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Abstract: This paper investigates the solution for an inverse of a parametric nonlinear transportation 
problem, in which, for a certain values of the parameters, the cost of the unit transportation in the 
basic problem are adapted as little as possible so that the specific feasible alternative become an 
optimal solution. In addition, a solution stability set of these parameters was investigated to keep 
the new optimal solution (feasible one) is unchanged. The idea of this study based on using a tuning 
parameters mRλ ∈  in the function of the objective and input parameters lRυ ∈  in the set of 
constraint. The inverse parametric nonlinear cost transportation problem ( , )P λ υ , where the tuning 
parameters mRλ ∈ in the objective function are tuned (adapted) as less as possible so that the 
specific feasible solution x  has been became the optimal ones for a certain values of lRυ ∈ , then, 
a solution stability set of the parameters was investigated to keep the new optimal solution x   
unchanged. The proposed method consists of three phases. Firstly, based on the optimality 
conditions, the parameter mRλ ∈  are tuned as less as possible so that the initial feasible solution
x   has been became new optimal solution. Secondly, using input parameters lRυ ∈  resulting 
problem is reformulated in parametric form ( )P υ . Finally, based on the stability notions, the 
availability domain of the input parameters was detected to keep its optimal solution unchanged. 
Finally, to clarify the effectiveness of the proposed algorithm not only for the inverse transportation 
problems but also, for the nonlinear programming problems; numerical examples treating the 
inverse nonlinear programming problem and the inverse transportation problem of minimizing the 
nonlinear cost functions are presented. 

Keywords: transportation problem; convex programming; inverse nonlinear programming 
 

1. Introduction 

In the last 20 years, the community of optimization has shown a significant interest in the field 
of inverse optimization problems. Examples of implementation of inverse optimization in real life 
have been investigated in various fields such as: traffic, Geophysics, monotonic regression, portfolio 
and so forth. In any optimization scenario, there are some parameters in the function of the objective 
and in the functions of the set constraints. When dealing with this problem, generally it is assumed 
that all these parameters are known but in real situations, there are many cases where the values of 
the parameters are not precisely known but we may have some fuzzy estimates of the values of these 
parameters and also have an optimal solution from the past experience or past practice. In these 
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situations, inverse optimization problem can be implemented to adapt the values of the parameters 
values as less as possible so that the specific solution becomes the optimal one. 

Recently, inverse optimization problem is an important new area of investigation involving 
study and research for the mathematics community [1–5]. In optimization sciences, the coefficients 
of the cost function are not precisely exactly known; it is truly acceptable to assign a feasible solution 
x   for minimizing objective function nearly optimal, if there exist some nearby cost vector, such that 
the feasible solution x   is an optimal solution for minimizing the objective function. Suppose that 
the formulation of an optimization problem model consists of a set of optimization parameters (e.g., 
cost, time,…, etc.), denoted by mRλ ∈ , so we can call these parameters as a tuning parameter, which 
needs to be tuned so as to x   become an optimal solution. Some researcher investigated some 
applications of inverse optimization problems such as inverse of minimum spanning tree problems 
and inverse of shortest path problem [5–8]. Several papers have appeared recently studying some 
inverse combinatorial problems, where a desired given solution x   which is feasible and not an 
optimal for the model and it is needed to adapt the cost coefficients as little as possible, so that the 
given solution x   becomes a new optimal solution of the model. Some application of the inverse 
optimization problems is discussed in References [5,6]. Ahuja and Orlin [9] present some studies in 
the field of inverse optimization problems; also they investigated many applications in network 
analysis. Zhang and Liu [10] present various inverse linear programming models and they also 
further investigated it in Reference [11]. 

Huang and Liu [12] investigated some applications of the inverse of linear programming. Some 
various applications of the inverse problem have been studied by Amin and Emrouznejad [13]. 
Inverse linear programming and inverse quadratic programming using perturbation methods was 
investigated by Zhang et al. [14,15]. Scheafer [16] and Wang [17] discussed the inverse of the integer 
programming problem. Some basic notions in the convex parametric programming with its 
qualitative analysis was presented in References [18–20], also they discussed the solvability set and 
stability set. 

Transportation problems are considered as special kinds of optimization problems. They present 
real-world activities that are managed with logistics. It includes transportation with manufacturing 
products in several supplies to several destinations. The aim is to achieve the minimum total 
transportation cost that will satisfy the demands at various destinations [21]. Furthermore, a few 
researchers have been studied variety of inverse transportation problem due to their practical 
motivation. Implementation of inverse optimization have been applied in various fields [2–24], where 
it is used to measure operational variance in transit operators, to detect shifts in travel/traffic 
objectives in system security and risk management, to learn mechanism in autonomous vehicles and 
so forth. Andrew et al. [24] present a systematic method to derive obscure costs from observations 
with noisy data of the optimal transportation plans. They implement a formulation of the problem 
based on graph theory, where nodes represent countries of graphs and assign nonzero weight on the 
edges between adjacent countries which have a common border. Thai [25] investigate the 
implementation of inverse optimization to define two types of problems in transportation; he 
described how inverse optimization and robust optimization can be implemented to find actual time 
of travel, with noisy information data on travel times. Sanjay et al. [23] investigate the capacitated 
transportation problem and its inverse; in this problem the transportation cost unit of some products 
in the basic problem are adapted as less as possible so that the specific feasible solution becomes an 
optimal solution. Sanjay [26] presents the transportation problem and its inverse, where he 
investigates the optimizing the ratio of linear objective subject to the set of linear equality constraints 
and non-negative constraints. Dequan et al. [27] give a brief overview of the inverse optimization 
problems of the general linear programming (LP). Xu et al. [22] presents a new inverse optimization 
models and supporting algorithms to learn the parameters of heterogeneous travelers’ route behavior 
to infer shared network state parameters he proves that the method can obtain unique dual prices for 
a network shared by these agents in polynomial time. 

The main goal of this proposal is to study the stability of solutions for parametric inverse convex 
nonlinear programming. This work is formal, an advanced extension of our work [28], where the 
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inverse model for nonlinear programming problem NLP are investigated, also different norms L1,L2 
and L∞ were implemented in the solution process. The proposed method consists of three phases. 
Firstly, based on the optimality conditions, tuning parameter mRλ ∈  is adjusted as less as possible 
so that the specific initial solution x   becomes the new optimal solution. Secondly, with the help of 
input parameters, lRυ ∈  the resulting problem is reformulated in parametric form ( )P υ . Finally, 
based on the stability notions, the availability domain of the input parameters was detected to keep 
its optimal solution unchanged. The proposal is structured as follows. Section 2 introduces problem 
formulation of the nonlinear transportation. Section 3 discusses the inverse of nonlinear 
programming problem (NLP). Section 4 investigated the stability notions. Section 5 summarizes the 
solution procedure. Numerical examples of the inverse optimization problems are described in 
Section 6. Finally, the results are concluded in the last section. 

2. Problem Formulation 

Nonlinear transportation problem (NTP) is a special case of nonlinear programming problem 
(NLP), the formulation of the NTP is more specific, especially in terms of decision variables and the 
set of constraints. The goal of the nonlinear transportation problem is to optimize (minimize) the 
vector of nonlinear transportation cost function, in addition to meeting demand, supply and 
transporting constraints. The standard formulation of the optimization model for the parametric 
nonlinear transportation problem is given as follows: 
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where, objective function variable CT exemplifies the total parametric transportation cost for the 
transportation problem of a single commodity from sources m ′  to destinations n ′ , ( )rj rj rjf xλ  
denotes the cost function of transporting flow rjx  which represent the flow from source i to 

destination ,  ,  r jj v b  are parametric capacities of each source i and each destination j respectively,
m n

ij Rλ ′ ′+∈  are set of parameters at the cost function m ′  is the number of sources and n ′ is the 

number of destination. Problem (1) could be written as a general parametric nonlinear programming 
problem, which reformulated as follows: 

( , ) : min  ( , )
              :
 { | ( , ) 0, 1,2,... }n

i

P f x
subject to

x M x R g x i k

λ υ λ

υ∈ = ∈ ≤ =

 (2) 

where, the objective function 
1 1

( , ) ( ),
m n

rj rj rj
r j

f x f xλ λ
′ ′

= =

=  is a convex on ,  mM Rλ ∈ , is a vector of 

tuning parameters and 
1 1

, 1, 2,.., ,  , 1, 2,.., , 0  ,
n m

rj i rj j rj
j r

x a r m x b j n x r j
= =

= = = = ≥ ∀   is 

( , ), 1, 2,...ig x i kυ =  such that ( , ), 1, 2,...ig x i kυ =  is a finite-dimensional convex function of class 
1c  

depending on the input parameter lRυ∈ . For a predetermined 
*υ  (assigned by the decision 

maker) the problem *( , )P λ υ  is transformed to ( )P λ . Also, it is assumed that M  is a non-empty 
set, such that, the feasibility is guaranteed. Suppose that *f  the optimum value for ( )P λ  
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corresponding to the decision variables *x  and tuning parameter *λ . To give the precise 
formulation of the problem, we present the following definitions. 

Definition 1. Solvability set ( )S λ  of ( )P λ  is defined as: 

 
( ) { | min ( , ) }m

x M
S R f x existsλ λ λ

∈
= ∈ . (3) 

Let x   is the initial solution (feasible) for the problem ( )P λ , knowing that x   is not an optimal 
solution of ( )P λ  problem. In inverse programming, we need to adjust as less as possible the tuning 
parameter λ  so that the predetermined initial feasible solution x   (which is not an optimal solution 
for the original model) becomes a new optimal solution of ( )P λ , where λ  is the new value of 
tuning parameters. First, let us define the expected domain of λ  which is denoted by )(λD , as 
follows: 

Definition 2. Suppose that )(λλ S∈  with the corresponding optimal solution οx , then we have )(λD  
which defined by 

( ) { ( ) | ( , ) min ( , )}
x M

D S f x f xο ο ο ο ο ολ λ λ λ λ
∈

= ∈ = . (4) 

Theorem 1. )(λD  is nonempty for ( )P λ  the problem. 

Proof. Since it is assumed that the feasibility is guaranteed for ( )P λ  the problem, that is, 

{ }| min ( , ) m

x M
R f x existλ λ

∈
∈  then, )(λD  is not empty. □ 

Theorem 2 [29]. Let the solution ( , )x λ  be an initial solution (feasible) of the problem ( )P λ , knowing 

that { }: ( ) 0iI i g x= = , Also, suppose that the two functions (.)f  and (.)ig  for i I∈  are both 

differentiable at (  ,  )x λ  and that the function ig  is continuous for i I∉  at ),( λx , then if ),( λx  

is a local solution for the problem ( )P λ , then there exist scalars 0 , iu u  such that, 
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where iu  for i I∈  are the components of the vector lu , furthermore, if (.)ig  for i I∉  are also 

differentiable at ),( λx  for, i I∉ , then the forgoing conditions can be formulated in the following form: 

0
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  (6) 

where, kiforui ,....,2,1=  are the components of vector u . 

Proof. Since ),( λx  solve ( )P λ  locally, then there exists no vector d . Such that 

( , ) 0 ( ) 0t t
if x d and g xλ∇ < ∇ <  for each i I∈ . Now, let A  is a matrix whose rows are 

( , ) ( )t t
if x d and g xλ∇ ∇ i I∈ . By Gordon’s theorem [22], there exists a non-zero vector 
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0p ≥  such that 0tA p = . Denoting the component of p , 0 , iu and u  for i I∈ , the first part of the 
result follows, the equivalent form of the necessary conditions is readily obtained by letting 0iu =  
for i I∉ . □ 

To determine )(λD  of ( )P λ  problem, the following theorems are presented. 

Theorem 3 [22]. For a certain υ , let ( , )x λ  be an initial feasible solution of ( )P λ , knowing that 

{ }: ( ) 0iI i g x= = ., Suppose that (.) (.)if and g  for i I∈  are differentiable at ( , )x λ  and that 

(.)ig  for i I∉  is continuous at ),( λx . Furthermore, suppose that ( )ig x∇  for i I∈  are linearly 

independent. If ),( λx  solves ( )P λ  locally, then there exist scalars iu  for Ii ∈  such that 

( , ) ( , ) 0,

0,

i i
i I

i

f x u g f x

u i I

ο ολ λ
∈

∇ + ∇ =

≥ ∀ ∈



 

(7) 

If (.)ig , i I∉  are also differentiable at ( , )x λ , then the forgoing conditions can be 
reformulated in the following equivalent form: 

0
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Proof. By Theorem 2, there exist scalars , iu uο
  for Ii ∈ , not all equal to zero, such that 
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i
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Knowing that, 0u ο > , because the system (8) would be contradict with the assumption of linear 

independence of ( , )ig x λ∇  for Ii ∈  if 0uο = . The first part of the theorem then follows by 

letting i
i

o

u
u

u
=


 for each Ii ∈ . The equivalent form of system (6) follows by letting 0=iu  for 

Ii ∉ .□ 

Now, let the system as follows: 

1
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From system (9), we can determine ( )D λ . Since, this system (9) represents independence 

n k+  equations in k m+  unknowns and 
mRλ ∈ , which are linear in ,   1, 2, ...,iu i k=  and 

nonlinear in λ , then we can obtain ,   1, 2, ...,iu i k=  and λ  explicitly after substituting x  by 

x ο . 
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3. Inverse Nonlinear Programming Problem 

The purpose of the proposed inverse optimization approach is to adapt the tuning parameter 
value from *λ  to λ  so that the specific feasible (given) solution x  becomes an optimal solution 

of ( )P λ  by dealing with the problem 

*( ) : min

               :  ( ) { : ( , ) min ( , )}
x M
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subject to D S f x f xο

λ λ λ

λ λ λ λ
∈

−

= ∈ =
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 

 
(11) 

Let ⋅  denote a vector norm, such as L1, L2 or L∞ norm and N  is a domain of λ - parameters 

that satisfy { ( ) : ( , ) min ( , )}
x M

S f x f xολ λ λ λ
∈

∈ = , it is clear that the domain of the inverse 

nonlinear programming problem is the same domain of ( )D λ , so that problem (11) can be 
reformulated as follows: 

*( ) :       min

                 :  ( )

Q

subject to D

ο

ο ο

λ λ λ

λ λ

−

∈
 (12) 

Definition 3. The set of optimality solution of problem (12) which represented by ( , )optN xολ  is defined as 

follows: *
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λ λ λ λ
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Note that: optN N⊂  

Theorem 4. The set of optimality solutions ( , )optN xολ  is closed and convex 

Proof.  
First: Convexity: 
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 then 
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Then from (15), we can say that, 1 2(1 )w wλ λ− + ( , )optN xολ∈  

Hence, ( , )optN xολ  is convex. 

Second: Closeness: 

Let{ } ( , )n optN xολ ⊆ λ  be a sequence of points nλ  which converges toλ , that is,
∞→n

lim nλ λ=  
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− = * ,   1,2,..n nλ λ− = , then, *

( )
lim min
n Dλ λ

λ λ
→∞ ∈

− = *lim nn
λ λ

→∞
−  



Mathematics 2020, 8, 2027 7 of 21 

 

From the continuity of the norm, it follows that 

* *lim nn
λ λ λ λ

→∞
− = − , then ( , )optN xολ λ∈ = *

( )
min

Dλ λ
λ λ

∈
−  

Then, ( , )optN xολ is closed. □ 

4. The Stability of the Optimal Solution in the Decision Space 

Studying the stability to the problem involves finding the value range of the input parameter to 
keep the optimal solution unchanged (the optimal solution in the decision space remains unchanged), 
which denoted as the stability of the first type [27]. 

For any, * mRλ ∈  the problem *( , )P λ υ  is transformed to ( )P υ , which have only input 
parameter. 

( ) :  ( )
. .

{ / ( , ) 0, 1, 2,..., }.n
i

P Minmize f x
s t

x M x R g x i k

υ

υ∈ = ∈ ≤ =

 (17) 

Definition 4. The set of parameters lRυ∈  (input parameters) for the problem ( )P υ  is defined by 

{ }|lU R M= ∈ ≠υ φ  

Theorem 5. The set U  is convex. 

Proof. If U is the whole space lR , then the proof is clear. Otherwise, suppose that U∈21,υυ , 

then there exist nRxx ∈21,  such that 1 1 2 2( , ) 0 , ( , ) 0i ig x g xυ υ≤ ≤  and for 

10 ≤≤ w , 1 1 2 2(1 ) ( , ) 0 , ( , ) 0i iw g x wg xυ υ− ≤ ≤ . Since ),( υxgr  are convex in 

υ,x , then, we have, 
1 2 1 2 1 1 2 2(1 ) ,(1 ) (1 ) ( , ) ( , )i i ig w x wx w w w g x wg xυ υ υ υ− + − + ≤ − +    

and hence, Uww ∈+− 21)1( υυ . Then U is convex. □ 

Definition 5. The set V  is denoted as the solvability set of ( )P υ  and it is defined as 

{ }| ( ) .l
optV R m= υ ∈ υ ≠ φ  

where, * *( ) { | ( ) min ( )}n
opt x M

m x R f x f x
∈

= ∈ =υ . Note that optm M⊂ . 

Definition 6. Let Vυ ∈  with a corresponding optimal solution x ο , then the stability set of the first type 
of ( )P υ  corresponding to the solution x ο  which is defined as follows: 

{ }( )
( ) | ( ) min ( )o m o

x M
G x R f x f x

υ
υ

∈
= ∈ =  

If )(xf and ( , ) , 1,2,.....,ig x i kυ =  are set of functions belong to class 1C  on
nR . Let Vυ ∈  with a corresponding optimal point x ο ; then from the stability of problem ( )Q λ

, there exists    , 1,2,...,iu i k=  such that ( , )xο υ  solves the Kuhn- Tucker condition problem [22], 
which can be described as follows: 
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To determine the set ( )G x ο , let us consider the system: 
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x x

υ
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∂∂ + = = =
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Which represents n  equations in mk +  unknowns, which are linear in u  and nonlinear in 
υ , we denote to this system by ( , , ) 0x uοϕ υ = . 

If , ( , , ) 0m n x uοϕ υ= =  has a solution, ( , , )x uο
υϕ υ∇  exists and is a continuous function of 

),( υu  and 1[ ( , , )]x uοϕ υ −  exists. The solution of ( , , ) 0x uοϕ υ =  can be expressed explicitly as 

)(uψυ =  where ψ  is n -dimensional vector function. The value of , 1,2,....,iu i k=  in such 

a way that ( , )ru υ  solves Kuhn-Tucker problem where ( , )u υ  solves the system 
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The following cases were considered [20] 

(i) 0 ,iu > (1,2,...., )i J k∈ ⊂ , 0 , (1,2,...., ) .iu i k J= ∈ −  

We define the set, 

{ }( ) / ( , ) 0, ( , ) 0,l
J i iG x R g x g x i jο ο ου υ υ= ∈ = ≤ ∈  

And we define, 

1( ) ( )J
J q

G x G xο ο

∈

=  (19) 

where q  is a proper subset of J  

(ii) 0 , 1, 2,...iu i k= =
 

We define the set, 

{ }2( ) / ( , ) 0, 1,2,...,o l o
iG x v R g x i kυ= ∈ ≤ =  

(iii) 0, 1,2,...iu i k> =
 

We define the set { }3 ( ) / ( , ) 0,   1, 2,...,m
iG x v D R g x i kο ο υ= ∈ ⊂ = =  (20) 

From Kuhn-Tucker sufficient optimality [22], it follows that the sets ( ), 1,2,3iG x iο =  or the 
union of some or all of them depending on the values of u . 

5. Solution Procedure 

The following are the main steps of our method that are used to find the inverse nonlinear 
programming problem and to investigate the stability of the solution in the decision space. The main 
steps can be stated as follows: 
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Phase1: Obtain the value of the tuning parameters mR∈λ , so that the given (determined) feasible 

solution x ο  becomes the optimal ones. 
Step 0. For certain input parameters lR∈υ , the problem ( , )P λ υ  is transformed to 

( )P λ  

Step 1. Obtain the optimal solution * nx R∈  and the corresponding optimum value *f

for the problem ( )P λ  for a certain *λ  parameter. 
Step 2. Choose the desired feasible decision variables x Mο ∈  which determined by the 

decision maker (DM). 
Step 3. Obtain ( )D λ  condition of ( )P λ . 
Step 4. Formulate the problem ( )Q λ . 
Step 5. Solve the problem ( )Q λ  to obtain the vector 0λ  with three different main 

definitions of the norm (as L1, L2 or L∞ norm). 
Step 6. Formulate the inverse nonlinear programming problem 0{ ( ) |  }P λ λ λ= . 

Phase 2: Formulate parametric inverse nonlinear programming problem 

With the help of input parameters, 
lR∈υ  the resulting problem is reformulated in 

parametric form ( ) { ( , ) | }P P ου λ υ λ λ= =  as in Equation (16). 
Phase 3: Stability analysis 

Based on the stability notions, the availability domain of the input parameters lR∈υ  was 
found to keep its optimal solution unchanged. 

Step 1. Formulate parametric problem ( ) { ( , ) | }.P Pυ λ υ λ λ= = 
 

Step 2. Construct the KKT as in Equation (17). 
Step 3. Determine the values of Lagrange multipliers. 
Step 4. Determination of the availability domain of the input parameters lRυ∈ , 

according to Equations (18)–(20). 

6. Numerical Simulation 

To validate our method, three inverse parametric nonlinear programming examples are given, 

having tuning parameters mRλ ∈  at the objective functions and input parameters lRυ ∈  in 
the constraint and a transportation application are presented. 

6.1. Classical Benchmark Examples  

To examine the proposed inverse optimization method, three examples were chosen from the 
literature. 

Example 1. Given the nonlinear programming problem ( , )P λ υ  having tuning parameters 2Rλ ∈  in the 
function in the objective and input parameters 2Rυ ∈  in the function of the constraint, 

2 2
1 2 1 1 2 2

2
1 1 2 2

2 2 2
1 1 2 2 1

1 2

min ( , )
. . : 0,

0,
, 0.

f x x x x x
s t x x

x x
x x

λ λ λ
υ υ

υ υ υ

= + +

+ − ≤

+ − ≤
≥

 

Step 0. For certain input parameters (1,1)υ = , ( , )P λ υ  is transformed to ( )P λ  
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2 2
1 2 1 1 2 2,

1 2
2 2
1 2

1 2

min ( , )
. .: 1,

1,
, 0.

f x x x x x
s t x x

x x
x x

λ λ λ= + +
+ ≤

+ ≤
≥

 

Step 1. The optimal solution *x  of the problem ( )P λ  is found ( )* 1,0x =  at * 1f = −  and 
* ( 2,0),= −λ  

Step 2. The desired feasible decision variables are ( )0,1x =

 Step 3. Obtain ( )D λ  condition of NLP as follows: 

1 1 1 1 1

2 2 1 2 2

1 1 2

2 2
2 1 2

1 2 1 2

2 2 0 ,
2 2 0 ,

( 1) 0 ,
( 1) 0,
, , , 0.

x u x u
x u x u

u x x
u x x
x x u u

ο

ο

λ
λ

+ + + =
+ + + =

+ − =
+ − =

≥

 

Substituting with the desired feasible decision variables ( )0,1x ο =  we get, 

1 1

2 1 2

1

2

1 2

0 ,
2 2 0,

(1 1) 0,
(1 1) 0,
, 0 .

u
u u

u
u
u u

ο

ο

λ
λ
+ =

+ + + =
− =
− =

≥

 

(21) 

From system (21), we get ( )D λ  as follows 

{ }2
1 2 1 2 1( ) ( , ) | 0, 2D Rλ λ λ λ λ λ= ∈ ≤ − ≤  

Step 4. Formulate the ( )Q λ  problem 
*min ,

: ( ).subject to D

λ λ

λ λ

−

∈
 

Substituting 
* ( 2,0),= −λ * 1f = − , { }2

1 2 1 2 1( ) ( , ) | 0, 2D Rλ λ λ λ λ λ= ∈ ≤ − ≤  

Step 5. Using 2L -norm to solve the problem ( )Q λ ) to obtain the vector 0λ  as follows: 

2 2
1 2

1

2 1

2

min ( 2) ( ) ,
:

0,
    2 0,
    1 1.

subject to
λ λ

λ
λ λ
λ

+ −

≤

+ − ≤

+ = −

 

Solving this NLP using “Lindo” software we get 1 20, 2λ λ= = −  then we get (0, 2)ολ =  

Phase 2: Formulate parametric inverse nonlinear programming problem 
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Substituting by 1 20, 2λ = λ = −  the ( )P υ  takes the form 

2 2
1 2 2

2
1 1 2 2

2 2 2
1 1 2 2 1

1 2

min ( , ) 2 ,
. . : 0,

0,
, 0.

f x x x x
s t x x

x x
x x

λ
υ υ

υ υ υ

= + −

+ − ≤

+ − ≤
≥  

Phase 3: Stability analysis 

Construct the KKT. conditions for ( )P υ  with the optimal solution (0,1)x ο =  

1 1

1 2 2
2
2

2 1
2

1 2

2 2 1

1 2

0,
2 2 2 0,
1 0,

0,
( 1 ) 0,
( ) 0,
, 0.

u
u u

u
u
u u

υ
υ

υ
υ υ

υ
υ υ

=
− + + =

− ≤
− ≤

+ − =
− =
≥

 

Then we get the stability set of the first type as follows: 

( ) { } { }2 2 2 2
1 2 2 2 1 20,1 / 0,1 0 /1 0, 0G R Rυ υ υ υ υ υ υ υ= ∈ − ≤ − − = ∈ − ≤ − =  

Example 2. Consider the nonlinear programming problem ( , )P λ ν  having tuning parameters 2Rλ ∈  in 

the function of the objective and input parameters 2Rυ ∈  in the functions of the constraint, 
2 2

1 1 2 2 1 1 2 2

1 1 2 2

1 2

min ( , ) 4 2 2 ,
. . : 1 0,

, 0.

f x x x x x x x
s t x x

x x

λ λ λ
υ υ

= + + − −
+ − ≤

≥
 

Step 0. For certain input parameters (1,2)υ =  the problem ( , )P λ υ  is transformed to ( )P λ  
2 2

1 1 2 2 1 1 2 2

1 2

1 2

min ( , ) 4 2 2 ,
. . : 2 2,

, 0.

f x x x x x x x
s t x x

x x

λ λ λ= + + − −
+ ≤

≥
 

Step 1. The optimal solution *x  of ( )P λ  is found * 1 5,
3 6

x  =  
 

 with * 4.16z = , for 

* (6, 2),λ = −  

Step 2. The desired feasible decision variables are 
3 1,
2 4

x ο  =  
   

Step 3. Obtain ( )D λ  condition of ( )P λ  as follows: 
0

2 1 2
0
1 1 2

1 2

4 2 2 0
2 4 2 0

( 2 2) 0
0 .              

x x u
x x u

u x x
u

λ
λ

− − + + =

− + + + =
+ − =

≥

 

Substituting 





==

4
1,

2
3),( 21

0 xxx  we get, 
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2

1

14 3 0,
2

3 1 2 0,         
3 1( 2) 0,
2 2

0.

u

u

u

u

λ

λ

− − + + =

− + + + =

+ − =

≥

 
(22) 

From system (22) the ( )D λ  is as follows: 

2
1 2 1 2

7( ) ( , ) / 4,
6

D Rλ λ λ λ λ = ∈ ≥ ≥ − 
 

 

Step 3. The desired feasible decision variables are 0 3 1,
2 4

x  =  
   

Step 4. Formulate the ( )Q λ problem as follows 
*min ,

:
( ).

subject to
D

λ λ

λ λ

−

∈
 

Substituting 
* (6, 2)= −λ * 4.16f = , 2

1 2 1 2
7( ) ( , ) / 4,
6

D Rλ λ λ λ λ = ∈ ≥ ≥ − 
 

. 

Step 5. Using 2L - norm to solve the problem ( )Q λ  to obtain the vector 0λ  as follows: 
  

2
1 2

1

2

min ( 6) ( 2),

:  4,
7    .
6

    

subject to

λ λ

λ

λ

− + +

≥

≥ −
 

Solving this NLP using “Lindo” software we get 1 25.066,  0.989λ λ= = − so we get 
0 (5.066, 0.989)λ = −  

Phase 2: Formulate parametric inverse nonlinear programming problem 

Substituting by 0 0
1 25.066,  0.989λ λ= = −  the ( )P υ takes the form: 

2 2
1 2 1 2 1 2

1 1 2 2

1 2

min ( , ) 4 5.006 0989 2 2 ,
. . : 1 0,

, 0.

f x x x x x x x
s t x x

x x

λ
υ υ

= + − − −
+ − ≤

≥
 

Phase 3: Stability analysis 

Construct the KKT. Conditions for ( )P υ  with the optimal solution 0 3 1,
2 4

x  =  
 
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1

2

1 2

1 2

14 2.967 0,
2

5.006 3 1 2 0,
3 1 2 0,
2 4

3 1( 2) 0,
2 2

0.

u

u

u

u

υ

υ

υ υ

υ υ

− + + + =

− + + + =

+ − ≤

+ − =

≥

 

Then we get the stability set of the first type as follows: 







 =−+∈=






 02

2
1

2
3/

4
1,

2
3

21
1 υυυ RG  

Example 3. Given the nonlinear programming problem ( , )P λ υ  having tuning parameters 2Rλ ∈  in 

the objective functions and input parameters 2Rυ ∈  in the constraint, 
2

1 1 2 2
2 2

1 1 2 2
2

1 1 2 2

1 2

min ( , ) ,
: ,

      0
, 0.

f x x x
subject to x x o

x x
x x

λ λ λ
υ υ

υ υ

= +

+ − ≤

− + + ≤
≥

 

Step 0. For certain input parameters (1,0)υ =  the problem ( , )P λ υ  is transformed to ( )P λ  
Step 1. The optimal solution *x of ( )P λ  the problem is )0,0(* =x  with * 0f = , for 

* (2,0),λ =  

Step 2. The desired feasible decision variables are * (0.5,0.5)x =
 Step 3. Obtain ( )D λ  condition of NLP as follows: 

,0,,,
,0)(
,0)(

,02
,02

2121

22

2
211

2212

2111

≥
=+−

=+

=++

=−+

uuxx
xxu

xxu
uxu
uux

ο

ο

λ
λ

 

Substituting with the desired feasible decision variables (0.5,0.5)x ο = we get, 

,0,

,0)
2
1

2
1(

,0)
4
1

2
1(

,0
,0

21

2

1

212

211

≥

=−

=+

=++

=−+−

uu

u

u

uu
uu

ο

ο

λ
λ

 (23) 

From system (23), we get ( )D λ  is as follows 

{ }2
1 2 1 2 1 2( ) ( , ) / 0, 0, 0D Rλ λ λ λ λ λ λ= ∈ ≥ ≤ + =  

Step 4. Formulate the ( )Q λ  problem 
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*min

: ( )subject to D

λ λ

λ λ

−

∈
 

Substituting 
* (2,0),λ = * 0f = , { }2

1 1 1 2 1 2( ) ( , ) / 0, 0, 0D Rλ λ λ λ λ λ λ= =∈ ≥ ≤ + =  

Step 5. Using 2L -norm to solve the problem ( )IP λ ) to obtain the vector 0λ  as follows: 
2

1 2

1 2

1

2

min ( 2) ,
: 0,

0,
0.

subject to
λ λ

λ λ
λ
λ

+ +
+ =
≥
≤

 

Solving this NLP using “LINDO” software we get 1 21, 1λ = λ = −  so we get 1 (1, 1)ολ = −  

Phase 2: Formulate parametric inverse nonlinear programming problem 

Substituting by 1 2( , ) (1, 1),λ λ = − letting us form the parametric ( )P υ  problem: parameters 
in the constraints as follows: 

2
1 2

2 2
1 1 2 2

2
1 1 2 2

1 2

min ( , ) ,
: ,

      0
, 0.

f x x x
subject to x x o

x x
x x

λ
υ υ

υ υ

= −

+ − ≤

− + + ≤
≥  

Phase 3: Stability analysis 

Construct the KKT. Conditions for ( )P υ  with the optimal solution 
1 1( , )
2 2

x ο =  

,0,

,0)
2
1

2
1(

,0)
4
1

2
1(

,01
,01

21

2
2
12

2
211

2
121

211

≥

=++−

=−+

=++−

=−+

uu

u

u

uu
uu

υυ

υυ

υ
υ

 
Then we get the stability set of the first type as follows: 

2 2 2 2 2 2
1 2 1 2 1 2 1 2

1 1 1 1 1 1 1 1 1 1, / , / ,
2 2 2 4 2 2 2 2 2 4

G R Rυ υ υ υ υ υ υ υ υ υ     = ∈ − ≤ − + = ∈ + ≤ − = −    
     

  

On solving the previous examples by the given approach, we stress the following: 
At the first example, when the input parameters (1,1)υ =  and the tuning parameters * ( 2,0),λ = −

the optimal solution was ( )* 1,0x =  but the decision making need to have the point ( )0,1x = as an 
optimal one, this methodology not only achieve the goal but also detect the stability set of the first 
type, that is used to define available range of these input parameters 

( ) { } { }2 2 2 2
1 2 2 2 1 20,1 / 0,1 0 /1 0, 0G R Rυ υ υ υ υ υ υ υ= ∈ − ≤ − − = ∈ − ≤ − =  that keep the predetermined 

point ( )* 1,0x =  as optimal solution. 
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At the second one, when the input parameters (1, 2)υ =  and the tuning parameters 

* (6, 2),λ = − then the corresponding optimal solution was * 1 5,
3 6

x  =  
 

 but the decision making wish 

that the point 
3 1,
2 4

x ο  =  
 

to be an optimal one, by using this method the goal was achieved in 

addition, the stability set of the first type was detected to define available range of these input 

parameters 






 =−+∈=






 02

2
1

2
3/

4
1,

2
3

21
1 υυυ RG  that keep the point 

3 1,
2 4

x ο  =  
 

as an 

optimal one. 

6.2. An Application: Transportation Problem Application 

To examine the proposed inverse optimization method, nonlinear transportation problem was 
chosen. When the unit of the transportation cost on a specific road is nonlinear depending on the 
number of the transported units, then the transportation problem is called nonlinear transportation 
problem (NTP). Investigating for the optimal solution of NTP has been one of the important fields of 
intensive study on supply chain process. This section proposed an algorithm for inverse 
transportation problem of minimizing maximizing the nonlinear cost functions. The approach can be 
used to obtain the modified values of objective coefficients such that the specific (given) feasible 
solution becomes an optimal solution. A transportation network model shown in Figure 1 has two 
factories, factory 1 and factory 2 which represent the source nodes; on the other hand, the destination 
nodes represent warehouse 1, warehouse 2 and warehouse 3, any existing by an arc. The cost of each 
unit product unit, through specific path is represented by the numbers on that arc. Cost, supply and 
demand values are presented in Table 1. 

 
Figure 1. The transportation problem. 
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Table 1. Transportation problem tableau. 

Demand  
 

Supply  
WHS 1 WHS 2 WHS 3 Supply 

FAC 1 
1 11xλ  122x  137x

137x

 
13 

11x  12x  13x  

FAC 2 
2 21xλ  229x  233x  

15 
21x  22x  23x  

Demand 11 3 14 28 

 

2 2 2 2 2 2
1 11 12 13 2 21 22 23

11 12 13 1

21 22 23 2

11 21

12 22

13 23

( , ) :
 2 7 9 3

. . : ,
,

                        11,
                       3,

14,
                            0ij

P
Min F x x x x x x
s t x x x

x x x
x x

x x
x x

x

λ υ
λ λ

υ
υ

= + + + + +
+ + ≤

+ + ≤
+ =
+ =
+ =

≥

 

Step (0). For certain (13,15)υ =  the problem ( , )P λ υ  is transformed to ( )P λ  

2 2 2 2 2 2
1 11 12 13 2 21 22 23

11 12 13

21 22 23

11 21

12 22

13 23

( )
 2 7 9 3

. . : 13,
15,

                        11,
                       3,

14,
                            0ij

P
Min F x x x x x x
s t x x x

x x x
x x
x x
x x

x

λ
λ λ= + + + + +

+ + ≤
+ + ≤
+ =
+ =
+ =

≥

 

Step (1). the optimal solution is 
*

11 12 21 22 13 2311,  x 0,    x 0,    x 3,  x 2,   x 12,  F 622x = = = = = = =  With * (1,1)λ =  

Step (2) the desired feasible solution is 

11 12 21 22 13 23

11 12 21 22 13 23

( ,  x , x , x ,  x , x )
11,  x 2,    x 0,    x 1,  x 0,   x 14

x x
x

=
= = = = = =



 

Step (3). Formulate the K.K.T conditions to get the domain of λ  such that x   is optimal one 
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1 11 1 1

11 1 2

13 1 3

2 21 2 1

22 2 2

23 2 3

1 11 12 13

2 21 22 23

1 2 1 2 3

2 0
4 0
14 0
2 0
18 0
9 0

( 13) 0
( 15) 0
, 0,  v , , 0

x u v
x u v
x u v
x u v

x u v
x u v

u x x x
u x x x
u u v v

λ

λ

+ + =
+ + =
+ + =
+ + =

+ + =
+ + =

+ + − =
+ + − =

≥ ≠  

By Substituting with x 
 we get 

2
1 2 1 2( ) {( , ) | 10 0, 14 0}D Rλ λ λ λ λ= ∈ − ≥ − ≥  

Step (4). 
Formulate ( )D λ  to find the of values 1 2,λ λ  

*min

. .  ( )s t D

λ λ

λ λ

−

∈
 

For 2L  norm 

* 2 2
1 2min min ( 1) ( 1)

. .  ( )s t D

λ λ λ λ

λ λ

− = − + −

∈
 

Solving this NLP using “LINDO” software we get 1 210,  14,λ λ= =  then (10,14)λ =  

Phase 2: Formulate parametric inverse nonlinear transportation problem 

Substituting by (10,14)λ = , letting us form the parametric P(u) problem: parameters in the 
constraints as follows: 

2 2 2 2 2 2
11 12 13 21 22 23

11 12 13 1

21 22 23 2

11 21

12 22

13 23

( ) :
 10 2 7 14 9 3

. . : ,
,

                        11,
                       3,

14,
                            0ij

P
Min F x x x x x x
s t x x x

x x x
x x
x x
x x

x

υ

υ
υ

= + + + + +
+ + ≤

+ + ≤
+ =
+ =
+ =

≥

 

Phase 3: Stability analysis 

Construct the K.K.T of ( )P υ  with optimal solution 
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11 12 21 22 13 23

11 12 21 22 13 23

( ,  x , x , x ,  x , x )
11,  x 2,    x 0,    x 1,  x 0,   x 14

x x
x

=
= = = = = =



 

and (10,14)λ =  to be as follows: 

1

11 1 1

12 1 2

13 3

21 2 1

22 2 2

23 2 3

1 11 12 13 1

2 21 22 23 2

1 2

1 2 3

24 0
4 0
14 0
28 0
18 0
9 0

( ) 0
( ) 0
, 0
, , 0

x u v
x u v
x u v

x u v
x u v

x u v
u x x x v
u x x x v
u u
v v v

+ + =
+ + =
+ + =

+ + =
+ + =

+ + =
+ + − =
+ + − =

≥
≠

 

At x 
, 

1 1

1 2

1 3

2 1

2 2

2 3

1 1

2 2

1 2

1 2 3

264 0
8 0

0
0

36 0
126 0

(11 2 0 ) 0
(0 1 14 ) 0
, 0
, , 0

u v
u v

u v
u v

u v
u v

u v
u v
u u
v v v

+ + =
+ + =
+ =
+ =
+ + =
+ + =

+ + − =
+ + − =
≥

≠

 

It is clear that 1 2, 0u u ≠  then we get the stability set of the first type at x   as follows 

2
1 2(12,14) { |13 0,12 0}G v R v v= ∈ − = − =  

It is clear that, for this application, we not only justify the cost function parameters as little as 
possible so that the specific feasible solution ( 11 12 21 22 13 2311,  x 2, x 0, x 1,  x 0, x 14x = = = = = = ) 
becomes an optimal one but also, a solution stability set of parameters was investigated to keep the 
new optimal solution is unchanged. 

7. Conclusions 

The inverse optimization problem is an intersting field for both academic scientist and real-life 
applications. Implementation the inverse optimization and adapting the cost function parameters as 
little as possible so that the specific feasible solution becomes an optimal spatially in nonlinear 
domain is not easy, so keeping that solution with different sets of certain parameters is valuable. 
Nonlinear transportation problem (NTP) is a special case of nonlinear programming problem (NLP), 
the formulation of the NTP is more specific, especially in terms of decision variables and the set of 
constraints. 
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This manuscript proposed a methodology for finding the inverse problem of convex nonlinear 
programming problem ( , )P λ υ  having tuning parameters mRλ ∈  in the function of the objective 
and input parameters lRυ ∈  in the functions in the set of constraint. The proposed method consists 
of three phases. Firstly, based on the optimality conditions, tuning parameters mRλ ∈  are tuned as 
less as possible so that the given initial feasible solution x ο  becomes the optimal ones. Secondly, 
using input parameters, lRυ ∈  the resulting problem is reformulated in parametric form ( )P υ . 
Then, based on the stability notions, the availability domain of the input parameters was detected to 
keep its optimal solution unchanged. 

Finally, to validate and demonstrate the advantage of the new approach, three nonlinear 
programming examples and nonlinear transportation problem application are provided for the sake 
of illustration. On solving the transportation problem by the given approach, we summarize the 
result as follows: 

When the input parameters (13,15)υ =  and the tuning parameters * (1,1)λ =  the optimal 
solution was 11 12 21 22 13 2311,  x 0,    x 0,    x 3,  x 2,   x 12x = = = = = = ,but the decision making need that 
the solution 11 12 21 22 13 2311,  x 2,    x 0,    x 1,  x 0,   x 14x = = = = = =  to be an optimal one, this 
methodology not only achieve the goal but also detect the stability set of the first type, which is used 
to define a available range of these input parameters 2

1 2(12,14) { |13 0,12 0}G v R v v= ∈ − = − =  that 
keep the solution 11 12 21 22 13 2311,  x 2,    x 0,    x 1,  x 0,   x 14x = = = = = = as an optimal one. From the 
above study, the following may be concluded: 

• A solution of a parametric inverse transportation problem is introduced. 

• The paper deals with Parametric nonlinear programming having tuning parameters 
mRλ ∈  

in the objective and input parameters 
lRυ ∈  in the constraints. 

• An inverse model for the proposed problem was investigated. 
• Solution stability of the problem was investigated to retain its optimal solution. 
• Numerical examples are provided for the sake of illustration. 

For the future work, this method can be extended to nonlinear Large-Scale Inverse 
transportation Problems and its applications in IoT. 
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Abbreviations 

λ  Tuning parameters 
υ   Input parameters 

x  The new optimal solution 

( , )P λ υ  The inverse parametric nonlinear programming problem 
( )P υ  Parametric nonlinear programming problem 

CT The total parametric transportation cost 
( )ij ij ijf xλ  The cost transportation function 

ijx  Transportation flow 
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iν , jb  Parametric capacities of each source i and each destination j 

( )S λ  The Solvability set 
)(λD  The expected domain of λ  

λ  The new value of tuning parameters 
*λ  The initial value of tuning parameters 
*x  The decision variables at tuning parameters *λ  
*υ  The initial value of the input parameters 

V  The solvability set of ( )P υ  

( )IP λ   The inverse optimization problem 

( )Q λ  The equivalent inverse optimization problem 

( , )optN xολ  The set of optimality solution of ( )Q λ problem 

U  The set of the input parameters 
( )iG x ο  The set of parameters that kept x ο optimal solution 
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