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Abstract: This paper investigates the solution for an inverse of a parametric nonlinear transportation
problem, in which, for a certain values of the parameters, the cost of the unit transportation in the
basic problem are adapted as little as possible so that the specific feasible alternative become an
optimal solution. In addition, a solution stability set of these parameters was investigated to keep the
new optimal solution (feasible one) is unchanged. The idea of this study based on using a tuning
parameters λ ∈ Rm in the function of the objective and input parameters υ ∈ Rl in the set of constraint.
The inverse parametric nonlinear cost transportation problem P(λ, υ), where the tuning parameters
λ ∈ Rm in the objective function are tuned (adapted) as less as possible so that the specific feasible
solution x◦ has been became the optimal ones for a certain values of υ ∈ Rl, then, a solution stability
set of the parameters was investigated to keep the new optimal solution x◦ unchanged. The proposed
method consists of three phases. Firstly, based on the optimality conditions, the parameter λ ∈ Rm

are tuned as less as possible so that the initial feasible solution x◦ has been became new optimal
solution. Secondly, using input parameters υ ∈ Rl resulting problem is reformulated in parametric
form P(υ). Finally, based on the stability notions, the availability domain of the input parameters
was detected to keep its optimal solution unchanged. Finally, to clarify the effectiveness of the
proposed algorithm not only for the inverse transportation problems but also, for the nonlinear
programming problems; numerical examples treating the inverse nonlinear programming problem
and the inverse transportation problem of minimizing the nonlinear cost functions are presented.

Keywords: transportation problem; convex programming; inverse nonlinear programming

1. Introduction

In the last 20 years, the community of optimization has shown a significant interest in the field of
inverse optimization problems. Examples of implementation of inverse optimization in real life have
been investigated in various fields such as: traffic, Geophysics, monotonic regression, portfolio and
so forth. In any optimization scenario, there are some parameters in the function of the objective
and in the functions of the set constraints. When dealing with this problem, generally it is assumed
that all these parameters are known but in real situations, there are many cases where the values
of the parameters are not precisely known but we may have some fuzzy estimates of the values
of these parameters and also have an optimal solution from the past experience or past practice.
In these situations, inverse optimization problem can be implemented to adapt the values of the
parameters values as less as possible so that the specific solution becomes the optimal one.
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Recently, inverse optimization problem is an important new area of investigation involving study
and research for the mathematics community [1–5]. In optimization sciences, the coefficients of the
cost function are not precisely exactly known; it is truly acceptable to assign a feasible solution x◦ for
minimizing objective function nearly optimal, if there exist some nearby cost vector, such that the feasible
solution x◦ is an optimal solution for minimizing the objective function. Suppose that the formulation
of an optimization problem model consists of a set of optimization parameters (e.g., cost, time, . . . , etc.),
denoted by λ ∈ Rm, so we can call these parameters as a tuning parameter, which needs to be tuned
so as to x◦ become an optimal solution. Some researcher investigated some applications of inverse
optimization problems such as inverse of minimum spanning tree problems and inverse of shortest
path problem [5–8]. Several papers have appeared recently studying some inverse combinatorial
problems, where a desired given solution x◦ which is feasible and not an optimal for the model and it
is needed to adapt the cost coefficients as little as possible, so that the given solution x◦ becomes a new
optimal solution of the model. Some application of the inverse optimization problems is discussed in
References [5,6]. Ahuja and Orlin [9] present some studies in the field of inverse optimization problems;
also they investigated many applications in network analysis. Zhang and Liu [10] present various
inverse linear programming models and they also further investigated it in Reference [11].

Huang and Liu [12] investigated some applications of the inverse of linear programming.
Some various applications of the inverse problem have been studied by Amin and Emrouznejad [13].
Inverse linear programming and inverse quadratic programming using perturbation methods was
investigated by Zhang et al. [14,15]. Scheafer [16] and Wang [17] discussed the inverse of the integer
programming problem. Some basic notions in the convex parametric programming with its qualitative
analysis was presented in References [18–20], also they discussed the solvability set and stability set.

Transportation problems are considered as special kinds of optimization problems. They present
real-world activities that are managed with logistics. it includes transportation with manufacturing
products in several supplies to several destinations. The aim is to achieve the minimum total
transportation cost that will satisfy the demands at various destinations [21]. Furthermore, a few
researchers have been studied variety of inverse transportation problem due to their practical motivation.
Implementation of inverse optimization have been applied in various fields [2–24], where it is used
to measure operational variance in transit operators, to detect shifts in travel/traffic objectives in
system security and risk management, to learn mechanism in autonomous vehicles and so forth.
Andrew et al. [24] present a systematic method to derive obscure costs from observations with noisy
data of the optimal transportation plans. They implement a formulation of the problem based on
graph theory, where nodes represent countries of graphs and assign nonzero weight on the edges
between adjacent countries which have a common border. Thai [25] investigate the implementation
of inverse optimization to define two types of problems in transportation; he described how inverse
optimization and robust optimization can be implemented to find actual time of travel, with noisy
information data on travel times. Sanjay et al. [23] investigate the capacitated transportation problem and
its inverse; in this problem the transportation cost unit of some products in the basic problem are adapted
as less as possible so that the specific feasible solution becomes an optimal solution. Sanjay [26] presents
the transportation problem and its inverse, where he investigates the optimizing the ratio of linear
objective subject to the set of linear equality constraints and non-negative constraints. Dequan et al. [27]
give a brief overview of the inverse optimization problems of the general linear programming (LP).
Xu et al. [22] presents a new inverse optimization models and supporting algorithms to learn the
parameters of heterogeneous travelers’ route behavior to infer shared network state parameters
he proves that the method can obtain unique dual prices for a network shared by these agents in
polynomial time.

The main goal of this proposal is to study the stability of solutions for parametric inverse convex
nonlinear programming. This work is formal, an advanced extension of our work [28], where the
inverse model for nonlinear programming problem NLP are investigated, also different norms L1, L2
and L∞ were implemented in the solution process. The proposed method consists of three phases.
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Firstly, based on the optimality conditions, tuning parameter λ ∈ Rm is adjusted as less as possible
so that the specific initial solution x◦ becomes the new optimal solution. Secondly, with the help of
input parameters, υ ∈ Rl the resulting problem is reformulated in parametric form P(υ). Finally, based
on the stability notions, the availability domain of the input parameters was detected to keep its optimal
solution unchanged. The proposal is structured as follows. Section 2 introduces problem formulation of
the nonlinear transportation. Section 3 discusses the inverse of nonlinear programming problem (NLP).
Section 4 investigated the stability notions. Section 5 summarizes the solution procedure. Numerical
examples of the inverse optimization problems are described in Section 6. Finally, the results are
concluded in the last section.

2. Problem Formulation

Nonlinear transportation problem (NTP) is a special case of nonlinear programming problem (NLP),
the formulation of the NTP is more specific, especially in terms of decision variables and the
set of constraints. The goal of the nonlinear transportation problem is to optimize (minimize)
the vector of nonlinear transportation cost function, in addition to meeting demand, supply and
transporting constraints. The standard formulation of the optimization model for the parametric
nonlinear transportation problem is given as follows:

Minimize CT =
m′∑

r=1

n′∑
j=1

frj(λrjxrj),

Subject to :
n′∑

j=1
xrj = vi, r = 1, 2, . . . , m′

m′∑
r=1

xrj = b j, j = 1, 2, . . . , n′

xrj ≥ 0 ∀r, j

(1)

where, objective function variable CT exemplifies the total parametric transportation cost for the
transportation problem of a single commodity from sources m′ to destinations n′, frj(λrjxrj) denotes
the cost function of transporting flow xrj which represent the flow from source i to destination
j, vr, b j are parametric capacities of each source i and each destination j respectively, λi j ∈ Rm′+n′

are set of parameters at the cost function m′ is the number of sources and n′ is the number of
destination. Problem (1) could be written as a general parametric nonlinear programming problem,
which reformulated as follows:

P(λ, υ) : min f (x,λ)
subject to :

x ∈M = {x ∈ Rn
|gi(x, υ) ≤ 0, i = 1, 2, . . . k}

(2)

where, the objective function f (x,λ) =
m′∑

r=1

n′∑
j=1

frj(λrjxrj), is a convex on M, λ ∈ Rm, is a vector

of tuning parameters and
n∑

j=1
xrj = ai, r = 1, 2, . . . , m,

m∑
r=1

xrj = b j, j = 1, 2, . . . , n , xrj ≥ 0 ∀r, j is

gi(x, υ), i = 1, 2, . . . k such that gi(x, υ), i = 1, 2, . . . k is a finite-dimensional convex function of class c1

depending on the input parameter υ ∈ Rl. For a predetermined υ∗ (assigned by the decision maker)
the problem P(λ, υ∗) is transformed to P(λ). Also, it is assumed that M is a non-empty set, such that,
the feasibility is guaranteed. Suppose that f ∗ the optimum value for P(λ) corresponding to the decision
variables x∗ and tuning parameter λ∗. To give the precise formulation of the problem, we present the
following definitions.
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Definition 1. Solvability set S(λ) of P(λ) is defined as:

S(λ) = {λ ∈ Rm
|min
x∈M

f (x,λ) exists}. (3)

Let x◦ is the initial solution (feasible) for the problem P(λ), knowing that x◦ is not an optimal
solution of P(λ) problem. In inverse programming, we need to adjust as less as possible the tuning
parameter λ so that the predetermined initial feasible solution x◦ (which is not an optimal solution
for the original model) becomes a new optimal solution of P(λ◦), where λ◦ is the new value of
tuning parameters. First, let us define the expected domain of λ which is denoted by D(λ), as follows:

Definition 2. Suppose that λ ∈ S(λ) with the corresponding optimal solution x, then we have D(λ) which
defined by

D(λ) = {λ ∈ S(λ)| f (x,λ) = min
x∈M

f (x,λ)}. (4)

Theorem 1. D(λ)is nonempty for P(λ) the problem.

Proof. Since it is assumed that the feasibility is guaranteed for P(λ) the problem, that is,
{λ ∈ Rm

|min
x∈M

f (x,λ) exist} then,D(λ) is not empty. �

Theorem 2 ([29]). Let the solution (x,λ) be an initial solution (feasible) of the problem P(λ), knowing that
I = {i : gi(x) = 0}, Also, suppose that the two functions f (.) and gi(.) for i ∈ I are both differentiable at (x ,λ )

and that the function gi is continuous for i < I at (x,λ), then if (x,λ) is a local solution for the problem P(λ),
then there exist scalars u0, ui such that,

u∇ f (x,λ) +
∑
i∈I

ui∇gi(x,λ) = 0,

u, ui ≥ 0, f or ∀ i ∈ I
(u, ul) , (0, 0)

(5)

where ui for i ∈ I are the components of the vector ul, furthermore, if gi(.) for i < I are also differentiable at (x,λ)
for, i < I, then the forgoing conditions can be formulated in the following form:

u∇ f (x,λ) +
∑
i∈I

ui∇gi(x) = 0,

uigi(x0) = o f or i = 1, 2, . . . , k
u, ui ≥ 0, f or i = 1, 2, . . . , k.
( u, ul) , (0, 0)

(6)

where, ui f or i = 1, 2, . . . , k are the components of vector u.

Proof. Since (x,λ) solve P(λ) locally, then there exists no vector d. Such that ∇ f (x,λ)td < 0 and ∇gi(x)
t < 0

for each i ∈ I. Now, let A is a matrix whose rows are ∇ f (x,λ)td and ∇gi(x)
t i ∈ I. By Gordon’s

theorem [22], there exists a non-zero vector p ≥ 0 such that Atp = 0. Denoting the component of p,
u0, and ui for i ∈ I, the first part of the result follows, the equivalent form of the necessary conditions is
readily obtained by letting ui = 0 for i < I. �

To determine D(λ) of P(λ) problem, the following theorems are presented.

Theorem 3 ([22]). For a certain υ, let (x,λ) be an initial feasible solution of P(λ), knowing that I =

{i : gi(x) = 0}., Suppose that f (.) and gi(.) for i ∈ I are differentiable at (x,λ) and that gi(.) for i < I is
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continuous at (x,λ). Furthermore, suppose that ∇gi(x) for i ∈ I are linearly independent. If (x,λ) solves
P(λ) locally, then there exist scalars ui for i ∈ I such that

∇ f (x,λ) +
∑
i∈I

ui∇gi f (x,λ) = 0,

ui ≥ 0, ∀ i ∈ I
(7)

If gi(.), i < I are also differentiable at (x,λ), then the forgoing conditions can be reformulated in
the following equivalent form:

∇ f (x,λ) +
∑
i∈I

_
u i∇gi(x,λ) = 0,

uigi(x0) = o f or , i = 1, 2, . . . , k
ui ≥ 0 f or , i = 1, 2, . . . , k.

(8)

Proof. By Theorem 2, there exist scalars u,
_
u i for i ∈ I, not all equal to zero, such that

u∇ f (x,λ) +
∑
i∈I

_
u i∇gi(x,λ) = 0,

u,
_
u i ≥ 0, f or i ∈ I

(9)

Knowing that, u > 0, because the system (8) would be contradict with the assumption of linear
independence of ∇gi(x,λ) for i ∈ I if u = 0. The first part of the theorem then follows by letting

ui =
_
u i
uo

for each i ∈ I. The equivalent form of system (6) follows by letting ui = 0 for i < I. �

Now, let the system as follows:

∂ f (x,λ)
∂xα

+
k∑

i=1
ui
∂gr(x)
∂xα

= 0 ,α = 1, 2, . . . n, λ ∈ Rm

uigi(x) = o , i = 1, 2, . . . , k
ui ≥ 0 , i = 1, 2, . . . , k.

(10)

From system (9), we can determine D(λ). Since, this system (9) represents independence n + k
equations in k + m unknowns and λ ∈ Rm, which are linear in ui, i = 1, 2, . . . , k and nonlinear in λ,
then we can obtain ui, i = 1, 2, . . . , k and λ explicitly after substituting x by x.

3. Inverse Nonlinear Programming Problem

The purpose of the proposed inverse optimization approach is to adapt the tuning parameter
value from λ∗ to λ◦ so that the specific feasible (given) solution x◦ becomes an optimal solution of
P(λ◦) by dealing with the problem

IP(λ◦) : min ‖λ◦ − λ∗‖
subject to : D(λ) = {λ ∈ S : f (x,λ◦) = min

x∈M
f (x,λ◦)} (11)

Let ‖ · ‖ denote a vector norm, such as L1, L2 or L∞ norm and N is a domain of λ- parameters
that satisfy {λ ∈ S(λ) : f (x,λ) = min

x∈M
f (x,λ)}, it is clear that the domain of the inverse nonlinear

programming problem is the same domain of D(λ), so that problem (11) can be reformulated as follows:

Q(λ) : min ‖λ − λ∗‖
subject to : λ ∈ D(λ)

(12)
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Definition 3. The set of optimality solution of problem (12) which represented by Nopt(λ, x) is defined as
follows: Nopt(λ, x) = {λ ∈ Rm

| min
λ∈D(λ)

‖λ− λ∗‖exists}.

Note that: Nopt ⊂ N

Theorem 4. The set of optimality solutions Nopt(λ, x) is closed and convex

Proof.

First: Convexity:

Let, λ1 ∈ Nopt(λ, x) then

(1−w) min
λ∈D(λ)

‖λ− λ∗‖ = (1−w)‖λ1 − λ
∗
‖ , w ≤ 1, (13)

and let λ2 ∈ Nopt(λ, x), then
w min
λ∈D(λ)

‖λ− λ∗‖ = w‖λ2 − λ
∗
‖ , w ≥ 0 (14)

Adding (12), (13) we get,

w‖λ2 − λ
∗
‖+(1−w)‖λ1 − λ

∗
‖ = min

λ∈D(λ)
‖λ− λ∗‖, 0 ≤ w ≤ 1 (15)

Then form (14), we have,

‖(1−w)λo
1 + wλ2 − λ

∗
‖ = min

λ∈D(λ)
‖λ − λ∗‖, 0 ≤ w ≤ 1 (16)

Then from (15), we can say that, (1−w)λ1 + wλ2 ∈ Nopt(λ, x)
Hence, Nopt(λ, x) is convex.

Second: Closeness:

Let {λn} ⊆ Nopt(λ, x) be a sequence of points λn which converges to λ, that is, lim
n→∞

λn = λ

Since, min
λ∈D(λ)

‖λ− λ∗‖= ‖λn − λ
∗
‖, n = 1, 2, . . ., then, lim

n→∞
min
λ∈D(λ)

‖λ− λ∗‖= lim
n→∞
‖λn − λ

∗
‖

From the continuity of the norm, it follows that

lim
n→∞
‖λn − λ

∗
‖ = ‖λ− λ∗‖, then λ ∈ Nopt(λ, x) = min

λ∈D(λ)
‖λ− λ∗‖

Then, Nopt(λ, x) is closed. �

4. The Stability of the Optimal Solution in the Decision Space

Studying the stability to the problem involves finding the value range of the input parameter to
keep the optimal solution unchanged (the optimal solution in the decision space remains unchanged),
which denoted as the stability of the first type [27].

For any, λ∗ ∈ Rm the problem P(λ∗, υ) is transformed to P(υ), which have only input parameter.

P(υ) : Minmize f (x)
s.t.

x ∈M = {x ∈ Rn/gi(x, υ) ≤ 0, i = 1, 2, . . . , k}.
(17)
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Definition 4. The set of parameters υ ∈ Rl (input parameters) for the problem P(υ) is defined by

U = {υ ∈ Rl
|M , φ}

Theorem 5. The set U is convex.

Proof. If U is the whole space Rl, then the proof is clear. Otherwise, suppose that υ1,υ2
∈ U, then there exist

x1, x2
∈ Rn such that gi(x1,υ1) ≤ 0 , gi(x2,υ2) ≤ 0 and for 0 ≤ w ≤ 1, (1−w)gi(x1,υ1) ≤ 0 , wgi(x2,υ2) ≤ 0.

Since gr(x, υ) are convex in x, υ, then, we have,

gi[(1−w)x1 + wx2, (1−w)υ1 + wυ2] ≤ (1−w)gi(x1, υ1) + wgi(x2, υ2)

and hence, (1−w)υ1 + wυ2
∈ U. Then U is convex. �

Definition 5. The set V is denoted as the solvability set of P(υ) and it is defined as

V = {υ ∈ Rl
|mopt(υ) , φ}.

where, mopt(υ) = {x∗ ∈ Rn
| f (x∗) = min

x∈M
f (x)}. Note that mopt ⊂M.

Definition 6. Let υ ∈ V with a corresponding optimal solution x, then the stability set of the first type of P(υ)
corresponding to the solution x which is defined as follows:

G(xo) = {υ ∈ Rm
| f (xo) = min

x∈M(υ)
f (x)}

If f (x) and gi(x, υ) , i = 1, 2, . . . , k are set of functions belong to class C1 on Rn. Let υ ∈ V with a
corresponding optimal point x; then from the stability of problem Q(λ), there exists ui, i = 1, 2, . . . , k
such that (x, υ) solves the Kuhn- Tucker condition problem [22], which can be described as follows:

∂ f (xo)
∂x j

+
k∑

r=1

∂gi(xo,υ)
∂x j

= 0 , i = 1, 2, . . . , k, j = 1, 2, . . . , n

uigi(xo, υ) = 0, , i = 1, 2, . . . , k
gi(xo, υ) ≤ 0 , i = 1, 2, . . . , k
ui ≥ 0 , i = 1, 2, . . . , k

(18)

To determine the set G(x), let us consider the system:

∂ f (xo)

∂x j
+

k∑
r=1

ui
∂gi(xo, υ)
∂x j

= 0 , i = 1, 2, . . . , k, j = 1, 2, . . . , n

Which represents n equations in k + m unknowns, which are linear in u and nonlinear in υ,
we denote to this system by ϕ(x, u, υ) = 0.

If m = n, ϕ(x, u, υ) = 0 has a solution, ∇υϕ(x, u, υ) exists and is a continuous function of (u, υ)
and [ϕ(x, u, υ)]−1 exists. The solution of ϕ(x, u, υ) = 0 can be expressed explicitly as υ = ψ(u) where
ψ is n-dimensional vector function. The value of ui, i = 1, 2, . . . , k in such a way that (ur, υ) solves
Kuhn-Tucker problem where (u, υ) solves the system

∂ f (xo)

∂x j
+

k∑
r=1

ui
∂gi(xo, υ)
∂x j

= 0 , i = 1, 2, . . . , k, j = 1, 2, . . . , n
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The following cases were considered [20]
(i) ui > 0, i ∈ J ⊂ (1, 2, . . . , k), ui = 0, i ∈ (1, 2, . . . , k) − J.
We define the set,

GJ(x) = {υ ∈ Rl/gi(x, υ) = 0, gi(x, υ) ≤ 0, i ∈ j}

And we define,
G1(x) = ∪

J∈q
GJ(x) (19)

where q is a proper subset of J
(ii) ui = 0 , i = 1, 2, . . . k
We define the set,

G2(xo) = {v ∈ Rl/gi(xo, υ) ≤ 0, i = 1, 2, . . . , k}

(iii) ui > 0, i = 1, 2, . . . k
We define the set

G3(x) = {v ∈ D ⊂ Rm/gi(x, υ) = 0, i = 1, 2, . . . , k} (20)

From Kuhn-Tucker sufficient optimality [22], it follows that the sets Gi(x), i = 1, 2, 3 or the union
of some or all of them depending on the values of u.

5. Solution Procedure

The following are the main steps of our method that are used to find the inverse nonlinear
programming problem and to investigate the stability of the solution in the decision space. The main
steps can be stated as follows:

Phase 1: Obtain the value of the tuning parameters λ ∈ Rm, so that the given (determined) feasible
solution x becomes the optimal ones.

Step 0. For certain input parameters υ ∈ Rl, the problem P(λ, υ) is transformed to P(λ)
Step 1. Obtain the optimal solution x∗ ∈ Rn and the corresponding optimum value f ∗ for the

problem P(λ) for a certain λ∗ parameter.
Step 2. Choose the desired feasible decision variables x ∈M which determined by the decision

maker (DM).
Step 3. Obtain D(λ) condition of P(λ).
Step 4. Formulate the problem Q(λ).
Step 5. Solve the problem Q(λ) to obtain the vector λ0 with three different main definitions of

the norm (as L1, L2 or L∞ norm).
Step 6. Formulate the inverse nonlinear programming problem {P(λ)| λ = λ0

}.

Phase 2: Formulate parametric inverse nonlinear programming problem With the help of input
parameters, υ ∈ Rl the resulting problem is reformulated in parametric form
P(υ) = {P(λ, υ)|λ = λ} as in Equation (16).

Phase 3: Stability analysis Based on the stability notions, the availability domain of the input
parameters υ ∈ Rl was found to keep its optimal solution unchanged.

Step 1. Formulate parametric problem P(υ) = {P(λ, υ)|λ = λ◦}.
Step 2. Construct the KKT as in Equation (17).
Step 3. Determine the values of Lagrange multipliers.
Step 4. Determination of the availability domain of the input parameters υ ∈ Rl, according to

Equations (18)–(20).
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6. Numerical Simulation

To validate our method, three inverse parametric nonlinear programming examples are given,
having tuning parameters λ ∈ Rm at the objective functions and input parameters υ ∈ Rl in the
constraint and a transportation application are presented.

6.1. Classical Benchmark Examples

To examine the proposed inverse optimization method, three examples were chosen from
the literature.

Example 1. Given the nonlinear programming problem P(λ, υ) having tuning parameters λ ∈ R2 in the
function in the objective and input parameters υ ∈ R2 in the function of the constraint,

min f (x,λ) = x2
1 + x2

2λ1x1 + λ2x2

s.t. : υ1x1 + x2 − υ2
2 ≤ 0,

υ2
1x2

1 + υ2x2
2 − υ1 ≤ 0,

x1, x2 ≥ 0.

Step 0. For certain input parameters υ = (1, 1), P(λ, υ) is transformed to P(λ)

min f (x,λ) = x2
1 + x2

2λ1x1 + λ2x2,

s.t. : x1 + x2 ≤ 1,
x2

1 + x2
2 ≤ 1,

x1, x2 ≥ 0.

Step 1. The optimal solution x∗ of the problem P(λ) is found x∗ = (1, 0) at f ∗ = −1 and λ∗ = (−2, 0),
Step 2. The desired feasible decision variables are x◦ = (0, 1)
Step 3. Obtain D(λ) condition of NLP as follows:

2x1 + λ1 + u1 + 2x1u1 = 0 ,
2x2 + λ2 + u1 + 2x2u2 = 0 ,
u1(x1 + x2 − 1) = 0 ,
u2(x2

1 + x2
2 − 1) = 0,

x1, x2, u1, u2 ≥ 0.

Substituting with the desired feasible decision variables x = (0, 1) we get,

λ1 + u1 = 0,
2 + λ2 + u1 + 2u2 = 0,
u1(1− 1) = 0 ,
u2(1− 1) = 0,
u1, u2 ≥ 0.

(21)

From system (21), we get D(λ) as follows

D(λ) = {(λ1,λ2) ∈ R2
|λ1 ≤ 0,λ2 − λ1 ≤ 2}
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Step 4. Formulate the Q(λ) problem

min‖λ− λ∗‖,
subject to : λ ∈ D(λ).

Substituting λ∗ = (−2, 0), f ∗ = −1, D(λ) = {(λ1,λ2) ∈ R2
|λ1 ≤ 0,λ2 − λ1 ≤ 2}

Step 5. Using L2-norm to solve the problem Q(λ)) to obtain the vector λ0 as follows:

min
√
(λ1 + 2)2

− (λ2)
2 ,

subject to :
λ1 ≤ 0,
2 + λ2 − λ1 ≤ 0,
1 + λ2 = −1.

Solving this NLP using “Lindo” software we get λ1 = 0, λ2 = −2 then we get λ = (0, 2)

Phase 2: Formulate parametric inverse nonlinear programming problem

Substituting by λ1 = 0, λ2 = −2 the P(υ) takes the form

min f (x,λ) = x2
1 + x2

2 − 2x2,
s.t. : υ1x1 + x2 − υ2

2 ≤ 0,
υ2

1x2
1 + υ2x2

2 − υ1 ≤ 0,
x1, x2 ≥ 0.

Phase 3: Stability analysis

Construct the KKT. conditions for P(υ) with the optimal solution x = (0, 1)

u1υ1 = 0,
2− 2 + u1 + 2u2υ2 = 0 ,
1− υ2

2 ≤ 0,
υ2 − υ1 ≤ 0,

u1(+1− υ2
2) = 0,

u2(υ2 − υ1) = 0,
u1, u2 ≥ 0.

Then we get the stability set of the first type as follows:

G(0, 1) = {υ ∈ R2/υ1 − υ2 ≤ −0, 1− υ2
2 = 0} ∪ {υ ∈ R2/1− υ2

2 ≤ 0, υ1 − υ2 = 0}

Example 2. Consider the nonlinear programming problem P(λ, ν) having tuning parameters λ ∈ R2 in the
function of the objective and input parameters υ ∈ R2 in the functions of the constraint,

min f (x,λ) = 4x1 + λ1x2 + λ2x2
1 − 2x1x2 − 2x2

2,
s.t. : υ1x1 + υ2x2 − 1 ≤ 0,

x1, x2 ≥ 0.
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Step 0. For certain input parameters υ = (1, 2) the problem P(λ, υ) is transformed to P(λ)

min f (x,λ) = 4x1 + λ1x2 + λ2x2
1 − 2x1x2 − 2x2

2,
s.t. : x1 + 2x2 ≤ 2,

x1, x2 ≥ 0.

Step 1. The optimal solution x∗ of P(λ) is found x∗ = ( 1
3 , 5

6 ) with z∗ = 4.16, for λ∗ = (6,−2),
Step 2. The desired feasible decision variables are x = ( 3

2 , 1
4 )

Step 3. Obtain D(λ) condition of P(λ) as follows:

−4− 2λ0
2x1 + 2x2 + u = 0

−λ0
1 + 2x1 + 4x2 + 2u = 0

u(x1 + 2x2 − 2) = 0
u ≥ 0.

Substituting x0 = (x1, x2) = ( 3
2 , 1

4 ) we get,

−4− 3λ2 +
1
2 + u = 0,

−λ1 + 3 + 1 + 2u = 0,
u( 3

2 + 1
2 − 2) = 0,

u ≥ 0.

(22)

From system (22) the D(λ) is as follows:

D(λ) = {(λ1,λ2) ∈ R2/λ1 ≥ 4,λ2 ≥ −
7
6
}

Step 4. The desired feasible decision variables are x0 = ( 3
2 , 1

4 )

Step 5. Formulate the Q(λ) problem as follows

min‖λ− λ∗‖,
subject to :

λ ∈ D(λ).

Substituting λ∗ = (6,−2) f ∗ = 4.16, D(λ) = {(λ1,λ2) ∈ R2/λ1 ≥ 4,λ2 ≥ −
7
6 }.

Step 6. Using L2- norm to solve the problem Q(λ) to obtain the vector λ0 as follows:

min
√
(λ1 − 6)2 + (λ2 + 2),

subject to : λ1 ≥ 4,
λ2 ≥ −

7
6 .

Solving this NLP using “Lindo” software we get λ1 = 5.066, λ2 = −0.989 so we get λ0 =

(5.066,−0.989)

Phase 2: Formulate parametric inverse nonlinear programming problem

Substituting by λ0
1 = 5.066, λ0

2 = −0.989 the P(υ) takes the form:

min f (x,λ) = 4x1 + 5.006x2 − 0989x2
1 − 2x2

2 − 2x1x2,
s.t. : υ1x1 + υ2x2 − 1 ≤ 0,

x1, x2 ≥ 0.
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Phase 3: Stability analysis

Construct the KKT. Conditions for P(υ) with the optimal solution x0 = ( 3
2 , 1

4 )

−4 + 2.967 + 1
2 + uυ1 = 0,

−5.006 + 3 + 1 + 2uυ2 = 0,
3
2υ1 +

1
4υ2 − 2 ≤ 0,

u( 3
2υ1 +

1
2υ2 − 2) = 0,

u ≥ 0.

Then we get the stability set of the first type as follows:

G(
3
2

,
1
4
) = {υ ∈ R1/

3
2
υ1 +

1
2
υ2 − 2 = 0}

Example 3. Given the nonlinear programming problem P(λ, υ) having tuning parameters λ ∈ R2 in the
objective functions and input parameters υ ∈ R2 in the constraint,

min f (x,λ) = λ1x2
1 + λ2x2,

subject to : υ1x1 + x2
2 − υ

2
2 ≤ o,

− x1 + υ2
1x2 + υ2 ≤ 0

x1, x2 ≥ 0.

Step 0. For certain input parameters υ = (1, 0) the problem P(λ, υ) is transformed to P(λ)
Step 1. The optimal solution x∗ of P(λ) the problem is x∗ = (0, 0) with f ∗ = 0, for λ∗ = (2, 0),
Step 2. The desired feasible decision variables are x∗ = (0.5, 0.5)
Step 3. Obtain D(λ) condition of NLP as follows:

2x1λ1 + u1 − u2 = 0,
λ2 + 2u1x2 + u2 = 0,
u1(x1 + x2

2) = 0,
u2(−x + x2) = 0,
x1, x2, u1, u2 ≥ 0,

Substituting with the desired feasible decision variables x = (0.5, 0.5) we get,

−λ1 + u1 − u2 = 0,
λ2 + u1 + u2 = 0,
u1(

1
2 + 1

4 ) = 0,
u2(

1
2 −

1
2 ) = 0,

u1, u2 ≥ 0,

(23)

From system (23), we get D(λ) is as follows

D(λ) = {(λ1,λ2) ∈ R2/λ1 ≥ 0,λ2 ≤ 0,λ1 + λ2 = 0}

Step 4. Formulate the Q(λ) problem
min‖λ− λ∗‖
subject to : λ ∈ D(λ)

Substituting λ∗ = (2, 0), f ∗ = 0, D(λ) = {(λ1,λ1) =∈ R2/λ1 ≥ 0,λ2 ≤ 0,λ1 + λ2 = 0}
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Step 5 Using L2-norm to solve the problem IP(λ)) to obtain the vector λ0 as follows:

min
√
(λ1 + 2)2 + λ2,

subject to : λ1 + λ2 = 0,
λ1 ≥ 0,
λ2 ≤ 0.

Solving this NLP using “LINDO” software we get λ1 = 1, λ2 = −1 so we get λ1 = (1,−1)

Phase 2: Formulate parametric inverse nonlinear programming problem

Substituting by (λ1,λ2) = (1,−1), letting us form the parametric P(υ) problem: parameters in the
constraints as follows:

min f (x,λ) = x2
1 − x2,

subject to : υ1x1 + x2
2 − υ

2
2 ≤ o,

−x1 + υ2
1x2 + υ2 ≤ 0

x1, x2 ≥ 0.

Phase 3: Stability analysis

Construct the KKT. Conditions for P(υ) with the optimal solution x = ( 1
2 , 1

2 )

1 + u1υ1 − u2 = 0,
−1 + u1 + u2υ2

1 = 0,
u1(

1
2υ1 +

1
4 − υ

2
2) = 0,

u2(−
1
2 + 1

2υ
2
1 + υ2) = 0,

u1, u2 ≥ 0,

Then we get the stability set of the first type as follows:

G(
1
2

,
1
2
) = {υ ∈ R2/

1
2
υ1 − υ

2
2 ≤ −

1
4

,
1
2
υ2

1 + υ2 =
1
2
} ∪ {υ ∈ R2/

1
2
υ2

1 + υ2 ≤
1
2

,
1
2
υ1 − υ

2
2 = −

1
4
}

On solving the previous examples by the given approach, we stress the following:
At the first example, when the input parameters υ = (1, 1) and the tuning parameters

λ∗ = (−2, 0), the optimal solution was x∗ = (1, 0) but the decision making need to have the
point x◦ = (0, 1) as an optimal one, this methodology not only achieve the goal but also
detect the stability set of the first type, that is used to define available range of these input
parameters G(0, 1) = {υ ∈ R2/υ1 − υ2 ≤ −0, 1− υ2

2 = 0} ∪ {υ ∈ R2/ 1− υ2
2 ≤ 0, υ1 − υ2 = 0} that keep

the predetermined point x∗ = (1, 0) as optimal solution.
At the second one, when the input parameters υ = (1, 2) and the tuning parameters λ∗ = (6,−2),

then the corresponding optimal solution was x∗ = ( 1
3 , 5

6 ) but the decision making wish that the
point x = ( 3

2 , 1
4 ) to be an optimal one, by using this method the goal was achieved in addition,

the stability set of the first type was detected to define available range of these input parameters
G( 3

2 , 1
4 ) = {υ ∈ R1/ 3

2υ1 +
1
2υ2 − 2 = 0} that keep the point x = ( 3

2 , 1
4 ) as an optimal one.

6.2. An Application: Transportation Problem Application

To examine the proposed inverse optimization method, nonlinear transportation problem
was chosen. When the unit of the transportation cost on a specific road is nonlinear depending on the
number of the transported units, then the transportation problem is called nonlinear transportation
problem (NTP). Investigating for the optimal solution of NTP has been one of the important fields of
intensive study on supply chain process. This section proposed an algorithm for inverse transportation
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problem of minimizing maximizing the nonlinear cost functions. The approach can be used to obtain
the modified values of objective coefficients such that the specific (given) feasible solution becomes
an optimal solution. A transportation network model shown in Figure 1 has two factories, factory 1
and factory 2 which represent the source nodes; on the other hand, the destination nodes represent
warehouse 1, warehouse 2 and warehouse 3, any existing by an arc. The cost of each unit product unit,
through specific path is represented by the numbers on that arc. Cost, supply and demand values are
presented in Table 1.
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Figure 1. The transportation problem.

Table 1. Transportation problem tableau.

Demand
Supply WHS 1 WHS 2 WHS 3 Supply

FAC 1
λ1x11 2x12 7x137x13 13

x11 x12 x13

FAC 2
λ2x21 9x22 3x23 15

x21 x22 x23

Demand 11 3 14 28

P(λ, υ) :
Min F = λ1x2

11 + 2x2
12 + 7x2

13 + λ2x2
21 + 9x2

22 + 3x2
23

s.t. : x11 + x12 + x13 ≤ υ1,
x21 + x22 + x23 ≤ υ2,
x11 + x21 = 11,
x12 + x22 = 3,
x13 + x23 = 14,
xi j ≥ 0
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Step (0). For certain υ = (13, 15) the problem P(λ, υ) is transformed to P(λ)

P(λ)
Min F = λ1x2

11 + 2x2
12 + 7x2

13 + λ2x2
21 + 9x2

22 + 3x2
23

s.t. : x11 + x12 + x13 ≤ 13,
x21 + x22 + x23 ≤ 15,
x11 + x21 = 11,
x12 + x22 = 3,
x13 + x23 = 14,
xi j ≥ 0

Step (1). the optimal solution is

x11 = 11, x12 = 0, x21 = 0, x22 = 3, x13 = 2, x23 = 12, F∗ = 622 With λ∗ = (1, 1)

Step (2). the desired feasible solution is

x◦ = (x11, x12, x21, x22, x13, x23)

x11 = 11, x12 = 2, x21 = 0, x22 = 1, x13 = 0, x23 = 14

Step (3). Formulate the K.K.T conditions to get the domain of λ such that x◦ is optimal one

2λ1x11 + u1 + v1 = 0
4x11 + u1 + v2 = 0
14x13 + u1 + v3 = 0
2λ2x21 + u2 + v1 = 0
18x22 + u2 + v2 = 0
9x23 + u2 + v3 = 0
u1(x11 + x12 + x13 − 13) = 0
u2(x21 + x22 + x23 − 15) = 0
u1, u2 ≥ 0, v1, v2, v3 , 0

By Substituting with x◦ we get

D(λ) = {(λ1,λ2) ∈ R2
|λ1 − 10 ≥ 0,λ2 − 14 ≥ 0}

Step (4). Formulate D(λ) to find the of values λ1,λ2

min‖λ− λ∗‖
s.t.λ ∈ D(λ)

For L2 norm

min‖λ− λ∗‖ = min
√
(λ1 − 1)2 + (λ2 − 1)2

s.t.λ ∈ D(λ)

Solving this NLP using “LINDO” software we get λ1 = 10, λ2 = 14, then λ◦ = (10, 14)

Phase 2: Formulate parametric inverse nonlinear transportation problem
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Substituting by λ◦ = (10, 14), letting us form the parametric P(u) problem: parameters in the
constraints as follows:

P(υ) :
Min F = 10x2

11 + 2x2
12 + 7x2

13 + 14x2
21 + 9x2

22 + 3x2
23

s.t. : x11 + x12 + x13 ≤ υ1,
x21 + x22 + x23 ≤ υ2,
x11 + x21 = 11,
x12 + x22 = 3,
x13 + x23 = 14,
xi j ≥ 0

Phase 3: Stability analysis

Construct the K.K.T of P(υ) with optimal solution

x◦ = (x11, x12, x21, x22, x13, x23)

x11 = 11, x12 = 2, x21 = 0, x22 = 1, x13 = 0, x23 = 14

and λ◦ = (10, 14) to be as follows:

24x11 + u1 + v1 = 0
4x12 + u1 + v2 = 0
14x13 + u1 + v3 = 0
28x21 + u2 + v1 = 0
18x22 + u2 + v2 = 0
9x23 + u2 + v3 = 0
u1(x11 + x12 + x13 − v1) = 0
u2(x21 + x22 + x23 − v2) = 0
u1, u2 ≥ 0
v1, v2, v3 , 0

At x◦,
264 + u1 + v1 = 0
8 + u1 + v2 = 0
u1 + v3 = 0
u2 + v1 = 0
36 + u2 + v2 = 0
126 + u2 + v3 = 0
u1(11 + 2 + 0− v1) = 0
u2(0 + 1 + 14− v2) = 0
u1, u2 ≥ 0
v1, v2, v3 , 0

It is clear that u1, u2 , 0 then we get the stability set of the first type at x◦ as follows

G(12, 14) = {v ∈ R2
|13− v1 = 0, 12− v2 = 0}

It is clear that, for this application, we not only justify the cost function parameters as little as
possible so that the specific feasible solution (x11 = 11, x12 = 2, x21 = 0, x22 = 1, x13 = 0, x23 = 14)
becomes an optimal one but also, a solution stability set of parameters was investigated to keep the
new optimal solution is unchanged.
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7. Conclusions

The inverse optimization problem is an interesting field for both academic scientist and real-life
applications. Implementation the inverse optimization and adapting the cost function parameters
as little as possible so that the specific feasible solution becomes an optimal spatially in nonlinear
domain is not easy, so keeping that solution with different sets of certain parameters is valuable.
Nonlinear transportation problem (NTP) is a special case of nonlinear programming problem (NLP),
the formulation of the NTP is more specific, especially in terms of decision variables and the set
of constraints.

This manuscript proposed a methodology for finding the inverse problem of convex nonlinear
programming problem P(λ, υ) having tuning parameters λ ∈ Rm in the function of the objective and
input parameters υ ∈ Rl in the functions in the set of constraint. The proposed method consists of
three phases. Firstly, based on the optimality conditions, tuning parameters λ ∈ Rm are tuned as less
as possible so that the given initial feasible solution x becomes the optimal ones. Secondly, using
input parameters, υ ∈ Rl the resulting problem is reformulated in parametric form P(υ). Then, based on
the stability notions, the availability domain of the input parameters was detected to keep its optimal
solution unchanged.

Finally, to validate and demonstrate the advantage of the new approach, three nonlinear
programming examples and nonlinear transportation problem application are provided for the
sake of illustration. On solving the transportation problem by the given approach, we summarize the
result as follows:

When the input parameters υ = (13, 15) and the tuning parameters λ∗ = (1, 1) the optimal solution
was x11 = 11, x12 = 0, x21 = 0, x22 = 3, x13 = 2, x23 = 12, but the decision making need that the
solution x11 = 11, x12 = 2, x21 = 0, x22 = 1, x13 = 0, x23 = 14 to be an optimal one, this methodology
not only achieve the goal but also detect the stability set of the first type, which is used to define a
available range of these input parameters G(12, 14) = {v ∈ R2

|13− v1 = 0, 12− v2 = 0} that keep the
solution x11 = 11, x12 = 2, x21 = 0, x22 = 1, x13 = 0, x23 = 14 as an optimal one. From the above
study, the following may be concluded:

• A solution of a parametric inverse transportation problem is introduced.
• The paper deals with Parametric nonlinear programming having tuning parameters λ ∈ Rm in the

objective and input parameters υ ∈ Rl in the constraints.
• An inverse model for the proposed problem was investigated.
• Solution stability of the problem was investigated to retain its optimal solution.
• Numerical examples are provided for the sake of illustration.

For the future work, this method can be extended to nonlinear Large-Scale Inverse transportation
Problems and its applications in IoT.
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Abbreviations

λ Tuning parameters
υ Input parameters
x◦ The new optimal solution

P(λ, υ)
The inverse parametric nonlinear programming
problem

P(υ) Parametric nonlinear programming problem
CT The total parametric transportation cost
fi j(λi jxi j) The cost transportation function
xi j Transportation flow

νi,b j
Parametric capacities of each source i and each
destination j

S(λ) The Solvability set
D(λ) The expected domain of λ
λ◦ The new value of tuning parameters
λ∗ The initial value of tuning parameters
x∗ The decision variables at tuning parameters λ∗

υ∗ The initial value of the input parameters
V The solvability set of P(υ)
IP(λ◦) The inverse optimization problem
Q(λ) The equivalent inverse optimization problem
Nopt(λ, x) The set of optimality solution of Q(λ) problem
U The set of the input parameters
Gi(x) The set of parameters that kept x optimal solution
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