xn+1 − w∗〉

≤ (1− δn(τ̄ − νk))
1− δnνk

‖xn − w∗‖2 +
(1− θn − δn τ̄)

1− δnνk
αn M2‖xn − xn−1‖

+
2δn

1− δnνk
〈ν f (w∗)− ξBw∗, xn+1 − w∗〉

=

(
1− δn(τ̄ − 2νk)

1− δnνk

)
‖xn − x∗‖2 +

δn(τ̄ − 2νk)
1− δnνk

× 2〈ν f (w∗)− ξBw∗, xn+1 − w∗〉
τ̄ − 2νk

+
(1− θn − δn τ̄)

1− δnνk
αn M2‖xn − xn−1‖.

Now, we present our main theorem.

Theorem 1. Let {xn} be the sequence generated by Algorithm 1. Then {xn} converges strongly to a point x̄
where x̄ = PΓ(I − ξB + ν f )(x̄) is the unique solution of the variational inequalities

〈(ξB− ν f )x̄, w− x̄〉 ≥ 0 ∀w ∈ Γ.

Proof. Let w∗ ∈ Γ and Sn = ‖xn − w∗‖2. We consider the following two cases.
Case A: Suppose {Sn} is monotonically non-increasing. Then, since {Sn} is bounded, we obtain

Sn − Sn+1 → 0 as n→ ∞.
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From (36), (44) and (45), we have

‖xn+1 − w∗‖2 = ‖δn(ν f (xn)− ξBw∗) + θn(xn − w∗) + ((1− θn)I − δnξB)(Tζn un − w∗)‖2

≤ ‖θn(xn − w∗) + ((1− θn)I − δnξB)(Tζn un − w∗)‖2

+2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉

≤ θn‖xn − w∗‖2 + (1− θn − δn τ̄)‖Tζn un − w∗‖2

+2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉

≤ θn‖xn − w∗‖2 + (1− θn − δn τ̄)[‖un − w∗‖2 − ζn(1− $1 − ζn)‖un − Tun‖2]

+2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉

≤ θn‖xn − w∗‖2 + (1− θn − δn τ̄)[‖xn − w∗‖2 + αn M2‖xn − xn−1‖]

−(1− θn − δn τ̄)ζn(1− $1 − ζn)‖un − Tun‖2 + 2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉

= (1− δn τ̄)‖xn − w∗‖2 + (1− θn − δn τ̄)αn M2‖xn − xn−1‖

−(1− θn − δn τ̄)ζn(1− $1 − ζn)‖un − Tun‖2 + 2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉.

Since δn → 0 and αn
δn
‖xn − xn−1‖ → 0 as n→ ∞, thus we have

(1− θn − δnτ̄)ζn(1− $1 − ζn)‖un − Tun‖2

≤ Sn − Sn+1 − δnτ̄‖xn − w∗‖2 + δn(1− θn − δnτ̄)× αn

δn
M2‖xn − xn−1‖

+ 2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉 → 0. (46)

Using condition (C2) and (C3), we obtain

lim
n→∞

‖un − Tun‖ = 0. (47)

Also, from (35), (44) and (45), we have

‖xn+1 − w∗‖2 = ‖δn(ν f (xn)− ξBw∗) + θn(xn − w∗) + ((1− θn)I − δnξB)(Tζn un − w∗)‖2

≤ ‖θn(xn − w∗) + ((1− θn)I − δnξB)(Tζn un − w∗)‖2

+2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉

≤ θn‖xn − w∗‖2 + (1− θn − δnτ̄)‖Tζn un − w∗‖2

+2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉

≤ θn‖xn − w∗‖2 + (1− θn − δnτ̄)‖un − w∗‖2 + 2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉

≤ θn‖xn − w∗‖2 + (1− θn − δnτ̄)
[
‖zn − w∗‖2 − µn

[
(1− $2)‖(I −U)Dzn‖2

−µn‖D∗(I −U)Dzn‖2
]]

+ 2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉

≤ θn‖xn − w∗‖2 + (1− θn − δnτ̄)[‖xn − w∗‖2 + αn M2‖xn − xn−1‖]

−(1− θn − δnτ̄)µn

[
(1− $2)‖(I −U)Dzn‖2 − µn‖D∗(I −U)Dzn‖2

]
+2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉.

This implies that

µn

[
(1− $2)‖(I −U)Dzn‖2 − µn‖D∗(I −U)Dzn‖2

]
≤ Sn − Sn+1 − δnτ̄‖xn − w∗‖2 + δn(1− θn − δnτ̄)× αn

δn
M2‖xn − xn−1‖

+ 2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉 → 0 as n→ ∞. (48)
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From (25) and (48), we obtain

lim
n→∞

‖(I −U)Dzn‖ = 0. (49)

More so, from (34), (44) and (45), we get

‖xn+1 − w∗‖2 = ‖δn(ν f (xn)− ξBw∗) + θn(xn − w∗) + ((1− θn)I − δnξB)(Tζn un − w∗)‖2

≤ ‖θn(xn − w∗) + ((1− θn)I − δnξB)(Tζn un − w∗)‖2

+2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉

≤ θn‖xn − w∗‖2 + (1− θn − δn τ̄)‖Tζn un − w∗‖2

+2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉

≤ θn‖xn − w∗‖2 + (1− θn − δn τ̄)‖zn − w∗‖2 + 2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉

≤ θn‖xn − w∗‖2 + (1− θn − δn τ̄)

[
‖wn − w∗‖2 − 2− η

η
‖wn − zn‖2

]
+2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉

≤ θn‖xn − w∗‖2 + (1− θn − δn τ̄)

[
(‖xn − w∗‖2 + αn M2‖xn − xn−1‖)−

2− η

η
‖wn − zn‖2

]
+2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉.

Hence, we have

2− η

η
‖wn − zn‖2 ≤ Sn − Sn+1 − δnτ̄‖xn − w∗‖2 + 2δn〈ν f (xn)− ξBw∗, xn+1 − w∗〉 → 0.

Since η ∈ (0, 2) and δn → 0, then we obtain

lim
n→∞

‖wn − zn‖ = 0. (50)

Also from (19) and (34), we have

〈wn − yn, Θ(wn, yn)〉 =
1

η2γn
‖zn − wn‖2

≤ (1 + ϑ)2

η2(1− ϑ)
‖zn − wn‖2.

Hence using (27) in the above expression, we get

‖wn − yn‖2 ≤ (1 + ϑ)2

η2(1− ϑ)2 ‖zn − wn‖2.

This implies that
lim

n→∞
‖wn − yn‖ = 0. (51)

Clearly,

lim
n→∞

‖wn − xn‖ = lim
n→∞

δn ×
αn

δn
‖xn − xn−1‖ = 0. (52)

Then from (51) and (52), we have

lim
n→∞

‖yn − xn‖ = lim
n→∞

(‖wn − xn‖+ ‖yn − wn‖) = 0. (53)

Similarly from (50) and (51), we have

lim
n→∞

‖zn − xn‖ = 0. (54)
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On the other hand, from (49), we have

‖un − zn‖ = |µn|‖D∗(I −U)Dzn‖
≤ |µn|‖D‖‖(I −U)Dzn‖ → 0.

Hence
lim

n→∞
‖un − xn‖ = 0. (55)

Moreover

‖Tζn un − un‖ = ‖(1− ζn)un + ζnTun − un‖
≤ ζn‖un − Tun‖ → 0,

and

‖xn+1 − un‖ = ‖δn(ν f (xn)− ξBun) + θn(xn − un) + ((1− θn)I − δnξB)(Tζn un − un)‖
≤ δn‖ν f (xn)− ξBun‖+ θn‖xn − un‖+ (1− θn − δnτ̄)‖Tζn un − un‖ → 0.

Hence
‖xn+1 − xn‖ ≤ ‖xn+1 − un‖+ ‖un − xn‖ → 0. (56)

Since {xn} is bounded, then there exists a subsequence {xnj} of {xn} such that xnj ⇀ x̄ ∈ Ω.
It follows from (52), (53) and (54) that wnj ⇀ x̄, ynj ⇀ x̄ and znj ⇀ x̄ respectively. Since ‖wn − yn‖ → 0
and wnj ⇀ x̄, it follows from Lemma 11 that x̄ ∈ S . Also, since ‖unj − xnj‖ → 0, then unj ⇀ x̄.
Since ‖un − Tun‖ → 0, it follows from the demiclosedness of T that x̄ ∈ F (T). Moreover, D is a
bounded linear operator, then Dznj ⇀ Dx̄ ∈ H2. Then it follows from (49) and the demiclosedness of
I −U that Dx̄ ∈ F (U). Therefore x̄ ∈ Γ. We now show that the sequence {xn} converges strongly to a
point w, where w = PΓ(I − ξB + ν f )(w). It follows from (15) and (56) that

lim sup
n→∞

〈ν f (w)− ξBw, xn+1 − w〉 = lim
j→∞
〈ν f (w)− ξBw, xnj+1 − w〉

= 〈ν f (w)− ξBw, x̄− w〉
= 〈(I − ξB + ν f )w− w, x̄− w〉 ≤ 0.

Hence from Lemma 7 and 12, we have ‖xn − w‖ → 0 as n → ∞. Thus {xn} converges strongly
to w.

Case B: Suppose {Sn} is not monotonically decreasing. Let τ : N→ N be a function defined by

τ(n) = max{k ∈ N : k ≥ n, Sk ≤ Sk+1}

fo all n ≥ n0 (for some n0 large enough). From Lemma 8, it is clear that τ is a non-decreasing sequence
such that τ(n)→ ∞ and

Sτ(n) ≤ Sτ(n)+1

for all n ≥ n0. Hence from Lemma 12, we have

0 ≤ Sτ(n)+1 − Sτ(n)

≤ (1− ᾱτ(n))Sτ(n) + ᾱτ(n)bτ(n) + cτ(n) − Sτ(n),
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where

ᾱτ(n) =
δτ(n)(τ̄ − 2νk)

1− δτ(n)νk
, bτ(n) =

2〈ν f (w∗)− w∗, xτ(n)+1 − ξBw∗〉
τ̄ − 2νk

,

cτ(n) =
(1− θτ(n) − δτ(n)τ̄)ατ(n)M2‖xτ(n) − xτ(n)−1‖

1− δτ(n)νk

for some M2 > 0. Then, we have

Sτ(n) ≤ bτ(n) +
cτ(n)

ᾱτ(n)
. (57)

Following similar proof as in Case A, we can show that

‖xτ(n) − yτ(n)‖ → 0, ‖xτ(n) − zτ(n)‖ → 0, ‖xτ(n) − uτ(n)‖ → 0,

‖(I − T)uτ(n)‖ → 0, ‖(I −U)Dzτ(n)‖ → 0, ‖xτ(n)+1 − xτ(n)‖ → 0

and
lim sup

n→∞
〈ν f (w∗)− ξBw∗, xτ(n)+1 − w∗〉 ≤ 0. (58)

Also

lim
n→∞

cτ(n)

ᾱτ(n)
=

(1− θτ(n) − δτ(n)τ̄

τ̄ − 2νk

)
×

ατ(n)

δτ(n)
= 0. (59)

Hence from (57)–(59), we have that

lim
n→∞

‖xτ(n) − w∗‖ = 0.

This implies that
lim

n→∞
‖xτ(n)+1 − w∗‖ = 0.

Moreover, for all n ≥ n0, we have Sτ(n) ≤ Sτ(n)+1 if n 6= τ(n) (i.e., τ(n) < n). Since Sj ≤ Sj+1 for
τ(n) + 1 ≤ j ≤ n. Therefore, it follows that for all n ≥ n0,

0 ≤ Sn ≤ max{Sτ(n), Sτ(n)+1} = Sτ(n)+1. (60)

So limn→∞ Sn = 0. This implies that {xn} converges strongly to w∗. This completes the proof.

The following results can be obtained as consequences of our main result.

Corollary 1. Let H1, H2 be real Hilbert spaces, Ω be a nonempty closed convex subset of H1, D : H1 → H2

be a bounded linear operator, A : H1 → H1 be a pseudomonotone operator which is weakly sequentually
continuous in Ω, T : H1 → H1 and U : H2 → H2 be quasi-nonexpansive mappings. Let f : H1 → H1

be a contraction mapping with constant k ∈ (0, 1) and B : H1 → H1 be a Lipschitz and strongly monotone
operator with coefficients λ ∈ (0, 1) and σ > 0 respectively such that νk < τ̄ = 1−

√
1− ξ(2σ− ξλ2) for

ν ≥ 0 and ξ ∈
(

0, 2σ
λ2

)
. Suppose the solution set Γ = {x ∈ Ω : x ∈ S ∩ F (T) and Dx ∈ F (U)} 6= ∅.

Let {δn}, {θn}, {τn} and {ζn} be sequences in (0, 1) such that conditions (C1)–(C4) are satisfied. Then the
sequence {xn} generated by Algorithm 1 converges strongly to a point x̄ where x̄ = PΓ(I − ξB + ν f )(x̄) is the
unique solution of the variational inequalities

〈(ξB− ν f )x̄, w− x̄〉 ≥ 0 ∀w ∈ Γ.
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Also, by setting H1 = H2 = H (a real Hilbert space), U = D = I (the identity mapping on H2),
then we obtain the following result for finding common solution of pseudomonotone VIP (1) and fixed
point of demicontractive mappings.

Corollary 2. Let H be a real Hilbert space, Ω be a nonempty closed convex subset of H, A : H → H be a
pseudomonotone operator which is weakly sequentually continuous in Ω, T : H → H be $ demicontractive
mapping with $ ∈ [0, 1) and I− T is demiclosed at zero. Let f : H → H be a contraction mapping with constant
k ∈ (0, 1) and B : H → H be a Lipschitz and strongly monotone operator with coefficients λ ∈ (0, 1) and σ > 0
respectively such that νk < τ̄ = 1−

√
1− ξ(2σ− ξλ2) for ν ≥ 0 and ξ ∈

(
0, 2σ

λ2

)
. Suppose the solution

set Γ = {x ∈ Ω : x ∈ S ∩ F (T)} 6= ∅. Let {δn}, {θn}, {τn} and {ζn} be sequences in (0, 1) such that
conditions (C1)–(C4) are satisfied. Then the sequence {xn} generated by the following Algorithm 2 converges
strongly to a point x̄ where x̄ = PΓ(I − ξB + ν f )(x̄) is the unique solution of the variational inequalities

〈(ξB− ν f )x̄, w− x̄〉 ≥ 0 ∀w ∈ Γ.

Algorithm 2: GVIPCM
Initialization: Choose η ∈ (0, 2), ρ, ϑ ∈ (0, 1), α, `n > 0, x0, x1 ∈ H be pick arbitrarily.
Iterative steps: Given the iterates xn−1 and xn for each n ≥ 1, calculate the xn+1 iterate
as follows.

Step 1: Choose αn such that 0 ≤ αn ≤ ᾱn where

ᾱn =

min
{

n−1
n+α−1 , τn

‖xn−xn−1‖

}
, if xn 6= xn−1,

n−1
n+α−1 , otherwise.

(61)

Step 2: Compute

wn = xn + αn(xn − xn−1),

yn = PΩ(wn − βn Awn),

where βn = ρ`n and `n is the smallest non-negative integer satisfying

βn‖Awn − Ayn‖ ≤ ϑ‖wn − yn‖.

Step 3: Calculate

Θ(wn, yn) = wn − yn − βn(Awn − Ayn),

γn =
〈wn − yn, Θ(wn, yn)〉
‖Θ(wn, yn)‖2

zn = wn − ηγnΘ(wn, yn).

Step 4: Calculate xn+1 as follows

xn+1 = δnν f (xn) + θnxn + ((1− αn)I − θnξB)Tζn zn, (62)

where Tζn = (1− ζn)I + ζnT for ζn ∈ (0, 1)
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4. Application

In this section, we apply our result to finding the solution of Split Null Point Problem (SNPP) in
real Hilbert spaces.

We first recall some basic concept of monotone operators:

Definition 2.

• A multivalued mapping ϕ : H → 2H is called monotone if for all u, v ∈ H,

〈u− v, f − g〉 ≥ 0, ∀ f ∈ ϕ(u), g ∈ ϕ(v);

• The graph of ϕ is defined by

Gr(ϕ) = {(u, v) ∈ H × H : v ∈ ϕ(x)};

• When Gr(ϕ) is not properly contained in the graph of any other monotone operator, we say that ϕ is
maximally monotone. Equivalently, ϕ is maximal if and only if for (u, f ) ∈ H × H, 〈u− v, f − g〉 ≥ 0
for all (v, g) ∈ Gr(ϕ) implies that f ∈ Mu.

The resolvent operator Jλ associated with ϕ and λ > 0 is the mapping Jλ : H → H defined by

Jϕ
λ (x) = (I + λϕ)−1(x),

for all x ∈ H and λ > 0. It is well known that the resolvent operator Jϕ
λ is single-valued, nonexpansive

and the set of zeros of ϕ (i.e., {x ∈ H : 0 ∈ ϕ−1(0)}) coincides with the set of fixed points of Jϕ
λ , see for

instance Reference [46].
Let H1 and H2 be real Hilbert spaces and D : H1 → H2 be a bounded linear operator.

Let F : H1 → 2H1 and G : H2 → 2H2 be maximal monotone operators. The Split Null Point Problem
(SNPP) is formulated as

find x∗ ∈ H1 such that 0 ∈ F(x∗) and y∗ = Dx∗ ∈ H2 solves 0 ∈ G(y∗). (63)

We denote the set of solution of SNPP by (63) by ∆. The SNPP consist of many other important
problems such as split variational inequality problem, split equilibrium problem and split feasibility
problem. The split feasibility problem was first introduced by Censor and Elfving [47] and has found
numerous applications in many real-life problems such as intensity, modulated therapy, medical phase
retrival, tomography and image reconstruction, see for instance References [46,48–53]. By using our
Algorithm 1, we have the following problem for solving the SNPP.

Theorem 2. Let H1, H2 be real Hilbert spaces, Ω be a nonempty closed convex subset of H1, D : H1 → H2 be a
bounded linear operator, A : H1 → H1 be a pseudomonotone operator which is weakly sequentually continuous
in Ω, F : H1 → 2H1 and G : H2 → 2H2 be maximal monotone operators. Let f : H1 → H1 be a contraction
mapping with constant k ∈ (0, 1) and B : H1 → H1 be a Lipschitz and strongly monotone operator with
coefficients λ ∈ (0, 1) and σ > 0 respectively such that νk < τ̄ = 1−

√
1− ξ(2σ− ξλ2) for ν ≥ 0 and

ξ ∈
(

0, 2σ
λ2

)
. Suppose the solution set

Γ = {x ∈ Ω : x ∈ S ∩ ∆} 6= ∅.

Let {δn}, {θn}, {τn} and {ζn} be sequences in (0, 1) such that condition (C1)–(C4) are satisfied with
$1 = 0 in (C3). Then the sequence {xn} generated by the following Algorithm 3 converges strongly to a point x̄
where x̄ = PΓ(I − ξB + ν f )(x̄) is the unique solution of the variational inequalities
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〈(ξB− ν f )x̄, w− x̄〉 ≥ 0 ∀w ∈ Γ.

Algorithm 3: GVIPCM
Initialization: Choose η ∈ (0, 2), ρ, ϑ ∈ (0, 1), α, ε, `n > 0, x0, x1 ∈ H be pick arbitrarily.
Iterative steps: Given the iterates xn−1 and xn for each n ≥ 1, calculate the xn+1 iterate
as follows.

Step 1: Choose αn such that 0 ≤ αn ≤ ᾱn where

ᾱn =

min
{

n−1
n+α−1 , τn

‖xn−xn−1‖

}
if xn 6= xn−1,

n−1
n+α−1 otherwise.

(64)

Step 2: Compute

wn = xn + αn(xn − xn−1),

yn = PΩ(wn − βn Awn),

where βn = ρ`n and `n is the smallest non-negative integer satisfying

βn‖Awn − Ayn‖ ≤ ϑ‖wn − yn‖.

Step 3: Calculate

Θ(wn, yn) = wn − yn − βn(Awn − Ayn),

γn =
〈wn − yn, Θ(wn, yn)〉
‖Θ(wn, yn)‖2

zn = wn − ηγnΘ(wn, yn).

Step 4: Calculate xn+1 as follows

un = (I − µnD∗(I − JG
λ )D)zn,

xn+1 = δnν f (xn) + θnxn + ((1− αn)I − θnξB)−Λζn un, (65)

where Λζn = (1− ζn)I + ζn JF
λ for ζn ∈ (0, 1) and

µn =

min
{

ε, (1−κ2)‖(I−JG
λ )Dzn‖2

‖D∗(I−JG
λ )Dzn‖2

}
if Dzn 6= −JG

λ (Dzn),

ε otherwise.

Proof. Set T = JF
λ and U = JG

λ in Algorithm 1. Then T and U are nonexpansive and thus,
0-demicontractive. Therefore, we obtain the desired result following the line of proof of Theorem 1.

5. Numerical Examples

In this section, we give some numerical examples to show the performance and efficiency of the
proposed algorithm.

Example 1. First, we consider a generalized Nash-Cournot oligopolistic equilibrium problem in electricity
markets described below:



Mathematics 2020, 8, 2039 22 of 29

Suppose there are m companies, each company j possessing Ij generating units. We denoted by u, the vector
whose entry corresponds to the power generating by unit j and pl(t) denotes the price which can be assumed
to be a decreasing affine function of t, where t = ∑N

j=1 uj and N is the number of all generating units.
Then pl(t) = α − δlt. The profit made by company l is given by fl(u) = pl(t)∑j∈Il

uj − ∑j∈Il
cj(uj),

where cj(uj) denotes the cost for generating uj by unit j. We denote by ∆l , the strategy set of company l,
that is, ∑j∈Il

uj ∈ ∆l for each l. Thus, we can write the strategy set of the model as Ω = ∆1 × ∆2 × · · · × ∆m.
Each company l wants to maximize its profit by choosing a corresponding production level under the presumption
that the production of the other companies are parametric inputs. A commonly used approach for treating the
model is the Nash equilibrium concept (see References [54,55]).

Recall that a point u∗ ∈ Ω = ∆1 × ∆2 × . . . ∆m is called an equilibrium point of the Nash equilibrium
model if

fl(u∗) ≥ fl(u∗[ul ]) ∀ul ∈ ∆l , l = 1, 2, . . . , m,

where the vector u∗[ul ] stands for the vector obtained from u∗ by replacing u∗l with ul . Defining

f (u, v) = G(u, v)− G(u, u),

with G(u, v) = −∑m
l=1 fl(u∗[vl ]). Then the problem of finding a Nash equilibrium point of the model can be

formulated as
find u∗ ∈ Ω : f (u∗, u) ≥ 0, ∀u ∈ Ω. (66)

Furthermore, we suppose that the cost cj for each unit j used in production and the environmental fee g are
increasing convex functions. This implies that both the cost cj and environmental fee g for producing a unit
production by each unit j increase as the quantity of the production increases. Under this assumption, we can
formulate problem (66) as

u ∈ Ω : 〈Du− α +∇ϕ(u), v− u〉 ≥ 0, ∀v ∈ Ω,

where α = (α1, α2, . . . , αm)T ,

D1 =


δ1 0 0 . . . 0
0 δ2 0 . . . 0
...

...
... . . .

...
0 0 0 . . . δm

 , D =


0 δ1 δ1 . . . δ1

δ2 0 δ2 . . . δ2
...

...
... . . .

...
δm δm δm . . . δm

 ,

and

ϕ(u) = uT D1u +
N

∑
j=1

cj(uj).

Note that the function cj is convex and differentiable for each j. In this case, we test the proposed Algorithm 1
with the cost function given by

cj(uj) =
1
2

uT
j Duj + dTuj.

The matrix D, vector d and parameter δj (j = 1, . . . , m) are randomly generated in the interval
[1, 30], [1, 30] and (0, 1] respectively. Also, we use different choices of N = 5, 10, 30 and 50 with different initial
points x0, x1 generated randomly in the interval [1, 30] and m = 10. More so, we assume that each company j
has the same production level with other companies, that is,

∆l = {ul : 1 ≤ ul ≤ 30}, l = 1, 2, . . . , 10.

We take T = U = PΩ which is 0-demicontractive, D = I, f (x) = x
2 , ∀x ∈ RN , Bx = 2x ∀x ∈ RN ,

η = 1.99, ρ = 0.01, ϑ = 0.35, α = 0.0001, ε = 10−5, `n = 2, δn = 1
n+1 , τn = 1

(n+1)2 , θn = 3n
8n+3 , ζn = 1

2
∀n ∈ N. We compare the performance of our Algorithm 1 with Algorithm (5) of Cholamjiak et al. [27] and
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Algorithm (12) of Dong et al. [32]. In (5), we take αn = 1
n+1 , θn = 1

(n+1)2 , δn = 3n
8n+3 , β = 0.01, and η = 1.99.

Also for (12), we choose θn = 0.02, β = 0.01, η = 1.9, S = PΩ, αn = 1
n+1 . The computations were stopped

when each algorithm satisfies ‖xn+1 − xn‖ < 10−4. The numerical results are shown in Table 1 and Figure 1.
In Figure 1, Algorithm 3.1 refers to Algorithm 1.

Table 1. Computational result for Example 1.

Algorithm 1 Cholamjiak et al. [27] Dong et al. [32]

N = 5 No of Iter. 30 40 80
Time (sec) 0.0136 0.0181 0.0471

N = 10 No of Iter. 30 40 80
Time (sec) 0.0156 0.0195 0.0442

N = 30 No of Iter. 28 33 73
Time (sec) 0.0141 0.0172 0.0370

N = 50 No of Iter. 27 32 69
Time (sec) 0.0163 0.0201 0.0516
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Figure 1. Example 1, Top Left: N = 5; Top Right: N = 10; Bottom Left: N = 30; Bottom Right: N = 50.

Example 2. Next, we consider the min-max problem which can be formulated as a variational inequality
problem with skew-symmetric matrix. This problem is to determine the shortest network in a given full Steiner
topology (see (References [56], Example 1)). The compact form of the min-max problem is given as

min
x∈R

max
z∈B

zT(Ax− b), (67)

where
xT =

(
xT
[1], . . . , xT

[8]

)T
, zT =

(
zT
[1], . . . , zT

[17]

)T
,

R = R2 × · · · ×R2 (8 times), B = B2, . . . , B2, (17 times).
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A is a block matrix of the form

A =



I2

I2
. . .

. . .
I2

I2

I2 −I2
. . . . . .

I2 −I2



and b =



b[1]
b[2]
...
...
b[9]
b[10]
0
...
0



.

Equation (67) is equivalent to the following linear variational inequality (see References [15])

LVI(Ω, M, q) u∗ ∈ Ω (u− u∗)T(Mu∗ + q) ≥ 0 u ∈ Ω, (68)

where

u =

(
u1

u2

)
, M =

(
0 AT

−A 0

)
, q =

(
0
b

)
, and Ω = R×B.

Note that M is skew-symmetric and the LVI is monotone. Also the mapping Au = Mu + q in (68)
is Lipschitz continuous. We set B2 = {x ∈ R2 : ‖x‖ ≤ 1}. We define the mapping T : R2 → R2 and
U : R2 → R2 by

T(u1, u2) =

{
(u1, u2) if u1 < 0,

(−2u1, u2) if u1 ≥ 0,

and

Ux = P∆(x) =

d + r x−d
‖x−d‖ , if x /∈ ∆,

x, if x ∈ ∆,

where ∆ is the closed ball in R2 centered at d ∈ R2 with radius r > 0, that is, ∆ = {x ∈ R2 : ‖x − d‖ ≤
r}. It is easy to see that T is 1

3 -demicontractive and not nonexpansive, while U is nonexpansive, and thus,
1
3 -demicontractive. We compare our method with the Projection contraction method of Cai et al. [15]. We take
η = 1.78, ρ = 0.02, ϑ = 0.67, α = ε = 10−4, ln = 5, δn = 1

(n+1)0.4 , τn = δ2
n, θn = 2n

5n+7 , ζn = 0.45,
f (x) = x

2 , Dx = x and choose the various initial values as follows:

Case I: x0 = [0, 5]′, x1 = [15]′;
Case II: x0 = [2, 2]′, x1 = [5, 5]′;
Case III: x0 = [3, 7]′; x1 = [0, 9]′;
Case IV: x0 = [1, 8]′, x1 = [3, 4]′.

For the Reference [15] algorithm, we used the Correction of PC Method 1 and take γ = 1.79. We used
‖xn+1 − xn‖ < 10−4 as stopping criterion. The numerical results are shown in Table 2 and Figure 2.

Finally, we give an example in infinite dimensional spaces to support our strong
convergence result.
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Table 2. Computational result for Example 2.

Algorithm 1 Cai et al. [15]

Case I No of Iter. 22 202
Time (sec) 0.0463 1.9129

Case II No of Iter. 31 95
Time (sec) 0.0097 0.0477

Case III No of Iter. 32 208
Time (sec) 0.0110 1.1696

Case IV No of Iter. 24 184
Time (sec) 0.0057 1.1250
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Figure 2. Example 2, Top Left: Case I; Top Right: Case II; Bottom Left: Case III; Bottom Right: Case IV.

Example 3. Let H1 = H2 = L2([0, 1]) with inner product 〈x, y〉 =
∫ 1

0 x(t)y(t)dt and norm

‖x‖ :=
(∫ 1

0 |x(t)|
2dt
)1/2

, ∀x, y ∈ L2([0, 1]). Let Ω = {x ∈ L2([0, 1]) : ‖x‖ ≤ 1} and A : L2([0, 1]) →
L2([0, 1]) be given by Ax(t) = max{0, x(t)}. Then A is monotone and uniformly continuous and

PΩ(x) =

 x
‖x‖ if ‖x‖ > 1,

x if ‖x‖ ≤ 1.

We define the mapping T = U =
∫ 1

0
x(t)

2 dt, t ∈ [0, 1] and x ∈ L2([0, 1]). Then T = U is
0-demicontractive. We take η = 1.75, ϑ = 0.48, ρ = 0.01, α = ε = 10−3, ln = 2, δn = 1√

n+1
, τn = 1

n+1 ,

θn = 3n
7n+9 , ζn = 2n

5n+1 , f (x) = x
2 , Dx = x. We also compare the performance of our Algorithm 1 with

Algorithm (5) of Reference [27] and (12) of Reference [32]. For (5), we take η = 1.75, β = 0.55, θ = 10−3,
αn = 1√

n+1
, τn = 1

n+1 , δn = 2n
5n+7 . Also for (12), we take η = 1.75, β = 0.55, θ = 0.001, αn = 1√

n+1
. We test

each algorithm using the following initial values and ||xn+1 − xn|| < 10−5 as stopping criterion:

Case I: x0 = t2 − 2t + 3, x1 = (2t + 1)3;
Case II: x0 = exp(3t), x1 = sin(2t)/3;
Case III: x0 = cos(5t)/10, x1 = sin(2t);
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Case IV: x0 = t3 + t− 1, x1 = exp(−4t)/4.

The numerical results are shown in Table 3 and Figure 3.

Table 3. Computational result for Example 3.

Algorithm 1 Cholamjiak et al. [27] Dong et al. [32]

Case I No of Iter. 4 8 10
Time (sec) 0.5669 0.9998 1.7530

Case II No of Iter. 3 7 7
Time (sec) 0.5101 0.6461 0.6706

Case III No of Iter. 3 5 6
Time (sec) 0.4019 0.5444 0.6242

Case IV No of Iter. 3 4 5
Time (sec) 0.2101 0.5938 0.7895

Figure 3. Example 3, Top Left: N = 5; Top Right: N = 10; Bottom Left: N = 30; Bottom Right: N = 50.

6. Conclusions

In this paper, we present a new generalized inertial viscosity approximation method for solving
pseudomonotone variational inequality and split common fixed point problems in real Hilbert spaces.
The algorithm is designed such that the stepsize of the variational inequality is determined by a line
searching process and its convergence does not require norm of the bounded linear operator. A strong
convergence result is proved under mild conditions and some numerical experiments are given to
illustrate the efficiency and accuracy of the proposed method. This result improves and extends the
results of References [16–18,26,27,32] and other related results in the literature.
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