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Abstract: In this paper, we rediscover in detail a series of unknown attempts that some Spanish
mathematicians carried out in the 1930s to address a challenge posed by Mr. la Cierva in 1934, which
consisted of mathematically justifying the stability of la Cierva’s autogiro, the first practical use of the
direct-lift rotary wing and one of the first helicopter type aircraft.
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1. Introduction

The autogiro was the first practical use of the direct-lift rotary wing, where a windmilling rotor
replaces the wing of the airplane, and the propulsive force is generated by a propeller. Interestingly,
the autogiro allows a very slow flight and also behaves like an airplane in cruise. This kind of aircraft
was developed by the Spanish aeronautical engineer Mr. Juan de la Cierva y Codorníu (Murcia (Spain),
1895–Croydon (UK), 1936), who also coined the term “autogiro”. The origins of the autogiro come
back to 1919, when an airplane that had been designed by Mr. la Cierva crashed due to stall near the
ground. This fact encouraged him to design an aircraft with both a low landing speed and take-off.

Mr. la Cierva evolved the autogiro over the years. Firstly, the C-3 autogiro, which included a
five-bladed rigid rotor, was built in 1922. The use of articulated rotor blades on the autogiro was
suggested later, and Mr. la Cierva was the first to successfully apply a flap hinge in a rotary-wing
aircraft. The C-4 autogiro (1923), which equipped a four-bladed rotor with flap hinges on the blades,
was proved to fly with success. Thereafter, in 1924, it was built the C-6 autogiro with a rotor consisting
of four flapping blades. This type, which is considered to be the first successful model of la Cierva’s
autogiro, took part in a demonstration at the Royal Aircraft Establishment the next year (c.f. [1]).

The Cierva Autogiro Company was founded in 1925 in UK by Mr. la Cierva, and about
500 autogiros were built in the next decade, many of them under license of the Cierva Company.
In this regard, and for illustration purposes, Figure 1 depicts an autogiro constructed under license
by Pitcairn in the United States (c.f. [2]). In those times, the autogiro was described as an easy to
handle and fast aircraft, ahead of its time, which could land almost without rolling and take off in
less than 30 m, and being able to stop off in the air, just to name some of its features. Certainly,
the autogiro developments had an effect on the subsequent helicopter developments. Presently,
however, the aircraft design seems to have evolved differently from the times of la Cierva’s autogiro.
In fact, novel settings consisting of combinations of four or more electric motors driving blades of
carbon fiber will allow for less pollution and noise, and also lead to higher efficient aircraft. From a
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mathematical viewpoint, several problems related to modern aviation have been addressed by means
of Fractional Calculus (c.f. [3]), path planning algorithms (c.f. [4]), or non-linear hyperbolic partial
differential equations (c.f. [5]), to name some groundbreaking techniques.

Figure 1. The picture above (public domain) shows a PCA-2 autogiro built in the United States by
Pitcairn under license of the Cierva Company. This unit was used by the National Advisory Committee
for Aeronautics (NACA) for research purposes on rotor systems (c.f. [2]).

One of the first versions of la Cierva’s aircraft, the C-3 autogiro, exhibited a certain tendency to
fall over side-ways [1]. This issue made him to pay special attention to several aspects related to the
stability of the autogiro. In this regard, in 1934, he attended a lecture at the Escuela Superior Aerotécnica
(Madrid-Spain), and posed the following linear differential equation with periodic coefficients [6]:

m
d2 Θ
d ϕ2 +

(
3
4
+ λ sin ϕ

)
d Θ
d ϕ

+

(
m + λ cos ϕ +

3
4

λ2 sin(2ϕ)

)
Θ = 0, (1)

where ϕ is the azimuthal angle of the autogiro’s blade, Θ is a function of ϕ that measures the angle
of deviation of the blade with respect to its position of dynamic equilibrium when rotating, λ is a
parameter that provides a relationship between the forward speed of the aircraft and the peripheral
speed, and m is the ratio of the mass of the air volume (assumed to be contained in a rectangular
parallelepiped with sides equal to the radius of the rotor and the width of the blade, twice) to the
mass of the blade. The periodic nature of the coefficients of that equation is clear due to the autogiro’s
blade movement.

Following [7], we shall refer to Equation (1) as la Cierva’s equation hereafter. It is worth
mentioning that Mr. la Cierva appeared interested in mathematically determine whether the expression
that bears his name admits convergent solutions since it could imply positive consequences concerning
the stability of the autogiro. However, that expression resisted the attempts by Spanish and British
mathematicians to that date, and in fact, some articles requiring the attention of mathematicians to
address that equation can be found in the press of the time (c.f., e.g., [6]).

Next, let us provide some further comments regarding the parameters λ and m that are involved
in Equation (1). Firstly, notice that λ increases as the speed does. In this way, Mr. la Cierva posed λ = 1
as an appropriate limit value, thus taking into account future evolutions of the autogiro, the so-called
ultrarrapid autogiro. On the other hand, Mr. la Cierva suggested the parameter m to vary in the
range [0.15, 1], depending on the aircraft. However, for a given autogiro, that parameter remains
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constant except in the case of large variations concerning the air density. As such, m = 0.5 was then
considered to be an acceptable average value.

As stated in [7], Mr. la Cierva was especially interested in mathematically justifying the stability
of the movement of the blades of the autogiro rather than quantitatively integrating Equation (1) for
certain initial conditions. It is worth mentioning that such a stability had been fully verified in all
the autogiros that had been assembled until then, and was also expected for higher speeds of values
of the parameter λ. As such, the problem regarding the stability of la Cierva’s autogiro could be
mathematically stated in the following terms: does Θ go to zero as ϕ is increased regardless of the
initial conditions? Regarding the latter, the reader may think of possible gusts of wind that could affect
the movement of the blasts of the aircraft.

The main goal of this paper is to unveil the unknown attempts that some Spanish mathematicians
carried out in the 1930s to solve the problem of the stability of la Cierva’s autogiro. As such,
the structure of this paper is as follows. Section 2 contains some preliminaries regarding differential
equations with periodic coefficients. In this way, the concepts of characteristic exponent, characteristic
number, and characteristic equation will be introduced. Section 3 describes in detail the first attempt of
Prof. Orts y Aracil to analytically integrate Equation (1). Section 4 develops the calculations made by
Prof. Orts y Aracil leading to sufficient conditions to guarantee that Equation (1) possesses convergent
solutions. Shortly thereafter, the renowned Spanish engineer and mathematician Pedro Puig Adam
(Barcelona (Spain), 1900–Madrid (Spain), 1960), Ph.D. in mathematics in 1921, published a qualitative
approach regarding the stability of la Cierva’s autogiro. Their calculations, which we have described
in detail, have been included in Section 5 together with numerical calculations we have carried out in
Mathematica. On the other hand, Section 6 contains some results that Puig-Adam obtained in regard
to the reduced la Cierva’s equation. Finally, Section 7 presents some additional remarks to complete
the present study.

2. Preliminaries

In this section, we recall the basics on differential equations with periodic coefficients, thus paying
special attention to the key concepts of characteristic exponent, characteristic number, and characteristic
equation associated with a differential equation with periodic coefficients.

Firstly, it is clear that the so-called la Cierva’s equation (c.f. Equation (1)) stands as a particular
case of the following expression:

d2 y(x)
d x2 + p1(x)

d y(x)
d x

+ p2(x) y(x) = 0, (2)

where p1(x) and p2(x) are continuous and ω−periodic functions (with ω = 2π in the case of la
Cierva’s equation). Furthermore, if y(x) is a solution of Equation (2), then y(x + ω) also is.

Let y1(x) and y2(x) be two linearly independent solutions of Equation (2). Hence, y1(x + ω) and
y2(x + ω) also are. Thus, we can write

y1(x + ω) = a11 y1(x) + a12 y2(x)

y2(x + ω) = a21 y1(x) + a22 y2(x).
(3)

Moreover, the coefficients aij : i, j = 1, 2 in Equation (3) could be calculated just by assigning particular
values to the independent variable x.

Let a ∈ R and ϕ(x) be a ω−periodic function. Then the logarithmic derivative of the function
η(x) := eax ϕ(x) (i.e., η′(x)

η(x) ) is also ω−periodic, though η(x) is not. In fact, it holds that

η(x + ω) = ea(x+ω) ϕ(x + ω) = eaω eax ϕ(x) = eaω η(x) (4)
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for all x ∈ dom (η). Thus, if the variable x is increased in ω units, then the image of x + ω by
η coincides with η(x) multiplied by a factor equal to s := eaω. In this context, a is named the
characteristic exponent, whereas the factor s is known as the characteristic number. Notice that either
the characteristic number or the characteristic exponent provides information about whether η(x) goes
to zero as x → ∞. In particular, if |s| < 1, then µ(x)→ 0 as x → ∞, which means that the oscillations
of the movement of the autogiro blade would get dampened. In fact, the amplitude of the oscillations
of that blade would be multiplied by a factor less than the unit each new rotation. As such, we are
interested in the calculation of those characteristic numbers, s.

Let ϕ(x) be a ω−periodic solution of Equation (2). Then we can write η(x) as a linear combination
of both y1(x) and y2(x), namely

η(x) = C1 y1(x) + C2 y2(x). (5)

Hence, we have that

η(x + ω) = C1 y1(x + ω) + C2 y2(x + ω)

= C1 (a11 y1(x) + a12 y2(x)) + C2 (a21 y1(x) + a22 y2(x))

= (C1 a11 + C2 a21) y1(x) + (C1 a12 + C2 a22) y2(x)

= s η(x) = s C1 y1(x) + s C2 y2(x),

(6)

where the identity at Equation (5) has been used in the first equality, Equation (3) has been applied in the
second identity, the fourth one is a consequence of η(x) assumed to be ω−periodic and Equation (4),
and the last identity is due to η(x) being a particular solution of Equation (2) (c.f. Equation (5)).
By identifying coefficients between the expressions at both the third and fifth equalities of Equation (6),
it holds that

C1 (a11 − s) + C2 a21 = 0

C1 a12 + C2 (a22 − s) = 0.
(7)

Therefore, the so-called characteristic equation stands from the following expression:∣∣∣∣∣a11 − s a21

a12 a22 − s

∣∣∣∣∣ = 0, (8)

which is equivalent to
s2 − (a11+22) s + [a11 a22 − a12 a21] = 0. (9)

Assume that the polynomial in Equation (9) possesses two distinct roots, s1 and s2. If both of them
are introduced in Equation (7), then a pair of specific values for each constant C1 and C2 will be
obtained, thus leading to a pair of functions, η1(x) and η2(x) (c.f. Equation (5)) satisfying the condition
at Equation (4). Accordingly, each solution of Equation (2) could be written as a linear combination of
the functions ηi(x) : i = 1, 2. Following the above, the next result holds.

Theorem 1. If the polynomial in Equation (8) has two distinct roots being less than the unit in absolute value,
then ηi(x) : i = 1, 2 go to zero as x goes to infinity. More generally, any solution of Equation (2) would go to
zero as x goes to infinity.

A consequence of Theorem 1 is that the movement of the blade of the autogiro will be in
equilibrium regardless the initial conditions.

We conclude this section by providing the statement of a known result concerning harmonic
combinations of periodic functions. In fact,
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Theorem 2. Let α, β ∈ R with α 6= 0. Then

α sin x + β cos x = A sin(x + γ),

where γ = arctan
(

β
α

)
and A = sgn(α)

√
α2 + β2.

The proof of that result becomes straightforward by using that sin(x + γ) = sin x cos γ +

cos x sin γ, and identiying coefficients with those from α sin x + β cos x. This result will be applied in
forthcoming Section 6.

3. Towards a Particular Solution of la Cierva’s Equation

In this section, we revisit in detail a first approach that Prof. José Ma Orts y Aracil
(Paterna, Valencia (Spain), 1891–Barcelona (Spain), 1968) contributed in [8] to mathematically determine
a particular solution to Equation (1). First, it is clear that la Cierva’s equation can be rewritten as follows:

d2 Θ
d ϕ2 +

1
m

(
3
4
+ λ sin ϕ

)
d Θ
d ϕ

+
1
m

(
m + λ cos ϕ +

3
4

λ2 sin(2ϕ)

)
Θ = 0. (10)

Let Θ = u ev, where both u and v are functions of ϕ. Then it is clear that

Θ′ = ev (u′ + v′u
)

Θ′′ = ev
(

u′′ + 2 v′u′ + (v′2 + v′′)u
)

. (11)

If we replace the expressions at Equation (11) in Equation (10), then we have

ev
(

u′′ + 2 v′u′ + (v′2 + v′′) u
)
+

1
m

(
3
4
+ λ sin ϕ

) (
u′ + v′u

)
ev

+
1
m

(
m + λ cos ϕ +

3
4

λ2 sin(2ϕ)

)
u ev = 0,

which is equivalent to

u′′ +
(

2v′ +
1
m

(
3
4
+ λ sin ϕ

))
u′

+

(
v′′ + v′2 +

1
m

(
3
4
+ λ sin ϕ

)
v′ + 1 +

λ

m
cos ϕ +

3λ2

4m
sin(2ϕ)

)
u = 0.

(12)

Next, we cancel the coefficient of u′ in Equation (12). In fact,

2v′ +
1
m

(
3
4
+ λ sin ϕ

)
= 0⇔ v′ = − 1

2m

(
3
4
+ λ sin ϕ

)
. (13)

Hence, it is clear that

v =
1

2m

(
λ cos ϕ− 3

4
ϕ

)
and v′′ = − λ

2m
cos ϕ. (14)

As such, Equation (12) can be reduced as follows:

u′′ + p(ϕ) u = 0,

where

p(ϕ) = v′′ + v′2 +
1
m

(
3
4
+ λ sin ϕ

)
v′ + 1 +

λ

m
cos ϕ +

3λ2

4m
sin(2ϕ). (15)
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If we replace the expressions in both Equations (13) and (14) into Equation (15), then

p(ϕ) = − 1
4m2

(
9

16
+ λ2 sin2 ϕ +

3λ

2
sin ϕ

)
+

λ

2m
cos ϕ + 1 +

3λ2

4m
sin(2ϕ). (16)

Moreover, if we replace sin2 ϕ by 1
2 (1− cos(2ϕ)) in Equation (16), then we have

p(ϕ) = 1− 9
64m2 −

λ2

8m2 +
λ

2m
cos ϕ +

λ2

8m2 cos(2ϕ)

− 3λ

8m2 sin ϕ +
3λ2

4m
sin(2ϕ).

As such, Equation (12) can be expressed in the following terms:

d2 u
d ϕ2 = (a0 + a1 cos ϕ + a2 cos(2ϕ) + b1 sin ϕ + b2 sin(2ϕ)) u, (17)

where

a0 =
9 + 8 λ2

64 m2 − 1, a1 = − λ

2 m
, a2 = − λ2

8 m2

b1 =
3
8

λ

m2 , b2 = −3
4

λ2

m
.

(18)

Additionally, by writing u = e
∫

z d ϕ, the expression in Equation (17) can be rewritten as follows:

d z
d ϕ

+ z2 = a0 + a1 cos ϕ + a2 cos(2ϕ) + b1 sin ϕ + b2 sin(2ϕ), (19)

which leads to a Ricatti type equation. The next expression was suggested by Prof. Orts y Aracil as a
potential solution of Equation (19):

z1 = α + β sin ϕ + γ cos ϕ, (20)

where α, β, and γ are three constants that can be determined by introducing Equation (20) in the former
Equation (19) and identifying coefficients in both sides of that expression. As such, we obtain that

a0 = α2 + 1
2 (β2 + γ2), a1 = β + 2 α γ, a2 = 1

2 (γ
2 − β2)

b1 = 2 α β− γ, b2 = β γ.
(21)

Next, we observe that

a2
2 + b2

2 =

(
1
2
(γ2 + β2)

)2
≥ 0,

so α2 +
√

a2
2 + b2

2 = α2 + 1
2 (γ

2 + β2) = a0. Therefore,

a0 ≥
1
2
(γ2 + β2) =

√
a2

2 + b2
2.

On the other hand, it is clear that√
a2

2 + b2
2 − a2 =

1
2
(γ2 + β2)− 1

2
(γ2 − β2) = β2 ≥ 0.
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Furthermore, it holds that a2 +
√

a2
2 + b2

2 = 1
2 (γ

2 − β2) + 1
2 (γ

2 + β2) = γ2 ≥ 0. All the calculations
above lead to the following values of the parameters α, β, and γ of the particular solution at
Equation (19):

α =

√
a0 −

√
a2

2 + b2
2, β =

√√
a2

2 + b2
2 − a2, γ =

√
a2 +

√
a2

2 + b2
2.

Going beyond, it is possible to reduce the parameters α, β, and γ in Equation (21), thus leading to a
pair of relationships among the coefficients ai and bj for i = 0, 1, 2 and j = 1, 2. Recall that ai and bj can
be expressed, in turn, in terms of λ and m (c.f. Equation (18)). In fact, the following expressions hold.

1327104 m8 + 359424 m6 + 35712 m4 − 324 m2 = 0

λ2 =
9 + 16 m2 − (9− 48 m2)

√
1 + 36 m2

8
√

1 + 36 m2 (1−
√

1 + 36 m2)
.

(22)

If the eight order polynomial in m at Equation (22) is divided by 12 m2 (under the assumption
that m 6= 0), and the change of variable t = 48 m2 is considered, then the following third order
polynomial stands:

t3 + 13 t2 + 62 t− 27 = 0. (23)

By Bolzano’s Theorem, it is clear that the polynomial in Equation (23) possesses a root, say t1, in the
subinterval [0.4007, 0.4008]. That root could be approximated by some numerical method, though in [8],
t1 was considered merely as the middle point of that subinterval, i.e., t1 = 0.40075. Since t1 = 48 m2

1,
then we have m1 ' 0.0914. Hence, the second expression in Equation (22) leads to λ1 ' 0.7249. With the
values of both parameters m and λ estimated, the coefficients α, β, and γ of the particular solution
of Equation (19) given by Equation (20) can be calculated by Equation (18). In fact, that particular
solution remains as follows:

z1 = 3.8391 + 4.1036 sin ϕ + 1.0511 cos ϕ. (24)

Also, we have u1 = exp (3.8391 ϕ + 1.0511 sin ϕ− 4.1036 cos ϕ), and hence,

Θ1 = exp(3.8391 ϕ + 1.0511 sin ϕ

+ 0.6898
(

0.0914 cos ϕ− 3
4

ϕ

)
− 4.1036 cos ϕ),

stands as a particular solution of Equation (10), the differential equation which models the equilibrium
of the blade of la Cierva’s autogiro.

As Prof. Orts y Aracil commented, the approach contributed in this section threw a value of
λ1 = 0.7249 lying within the range suggested by Mr. Herrera in [6], i.e., the subinterval [0, 1], though the
value of m1 = 0.091 appears out of its corresponding range, the subinterval [0.15, 1]. In this regard,
it was argued that the problem of the equilibrium of la Cierva’s autogiro had been addressed from a
mathematical (and not an Saee) viewpoint.

4. Sufficient Conditions on the Existence of Convergent Solutions

In this section, sufficient conditions are provided to guarantee the existence of convergent solutions
for la Cierva’s equation, an issue that was further addressed by Prof. Orts y Aracil in [9]. With this
aim, we start by sketching an alternative approach to that one described in Section 3 with the aim to
integrate the expression at Equation (10).
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First of all, let us denote by p(ϕ) the continuous and periodic function that appears at the right
term of Equation (19), i.e.,

p(ϕ) = a0 + a1 cos ϕ + a2 cos(2ϕ) + b1 sin ϕ + b2 sin(2ϕ), (25)

which allows rewriting Equation (17) as follows:

d2 u
d ϕ2 = p(ϕ) u. (26)

Such a kind of differential equations can be integrated by means of a characteristic equation of the form

s2 − As + 1 = 0, where (27)

A = 2 +
+∞

∑
n=1

[
Fn(2π) + f ′n(2π)

]
, Fn(ϕ) =

∫ ϕ

0
d ϕ

∫ ϕ

0
p(ϕ) Fn−1(ϕ)d ϕ,

fn(ϕ) =
∫ ϕ

0
d ϕ

∫ ϕ

0
p(ϕ) fn−1(ϕ) d ϕ, F0(ϕ) = 1, and f0(ϕ) = ϕ

(28)

(c.f. ([10] [item 49, p. 402]) and ([11] [Chapter 3, Section 55])). Moreover, if p(ϕ) ≥ 0 for all ϕ > 0, then it
holds that Fn(ϕ), fn(ϕ), f ′n(ϕ) > 0 for all ϕ > 0 and all n ∈ N. Hence, A > 2 and the expression at
Equation (27) possesses two positive roots, say s1 and s2, with one of them being greater (resp., smaller)
than the unit and the other being smaller (resp., greater) than the unit.

A fundamental system of solutions for Equation (26) is provided by the functions

u1 = e
ϕ

2π l s1 · α(ϕ), u2 = e
ϕ

2π l s2 · β(ϕ), (29)

where α(ϕ) and β(ϕ) are 2π−periodic continuous functions.
Hence, one of the integrals at Equation (29), say u1, goes to zero as ϕ→ ∞, and so does Θ. In this

way, the so-called Liapounov’s condition can be stated as follows (c.f. [10]).

Theorem 3 (Liapounov’s condition). The second order differential equation in Equation (26) admits a
convergent integral as ϕ→ ∞, if and only if, p(ϕ) ≥ 0 for all ϕ > 0.

Following the above, our next goal is to verify that sufficient condition. To deal with, let us apply
the change of variable x = tan( ϕ

2 ) to the periodic function at Equation (25). As such, we have

p(ϕ) = a0 + a1 cos ϕ + a2
1− tan2 ϕ

1 + tan2 ϕ
+ b1 sin ϕ + b2

2 tan ϕ

1 + tan2 ϕ

= a0 + a1
1− x2

1 + x2 + a2
1− 6 x2 + x4

(1 + x2)2 + b1
2 x

1 + x2 + b2
4 x (1− x2)

(1 + x2)2 ,

(30)

and hence, we can write p(ϕ) = 1
(1+x2)2 q(x), where

q(x) = a0 (1 + x2)2 + a1 (1− x2) (1 + x2) + a2 (1− 6 x2 + x4)

+ 2 b1 x (1 + x2) + 4 b2 x (1− x2)

= (a0 + a1 + a2) + 2 (b1 + 2 b2) x + 2 (a0 − 3 a2) x2

+ 2 (b1 − 2 b2) x3 + (a0 − a1 + a2) x4.

(31)
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Notice that the first equality at Equation (30) has been applied that

sin(2ϕ) =
2 tan ϕ

1 + tan2 ϕ
, cos(2ϕ) =

1− tan2 ϕ

1 + tan2 ϕ
,

whereas the second identity at that expression holds since that change of variable implies that

cos ϕ =
1− x2

1 + x2 , sin ϕ =
2x

1 + x2 , tan ϕ =
2 tan( ϕ

2 )

1− tan2( ϕ
2 )

=
2x

1− x2 .

Moreover, by writing
q(x) = c4 + c3 x + c2 x2 + c1 x3 + c0 x4, (32)

we can identify coefficients with those ones at the right side of Equation (31). In fact,

c0 = a0 − a1 + a2 =
9

64 m2 − 1 +
λ

2 m

c1 = 2 (b1 − 2 b2) =
3
4

λ

m2 + 3
λ2

m

c2 = 2 (a0 − 3 a2) =
9

32 m2 − 2 +
λ2

m2

c3 = 2 (b1 + 2 b2) =
3
4

λ

m2 − 3
λ2

m

c4 = a0 + a1 + a2 =
9

64 m2 −
λ

2 m
− 1,

(33)

where Equation (18) allows writing the ci’s in terms of the parameters λ and m.
On the other hand, a necessary condition to get p(ϕ) ≥ 0 for all ϕ > 0 consists of both coefficients

c0 and c4 of the polynomial at Equation (32) being positive. In this way, Equation (33) implies that

c4 > 0⇔ 32m (λ + 2m) < 9⇔ X2 −Y2 < 9.

c0 > 0⇔ 32m (2m− λ) < 9⇔ m <
3
8
⇔ X−Y < 3,

(34)

where X := 8m + 2λ and Y := 2λ. Observe that X, Y > 0 since both parameters m and λ are positive.
In fact, regarding the second equivalence at the first line of Equation (34), just observe that we can write

9 > 32 m (λ + 2m) = 64 m2 + 32 mλ

= 82m2 + 2× 16 mλ + (2λ)2 − (2λ)2

= (8m + 2λ)2 − (2λ)2 = X2 −Y2.

Thus, the condition c4 > 0 is equivalent to a point at the first quadrant, (X, Y), located above the
hyperbola X2 −Y2 = 9.

5. Puig-Adam’s Qualitative Approach

In this section, we revisit in detail the approach contributed by Puig-Adam in [7] to approach the
solutions of la Cierva’s equation from a qualitative viewpoint.

According to the contents of Section 2, we are interested in obtaining two particular solutions
of la Cierva’s equation (c.f. Equation (10)), say y1(x) and y2(x). Let them be given by the following
initial conditions:

y1(0) = 1, y′1(0) = 0

y2(0) = 0, y′2(0) = 1.
(35)
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It is clear that y1(x) and y2(x) would be independent since their Wronskian at 0 is distinct from zero,
W(y1, y2)(0) = 1. Moreover, from Equation (3), we have that

y′1(x + ω) = a11 y′1(x) + a12 y′2(x)

y′2(x + ω) = a21 y′1(x) + a22 y′2(x)
(36)

for all x. If we particularize both Equations (3) and (36) in x = 0, then

y1(ω) = a11, y′1(ω) = a12

y2(ω) = a21, y′2(ω) = a22.

Moreover, from Equation (9), the characteristic equation holds from the following expression:

s2 − (y1(ω) + y′2(ω)) s +
[
y1(ω) y′2(ω)− y′1(ω) y2(ω)

]
= 0. (37)

As such, Equation (37) would be fully determined once yi(ω) and their derivatives, y′i(ω) for i = 1, 2,
have been calculated. It is also worth mentioning that the coefficients of the characteristic polynomial
are independent from the initial conditions that were selected, i.e., such coefficients only depend
on the coefficients of the given differential equation. In particular, notice that the independent
term of Equation (37), which coincides with W(y1, y2)(ω), can be calculated in terms of p1(x)
(recall Equation (2)), by means of the following expression (c.f., e.g., [11]):

W(y1, y2)(x) = W(y1, y2)(x0) exp
[
−
∫ x

x0

p1(x) d x
]

. (38)

In fact, observe that the former expression can be justified just by identifying the differential equation
in Equation (2) with the next one:

W(y, y1, y2)(x) = 0. (39)

In fact, Equation (39) is equivalent to

(y1(x) y′2(x)− y′1(x) y2(x)) y′′(x) + (y′′1 (x) y2(x)− y1(x) y′′2 (x)) y′(x)

+ (y′1(x) y′′2 (x)− y′′1 (x) y′2(x)) y(x) = 0,

which leads to

y′′(x) +
y′′1 (x) y2(x)− y1(x) y′′2 (x)
y1(x) y′2(x)− y′1(x) y2(x)

y′(x) +
y′1(x) y′′2 (x)− y′′1 (x) y′2(x)
y1(x) y′2(x)− y′1(x) y2(x)

y(x) = 0 (40)

since y1(x) and y2(x) have been assumed to be independent solutions (and hence, W(y1, y2)(x) 6= 0 for
all x). Thus, if the expressions in both Equations (2) and (40) coincide term by term, then it holds that

p1(x) =
y′′1 (x) y2(x)− y1(x) y′′2 (x)
y1(x) y′2(x)− y′1(x) y2(x)

= −W ′(y1, y2)(x)
W(y1, y2)(x)

.

Following the above, it holds that the independent term of Equation (37) can be obtained just by
applying Equation (38) in the open interval (x0, x) = (0, ω). Since W(y1, y2)(0) = 1, then we have that

W(y1, y2)(2π) = exp
[
−
∫ 2π

0
p1(x)d x

]
= exp

[
−
∫ 2π

0

1
m

(
3
4
+ λ sin x

)
d x
]
= e−

3
2m π ,

(41)
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where it has been used that p1(x) = 1
m
( 3

4 + λ sin x
)

and ω = 2π in the case of la Cierva’s equation
(c.f. Equation (10)). Hence, the characteristic polynomial associated to la Cierva’s equation remains
as follows:

s2 − (y1(2π) + y′2(2π)) s + e−
3

2m π = 0. (42)

Interestingly, it holds that the independent term, e−
3

2m π , does not depend on the forward speed.
However, to fully determine the characteristic polynomial at Equation (42), it becomes necessary

to know the values of both functions y1(x) and y′2(x) at x = 2π. With this aim, Puig-Adam, instead of
carrying out a power series expansion in regard to the periodic coefficients of the starting equation,
for instance, preferred to apply a (second order) Runge-Kutta numerical approach to each particular
solution, y1(x) and y2(x), of la Cierva’s equation in the closed bounded interval [0, 2π] with parameters
m = 0.5 and λ = 1, that according to Puig-Adam, had been suggested by Mr. la Cierva. In [7], it was
stated that the trapezoidal method had been applied. In this paper, though, we shall apply a explicit
midpoint method (also known as modified Euler method), which appears implemented in Mathematica.
In any case, both of them are second-order approaches.

In this way, and similarly to [7], Figures 1 and 2 depicts our approximations to each particular
solution of Mr. la Cierva’s equation, y1(x) with initial conditions y1(0) = 1, y′1(0) = 0, and y2(x)
with initial conditions y2(0) = 0, y′2(0) = 1 (c.f. Equation (35)), as provided by the second-order
(Runge-Kutta explicit) midpoint approach on the interval [0, 2π], which corresponds to a turn of the
blade of the autogiro.

π

4

π

2

3π

4
π

5π

4

3π

2

7π

4
2π

φ

-0.2

0.2

0.4

0.6

0.8

1.

yi(φ)
Particular solutions of la Cierva's equation (first turn)

Figure 2. Second order Runge-Kutta approximations (obtained by the explicit midpoint method) to
each particular solution of la Cierva’s equation according to the procedure described in Section 5, i.e.,
y1(ϕ) (blue line) and y2(ϕ), where ϕ varies in the range [0, 2π], which means a turn of the blade of the
autogiro, and the choice of parameters was as suggested by Mr. la Cierva, i.e., m = 0.5 and λ = 1.

According to our numerical calculations, it holds that

y1(2π) = −0.0222528, y′2(2π) = 0.0230689,

and hence, the characteristic polynomial at Equation (42) remains as follows:

s2 − 0.000816093 s + e−
3

2m π = 0. (43)

As such, it holds that the polynomial at Equation (43) possesses two complex (conjugated) roots, namely
s1 = 0.000408046− 0.00897402 i and s2 = 0.000408046 + 0.00897402 i . Since |si| = 0.00898329� 1 for
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i = 1, 2, it can be guaranteed that the blade movement of la Cierva’s autogiro behaves quite stably for
that choice of parameters.

Remark 1. It is worth mentioning that, in the original study carried out by Puig-Adam, the following values
were obtained by the numerical approach carried out therein: y1(2π) = −0.013 and y′2(2π) = 0.04197,
which led to the next characteristic equation:

s2 − 0.02897 s + e−
3

2m π = 0,

whose real roots are t1 = 0.00312209 and t2 = 0.0258479. Such results mainly differ from ours in the nature of
the roots of the characteristic polynomial. That issue was mainly caused by the approximation errors made due to
the limitations of the calculation systems available in the 1930s. It is also true that we have approximated the
coefficients y1(2π) and y′2(2π) by the midpoint method instead of the trapezoidal approach used by Puig-Adam.
However, both are second-order approaches, so they should lead to close results.

Recall also that W(y1, y2)(2π) = e−3π ' 8.0699518× 10−5 (c.f. Equation (41)). Alternatively, if we
calculate an approximation to that Wronskian by means of the expression appeared at Equation (37) and
the values of the coefficients provided by the numerical approach used by Puig-Adam, then we have

W(y1, y2)(2π) = y1(2π) y′2(2π)− y′1(2π) y2(2π)

' −0.013× 0.04197 + 0.00398× 0.18509

' 1.910482× 10−4 = WPA(y1, y2)(2π),

(44)

where WPA(y1, y2)(2π) denotes the Puig-Adam’s numerical approximation to that quantity. As such,
the absolute error obtained when comparing the theoretical value of that Wronskian with respect to
WPA(y1, y2)(2π), (c.f. Equation (44)) was found to be approximately equal to 1.10349× 10−4, quite
close to zero. Going beyond, our midpoint-based approach, which approximated W(y1, y2)(2π) by
the quantity 8.0699523× 10−5, threw an absolute error approximately equal to 5.33809× 10−12.

Furthermore, it is possible to provide a qualitative viewpoint in regard to the stability of the
oscillations of the blade of the autogiro in its upcoming turns. In fact, let ω = 2π and consider
Equation (35). Applying such initial conditions to both Equations (3) and (36), it holds that the former
turns into the following expression:

y1(x + 2π) = y1(2π) y1(x) + y′1(2π) y2(x)

y2(x + 2π) = y2(2π) y1(x) + y′2(2π) y2(x).
(45)

By recursively applying Equation (45), we have

y1(x + 4π) = y1(2π) y1(x + 2π) + y′1(2π) y2(x + 2π)

=
(

y2
1(2π) + y′1(2π) y2(2π)

)
y1(x)

+ y′1(2π)
(
y1(2π) + y′2(2π)

)
y2(x)

y2(x + 4π) = y2(2π) y1(x + 2π) + y′2(2π) y2(x + 2π)

= y2(2π)
(
y1(2π) + y′2(2π)

)
y1(x)

+
(

y′22 (2π) + y2(2π) y′1(2π)
)

y2(x)

(46)
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which corresponds to the second turn of the blade. Figure 3 depicts (numerical approximations of)
both solutions after two turns of the autogiro’s blade. Also, regarding the third turn of the blade,
the following expression holds:

y1(x + 6π) = α1 y1(x) + α2 y2(x)

y2(x + 6π) = β1 y1(x) + β2 y2(x),
(47)

where

α1 =
(

y2
1(2π) + y′1(2π) y2(2π)

)
y1(2π) + y′1(2π)

(
y1(2π) + y′2(2π)

)
y2(2π)

α2 =
(

y2
1(2π) + y′1(2π) y2(2π)

)
y′1(2π) + y′1(2π)

(
y1(2π) + y′2(2π)

)
y′2(2π)

β1 = y2(2π)
(
y1(2π) + y′2(2π)

)
y1(2π) +

(
y′22 (2π) + y2(2π) y′1(2π)

)
y2(2π)

β2 = y2(2π)
(
y1(2π) + y′2(2π)

)
y′1(2π) +

(
y′22 (2π) + y2(2π) y′1(2π)

)
y′2(2π).

(48)

As with Figure 3, (numerical approximations) of the particular solutions of la Cierva’s equation (for
parameters m = 0.5 and λ = 1) after three turns of the autogiro’s blade are illustrated at Figure 4. It can
be seen that for angles beyond 5π

2 , the graph of the first particular solution of la Cierva’s equation at
the second turn of the blade becomes indistinguishable from the x−axis, as it is the case of the plot of
y2(x) as of the third turn of the blade.

Notice that, as Puig-Adam pointed out, the initial conditions y1(0) = 1, y′2(0) = 1
(c.f. Equation (35)) are quite extreme. Nevertheless, for k small enough, particular solutions of the form
ky1 and ky2, which exhibit smaller oscillations than those from y1 and y2, and whose graphs can be
depicted by a y−axis rescaling of those appeared in Figure 2, are possible.

π

2
π

3π

2
2π

5π

2
3π

7π

2
4π

φ

0.2

0.4

0.6

0.8

1.

yi(φ)
Particular solutions of la Cierva's equation (first 2 turns)

Figure 3. (Numerical approximations to the) particular solutions of la Cierva’s equation after two
turns of the autogiro’s blade (c.f. Equation (46)). In this occassion, the blue lines have been used to
distinguish the curves of both particular solutions in regard to the first turn to their prolongations to
the second turn of the blade. In addition, notice that the dotted line corresponds to y2(ϕ).
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π
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π

3π

2
2π

5π

2
3π

7π
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4π

9π
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5π

11π

2
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φ

0.2

0.4
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1.

yi(φ)
Particular solutions of la Cierva's equation (first 3 turns)

Figure 4. (Numerical approximations to the) particular solutions of la Cierva’s equation after the first
three turns of the autogiro’s blade (c.f. Equations (47) and (48)). The blue lines represent the curves
of both particular solutions at the first turn, the orange lines correspond to their prolongations to the
second turn of the blade, and the green lines depict the extensions of such solutions to the third turn.
As with Figure 3, the dotted line corresponds to y2(ϕ).

6. La Cierva’s Reduced Equation

The aim of this section is to calculate a pair of particular solutions to la Cierva’s equation by
means of the so-called reduced la Cierva’s equation. Furthermore, a comparison of such solutions with
those solutions obtained in Section 5 is carried out.

First, recall that in Section 5, it was provided a numerical criterion to determine whether the
solutions of la Cierva’s equation (c.f. Equation (1)) behave stably for a choice of parameters (λ, m).
Specifically, let y1 and y2 be the particular solutions of that equation (as provided by a Runge-Kutta
method, in this case) in the interval [0, 2π], and calculate y1(2π) + y′2(2π). If that quantity stands <1 in
absolute value, then the behavior of the oscillations of the autogiro’s blade is stable for such parameters.

Firstly, we recall the original expression of la Cierva’s equation (c.f. Equation (1)):

m Θ′′ +
(

3
4
+ λ sin ϕ

)
Θ′ +

(
m + λ cos ϕ +

3
4

λ2 sin(2ϕ)

)
Θ = 0, (49)

where ϕ is the azimuthal angle of the autogiro’s blade and Θ is a function of ϕ that measures the angle
of deviation of the blade with respect to its position of dynamic equilibrium when rotating.

Let Θ = uv. Then it is clear that Θ′ = u′v + uv′ and Θ′′ = u′′v + 2 u′v′ + uv′′. If we apply that
change of variable to Equation (49), then that expression turns into the next one:

m (u′′v + 2 u′v′ + uv′′) +
(

3
4
+ λ sin ϕ

)
(u′v + uv′)

+

(
m + λ cos ϕ +

3
4

λ2 sin(2ϕ)

)
uv = 0,

(50)
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which is equivalent to

mv u′′ +
(

2mv′ +
(

3
4
+ λ sin ϕ

)
v
)

u′

+

(
mv′′ +

(
3
4
+ λ sin ϕ

)
v′ +

(
m + λ cos ϕ +

3
4

λ2 sin(2ϕ)

)
v
)

u

= 0.

(51)

The next goal is to cancel the coefficient of u′ in Equation (51). In fact,

2mv′ +
(

3
4
+ λ sin ϕ

)
v = 0⇔ v′

v
= − 1

2m

(
3
4
+ λ sin ϕ

)
. (52)

The integration of the expression in Equation (52) leads to

v = exp
[

λ

2m
cos ϕ− 3

8m
ϕ

]
. (53)

As such, Equation (50) has been reduced to the next one:

m u′′ +
(

m
v′′

v
+

(
3
4
+ λ sin ϕ

)
v′

v
+ m + λ cos ϕ +

3
4

λ2 sin(2ϕ)

)
u = 0. (54)

Since
d

d ϕ

(
v′

v

)
=

v′′

v
−
(

v′

v

)2

, (55)

then it is clear that

v′′

v
=

(
v′

v

)2

+
d

d ϕ

(
v′

v

)
=

[
− 1

2m

(
3
4
+ λ sin ϕ

)]2
− λ

2m
cos ϕ.

Hence, Equation (54) can be rewritten as u′′ = −q(ϕ) u, where

q(ϕ) = 1 +
λ

2m
cos ϕ +

3
4m

λ2 sin(2ϕ)− 1
4m2

(
3
4
+ λ sin ϕ

)2

= 1 +
λ

2m
cos ϕ +

3
4m

λ2 sin(2ϕ)− 9
64

m2 − λ2

4m2 sin2 ϕ− 3λ

8m2 sin ϕ.

Firstly, notice that we can write

3λ

8m2 sin ϕ− λ

2m
cos ϕ = A sin(ϕ + ϕ1),

where A = λ
2m

√
1 +

( 3
4m
)2

and ϕ1 = arctan(− 4
3 m). In fact, just apply Theorem 2 for α = 3λ

8m2 > 0 and
β = − λ

2m .
On the other hand, we also affirm that

λ2

4m2 sin2 ϕ− 3
4m

λ2 sin(2ϕ) = B sin(2ϕ + ϕ2),

where B = − λ2

4m

√
9 + 1

4m2 and ϕ2 = arctan
(

1
6m

)
. In this case, it has been used that sin2 ϕ =

1
2 (1− cos(2ϕ)), and applied Theorem 2 again for α = − 3

4m λ2 and β = − λ2

8m2 . Following the above,
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it holds that Equation (54) is equivalent to the next one, that we shall name as la Cierva’s reduced
equation, hereafter:

u′′ = (a + b sin(ϕ + ϕ1) + c sin(2ϕ + ϕ2)) u, (56)

where

a =
9

64 m2 +
λ2

8 m2 − 1, b =
λ

2m

√
1 +

(
3

4 m

)2
, c = − λ2

4m

√
9 +

1
4 m2

ϕ1 = arctan
(
−4

3
m
)

, ϕ2 = arctan
(

1
6 m

)
.

(57)

Going beyond, it is possible to turn la Cierva’s reduced equation into a Riccati type one. In fact,
similarly to Equation (55), we have that

u′′

u
=

d
d ϕ

(
u′

u

)
+

(
u′

u

)2

=
d η

d ϕ
+ η2,

where the second equality has been denoted η := u′
u . Hence, Equation (56) can be even rewritten in

terms of a first order Ricatti type equation:

η′ = a + b sin(ϕ + ϕ1) + c sin(2ϕ + ϕ2)− η2, (58)

where the coefficients a, b, c appear in Equation (57). In this regard, in [7], Puig-Adam realized
that a particular solution to la Cierva’s equation had been obtained previously by Prof. Aracil
in [8]. Despite the form of that particular solution was similar to the one provided in Equation (58)
(c.f. Equation (24)), it is worth pointing out that it was obtained for the choice of parameters λ = 0.7249
and m = 0.0914 /∈ [0.15, 1], the range proposed by Mr. la Cierva.

As with the numerical analysis carried out in Section 5 regarding la Cierva’s equation, next we
shall apply the midpoint method approach to a pair of (independent) particular solutions of the
reduced la Cierva’s equation (c.f. Equation (56)), namely u1(ϕ) and u2(ϕ), with initial conditions
u1(0) = 1, u′1(0) = 0, and u2(0) = 0, u′2(0) = 1. Also, the same parameters as in Section 5 will be used,
i.e., λ = 1 and m = 0.5, and both solutions will be numerically approximated in the subinterval [0, 2π]

(a turn of the autogiro’s blade). In this case, the values of the coefficients and angles in Equation (57)
are as follows: a ' 0.0625, b ' 80278, c ' −1.58114, ϕ1 ' −0.588003, and ϕ2 ' 0.321751. Figure 5
depicts both particular solutions.

Our next goal is to compare the particular solutions (obtained by the midpoint method) of la
Cierva’s equation (c.f. Figure 2) to the ones of the reduced la Cierva’s one. Since {u1(ϕ), u2(ϕ)} is a
fundamental system of solutions of the reduced la Cierva’s equation, then {u1(ϕ) v(ϕ), u2(ϕ) v(ϕ)}
is a fundamental system of solutions of la Cierva’s equation, where v(ϕ) = exp

(
λ

2m cos ϕ− 3
8m ϕ

)
(c.f. Equation (53)). Hence, each solution of la Cierva’s equation, y(ϕ), can be expressed in the
following terms:

y(ϕ) = v(ϕ) (C u1(ϕ) + D u2(ϕ))

= ecos ϕ− 3
4 ϕ (C u1(ϕ) + D u2(ϕ)) : C, D ∈ R,

(59)

where the last identity has been used that λ = 1 and m = 0.5. Also, it is clear that

y′(ϕ) = ecos ϕ− 3
4 ϕ

[
Cu′1 + Du′2 −

(
3
4
+ sin ϕ

)
(Cu1 + Du2)

]
. (60)
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Since y1(0) = 1, then Equation (59) leads to C = 1
e . Moreover, the condition y′1(0) = 0 applied to

Equation (60) implies that D = 3
4e . As such, we have

y1(ϕ) = ecos ϕ− 3
4 ϕ−1

(
u1(ϕ) +

3
4

u2(ϕ)

)
. (61)

On the other hand, the initial condition y2(0) = 0 applied to Equation (59) gives C = 0. Furthermore,
y′2(0) = 1 implies that D = 1

e . Thus,

y2(ϕ) = ecos ϕ− 3
4 ϕ−1 u2(ϕ). (62)

Upcoming Figure 6 displays a graphical comparison involving the particular solutions of la Cierva’s
equation from both Sections 5 and 6. Specifically, the first particular solutions of that equation are
depicted in blue (the dotted line corresponds to the expression in Equation (61)), and the second
particular solutions appear in orange (the dashed line corresponds to the expression in Equation (62)).
Observe that all the curves behave similarly, especially for angles ϕ ≥ π

2 .

π

4

π

2

3π

4
π

5π

4

3π

2

7π

4
2π

φ

-0.5

0.5

1.

1.5

2.

2.5

yi(φ)
Particular solutions from the reduced la Cierva's equation

Figure 5. Second order Runge-Kutta approximations (obtained by the explicit midpoint method) to
each particular solution from the reduced la Cierva’s equation, where the first particular solution, y1(ϕ)

(c.f. Equation (61)), is depicted by a blue line, ϕ varies in the range [0, 2π], and the choice of parameters
was as suggested by Mr. la Cierva, i.e., m = 0.5 and λ = 1.
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π
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π

2

3π
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π
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4

3π

2

7π

4
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φ

-0.5
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1.

1.5

2.

2.5

Θ(φ)
Comparison of particular solutions of la Cierva's equation

Figure 6. Second order Runge-Kutta approximations (obtained by the explicit midpoint method)
to those pairs of particular solutions of la Cierva’s equation that were obtained in Sections 5 and 6,
respectively. The blue dotted line depicts the first particular solution of that equation as it appears in
Equation (61), whereas the orange dashed line illustrates the second particular solution of la Cierva’s
equation (c.f. Equation (62)). On the other hand, the continuous curves correspond to the particular
solutions of la Cierva’s equation as they were obtained in Section 5. As with Figure 5, ϕ varies in the
range [0, 2π], which means a turn of the blade of the autogiro, and the choice of parameters has been as
suggested by Mr. la Cierva, i.e., m = 0.5 and λ = 1. Notice that the y-axis has been labeled as Θ(ϕ) to
denote an approximation to each particular solution of la Cierva’s equation for ϕ ∈ [0, 2π].

7. Final Remarks

Next, we provide some additional remarks allowing us to complete our study on the stability of
la Cierva’s autogiro.

1. We recall that the conditions provided in Section 4 to guarantee the existence of convergent
solutions for la Cierva’s equation are sufficient but not necessary. In fact, let us consider the
reduced la Cierva’s equation (c.f. Equation (56)), and define

q(ϕ) = a + b sin(ϕ + ϕ1) + c sin(2ϕ + ϕ2), (63)

where the coefficients a, b, and c are given as in Equation (57). Then for λ = 1 and m = 0.5, i.e.,
the choice of parameters used in both Sections 5 and 6, it holds that the function q(ϕ) is not
positive in the whole interval [0, 2π] (c.f., e.g., Figure 7). As such, the Liapounov’s condition
(c.f. Theorem 3) cannot guarantee the existence of convergent solutions in regard to the reduced
la Cierva’s equation for that choice of parameters. However, as proved in Section 5, la Cierva’s
equation behaves stably for such parameters.
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Figure 7. Graph of the function q(ϕ) (as defined in Equation (63)) in the interval [0, 2π].

2. Let
y′′(x) + p2(x) y(x) = 0 (64)

be a second order differential equation with p1(x) = 0, as it is the case of the la Cierva’s reduced
equation (c.f. Equation (56)). Then its associated characteristic equation can be expressed in the
following terms (c.f. Equation (27)):

s2 − As + 1 = 0, (65)

where the roots of Equation (65) are of the form

s1 = e2π α s2 = e−2π α.

Hence, it is clear that A = s1 + s2 = 2 cosh(2πα), which leads to

α =
1

2π
arcosh

(
A
2

)
.

Let Θ = uv, where u = e±αx and v being as in Equation (53). Then the aperiodic part of Θ is
given by the next expression:

exp
[(
− 3

8m
± α

)
x
]

Since α > 0, then it is clear that

− 3
8m
− α < α− 3

8m
.

As such, α − 3
8m < 0 implies − 3

8m − α < 0. Observe that the stability condition consists of
α− 3

8m < 0, which is satisfied whether A < 2 cosh( 3π
4m ). On the other hand, the condition A < 2

is fulfilled provided that the characteristic exponent α ∈ i R. In that case, the aperiodic part of Θ
is of the form exp

(
− 3x

8m
)
, which goes to 0 as x → +∞.

Notice that A could be approximated by the quantity u1(2π) + u′2(2π) through the midpoint
approach, for instance, as carried out in both Sections 5 and 6.
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3. In Section 4, it was provided a method, first proposed by Liapounov in [10], which allows
calculating the coefficient A that appears in characteristic equations of the form Equation (65)
that are associated to the next kind of differential equations (c.f. Equation (64)):

d2 y(x)
d x2 = ε p(x) y(x).

In fact, it holds that

A = 1 +
1
2

+∞

∑
n=1

[
Fn(ω) + f ′nω)

]
εn, (66)

where ε ∈ (0, 1), and Fn(ω) and fn(ω) being as in Equation (28). On the other hand, in [11],
Goursat applied that method for ε = 1, thus leading to the expressions contained in Equation (28).
However, even under the assumption that the series in Equation (66) is convergent, it holds that
such a convergence would be quite slow, especially as the period ω increases. As a consequence,
that particular expression becomes quite limited to deal with practical applications regarding the
calculation of the coefficient A.

4. The reader may think, at least at a first glance, that the form of the reduced la Cierva’s equation is
similar to the one of the generalized Hill’s type equation, whose origins go back to the study of
the movement of the Moon under the influence of the gravitational field of the system Earth-Sun.
That equation admits the following expression:

d2 y(x)
d x2 + [λ + γ Φ(x)] y(x) = 0 : λ, γ ∈ R.

However, notice that the parameters at the reduced la Cierva’s equation, λ and m, do not appear
linearly in Equation (56) (c.f. Equation (57)). As such, the reduced la Cierva’s equation cannot be
understood as a particular case of the generalized Hill’s equation.

5. The stability of la Cierva’s autogiro has been proved for the choice of parameters λ = 1 and
m = 0.5 (c.f. Sections 5 and 6). Going beyond, observe that the roots (i.e., the characteristic
numbers) of the characteristic equation (c.f. Equation (42)) are continuous functions of their
coefficients, which, in turn, are continuous functions of both parameters, λ and m. Hence,
the stability of la Cierva’s equation will be preserved in a neighborhood of such parameters due
to ([10] (Theorem, pp. 400)). Moreover, that neighborhood is expected to be wide enough since it
is evident that la Cierva’s equation behaves stably for those parameters. It is also worth pointing
out that if the movement of la Cierva’s autogiro is stable for a given speed, then it will be also
stable for lower speeds. In other words, the stability will be preserved by decreasing the value of
λ. This is a reason for which λ = 1 was selected to explore the stability of la Cierva’s equation in
the previous sections. In fact, observe that for λ = 0, the oscillations are dampened quickly.

6. In [7], Puig-Adam posed to analyze the area of the plane λ − m where la Cierva’s
equation becomes stable. To deal with, we considered the rectangle of the Euclidean plane,
R = [0, 1] × [0.15, 1], by taking into account the intervals proposed by Mr. la Cierva for each
parameter. A partition consisting of 50 points was considered for each subinterval, thus leading
to a 2500−point mesh contained in R. As such, for each (λ, m) ∈ R, a la Cierva’s type equation
(c.f. Equation (49)) holds, which was numerically solved as in Section 5 by means of the midpoint
approach. Next step was to apply the Puig-Adam criterion to determine whether that equation
is stable. Recall that such a condition consists of calculating |y1(2π) + y′2(2π)|, where y1 and y2

denote the particular solutions of the corresponding la Cierva’s equation for a choice of
parameters. If kλ,m := |y1(2π) + y′2(2π)| < 1, then the la Cierva’s equation is stable for those
parameters. All the above allowed us to construct a 3D-surface, S = {(λ, m, kλ,m) : (λ, m) ∈ R},
we shall refer to as la Cierva’s surface. Figure 8 depicts la Cierva’s surface, whereas Figure 9
displays the contours of la Cierva’s surface. Such figures reveal an overall stable behavior of
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almost all la Cierva’s surface. On the other hand, Figures 10 and 11 depict a neighborhood
of Puig-Adam’s choice of parameters where la Cierva’s surface behaves stably, as stated in
remark (5).

Figure 8. La Cierva’s surface, S = {(λ, m, kλ,m) : (λ, m) ∈ R}, where R = [0, 1]× [0.15, 1] (above).
The plane {(λ, m, 1) : (λ, m) ∈ R} has been graphically displayed as a benchmark regarding the limit
of the stability zone for la Cierva’s surface (below).
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Figure 9. Contours of la Cierva’s surface. Observe that the Puig-Adam’s choice of parameters,
λ = 1, m = 0.5 is indeed surrounded by a region of points with low kλ,m numbers. Notice that almost
all the whole surface behaves stably.

Figure 10. A neighborhood of the Puig-Adam’s choice of parameters where la Cierva’s surface is stable.
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Figure 11. Contours of a neighborhood of the Puig-Adam’s choice of parameters where la Cierva’s
surface behaves stably.
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