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Abstract: Multiobjective stochastic programming is a field that is well suited to tackling problems that
arise in many fields: energy, financial, emergencies, among others; given that uncertainty and multiple
objectives are usually present in such problems. A new concept of solution is proposed in this work,
which is especially designed for risk-averse solutions. The proposed concept combines the notions
of conditional value-at-risk and ordered weighted averaging operator to find solutions protected
against risks due to uncertainty and under-achievement of criteria. A small example is presented
in order to illustrate the concept in small discrete feasible spaces. A linear programming model is
also introduced to obtain the solution in continuous spaces. Finally, computational experiments
are performed by applying the obtained linear programming model to the multiobjective stochastic
knapsack problem, gaining insight into the behaviour of the new solution concept.

Keywords: multiobjective stochastic programming; linear programming; risk-aversion

1. Introduction

Decision making is never easy, yet we often have to make decisions. Emergencies and disaster
management are fields in which many difficulties often arise, such as high uncertainty and multiple
conflicting objectives. Risk-averse decisions are usually sought to overcome such difficulties.
Risk-aversion is the attitude for which we prefer to lower uncertainty rather than gambling extreme
outcomes (positive or negative).

Risk-aversion, although typically studied in problems with uncertainty, can as well be considered
when making decisions with multiple criteria. For instance, in the field of disaster management,
solutions that are sufficiently good for all criteria are usually preferred to others that perform
exceptionally good for some criteria, but inadequately for the others.

Multicriteria decision making (MCDM) is a field worth of consideration when studying real-world
problems. This situation, in which multiple conflicting objectives have to be optimized, has led to
the definition of different solution concepts and methodologies. A specific methodology should be
applied depending on the problem and the type of solution considered. A key concept in MCDM is
the notion of efficiency, which reflects the intuition that, for a solution to be acceptable, another cannot
exist improving that one in every objective.

Uncertainty is another feature that is present in the studied problems, in which risk-averse
decisions will be preferred. The most common ways for dealing with the uncertainty are
stochastic programming and robust optimization, in which fuzzy optimization is also included [1].
Stochastic programming is the widest used technique when there are historical data or information to
infer a probability distribution. Moreover, usually discrete distributions are used, calling scenarios the
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different values. The concepts of value-at-risk (VaR) and conditional value-at-risk (CVaR) are widely
used for quantifying risk. They are typically defined for losses distributions in finance, where the right
tail of the distributions are of interest.

Consider now the following problem, in which multiple objectives to be minimized and
uncertainty are included simultaneously:

min
x∈X

( f1(x, ω), . . . , fK(x, ω))

The above problem is typically called multiobjective stochastic programming problem (MSP),
especially if ω, the uncertainty source, has a known probability distribution.

In this paper, we introduce a new solution concept in multiobjective stochastic programming
based on risk-averse preferences. Such a concept is complemented with a mathematical programming
model in order to compute it efficiently, and computational experiments are performed to assess
its strengths.

The remaining of this paper is organized as follows. Section 2 presents a literature review of
multicriteria decision-making and uncertain optimization. Section 3 includes the definition of a novel
concept of solution for MSP problems and studies its properties. In Section 3.2, such a solution concept
is illustrated with a basic example when the decision space is finite and small.

Section 4 shows how to obtain such a solution with a linear programming model. An application
to the multicriteria knapsack problem is developed in Section 5, and general conclusions of the research
are drawn in Section 6.

2. Literature Review

2.1. Multicriteria Decision-Making and Optimization Under Uncertainty

MCDM techniques have recently been used for solving real world problems as varied as:
disaster management [2,3], engineering [4], finance [5,6], forest planning [7], healthcare [8], location of
waste facilities [9], police districting [10], route planning [11], train scheduling [12], or urban
planning [13,14].

An important concept used throughout this paper is the one of efficiency. The notation used is the
given in [15]:

Definition 1 (Efficiency, [15]). Let f1(x), . . . , fK(x) be objective functions to be minimized, and let X be the
feasible set. A feasible solution x̂ ∈ X is called:

• Weakly efficient if there is no x ∈ X, x 6= x̂, such that f (x) < f (x̂) i.e. fk(x) < fk(x̂) for all
k = 1, . . . , K.

• Efficient or Pareto optimal if there is no x ∈ X such that fk(x) ≤ fk(x̂) for all k = 1, . . . , K and
fi(x) < fi(x̂) for some i ∈ {1, . . . , K}.

• Strictly efficient if there is no x ∈ X, x 6= x̂, such that f (x) ≤ f (x̂).

The different approaches for dealing with uncertainty do not respond to the desires of the modeller;
instead, they reflect the nature of the uncertainty. If the uncertainty comes with an underlying known
or estimated probability distribution, then stochastic programming is used. For an introduction to
stochastic programming, the reader is referred to [16]. On the other hand, if uncertainty comes from
a lack of precision or semantic uncertainty, then robust optimization is used. Robust optimization
does not assume a known (or existing) distribution [17–19]. A recent review of robust optimization is
written in [20].

Stochastic programming seeks the optimization of a characteristic value of a random variable,
usually its average. However, in risk-averse contexts the usage of value-at-risk and conditional
value-at-risk is common for quantifying risk (see, for instance, [21–25]).
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Definition 2 (CVaR, [26]). Given FX(x) distribution function, and β ∈ [0, 1], the β-CVaR is the conditional
expected value over {x : FX(x) ≥ β}.

2.2. Multiobjective Stochastic Programming

Multiobjective stochastic programming refers to models in which there are several criteria and
stochastic uncertainty simultaneously. Reference [27] develops the PROTRADE method, where utility
functions are defined to aggregate objectives into a single objective stochastic problem. The resulting
problem is solved with an interactive method, where the decision-maker defines an expected solution
and a feasibility probability. Reference [28] reduces the stochasticity by adding some good measures
to the list of objectives, such as the mean, variance, or probability of being over/below a threshold.
The resulting multiobjective deterministic problem is solved aggregating the objectives, but it could be
solved via other techniques.

Reference [29] compares the stochastic approach with the multiobjective approach when using
different techniques. The stochastic approach transforms the MSP on a single-objective stochastic
problem, while the multiobjective approach first reduces the stochasticity transforming the MSP on a
deterministic multiobjective problem. They highlight that “the multiobjective approach forgets the
possible existence of stochastic dependencies between objectives”. Reference [30] studies stochastic
goal programming, where the deviation of the objective functions to some goals set beforehand to
stochastic values is minimized.

In [31], a chance-constrained compromise approach is proposed, with an example presented
in [32]. In [33], the INTEREST method is proposed. It is an interactive reference point method.
The decision-maker gives reference levels ui and probabilities βi, hoping to achieve a solution x∗

such that P ( fi(x∗) ≤ ui) ≥ βi. If this is infeasible, then the decision-maker should either increase
the reference levels or decrease the probabilities of achievement. [34] reviews different solutions
methods for the MSP problem, categorizing them as stochastic approach or multiobjective approach.
Reference [35] surveys methods for MSP problems that do not reduce the multiple objectives
before the analysis of the problem, acknowledging the difficulty of risk-averse decision-making.
More recently, in [36], different ordering relations for multicriteria problems with uncertainty are
presented, building upon existing notions of robustness.

Some fields where MSP models have been developed are: forest management [37], multiple response
optimization [38], energy generation [39,40], energy exchange [41], capacity investment [42],
disaster management [43,44], portfolio optimization [45], and cash management [46], among others.

3. Methodology

The concept of CVaR allows aggregating several scenarios by just looking at what happens in the
worst ones. The ordered weighted averaging (OWA) operators are defined in [47], and independently
in the field of locational analysis [48,49] under the name of ordered median function. These concepts
will allow for us to aggregate different criteria by looking at the least desirable ones, as a
risk-aversion measure.

Definition 3 (OWA, [47]). Given a1, . . . , an ∈ R, the ordered weighted averaging (OWA) operator with
weights λ1, . . . , λn is defined as:

OWA(a1, . . . , an) = ∑
i

λia(i)

where
(

a(1), . . . , a(n)
)

is the ordered vector from largest to smallest (a1, . . . , an).

Remark 1. For certain weights, the OWA represents a known quantity:

• If λi =
1
n , the resulting OWA is the average of a.

• If λ1 = 1, and λj = 0 for j > 1, the OWA is the maximum of a.
• If λn = 1, and λj = 0 for j < n, the OWA is the minimum of a.
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Reference [50] later studies how to assign weights for an OWA when criteria have
different importances.

Definition 4 (OWA with importances, [50]). Given a1, . . . , an ∈ R with importances u1, . . . , un such that
∑i ui = 1 the weights λj for the OWA can be calculated with f , the weight generating function in the
following manner:

1. Sort vector a such that a(1) ≥ a(2) ≥ . . . ≥ a(n).
2. With (×) as the order induced by a, define Tj = ∑

j
k=1 u(k).

3. Let f be a function, such that f : [0, 1]→ [0, 1] and f (0) = 0, f (1) = 1. This function is called weight
generating function.

4. Obtain the weights as λj = f (Tj)− f (Tj−1).

Example 1 (of Definition 4). Consider the following weight generating function, for a given r ∈ (0, 1]:

f (x) =

{
x
r if x < r

1 if x ≥ r
(1)

Let (×) be the order, such that a(1) ≥ · · · ≥ a(n), u(j) the weight associated to a(j), and also let

Tj = ∑
j
k=1 u(k). We shall now see how the weights are obtained from f . Let j∗ be such that Tj∗−1 < r ≤ Tj∗ .

• λ1 = f (T1) = f (u(1)) =
u(1)

r , assuming u(1) < r

• λ2 = f (T2)− f (T1) = f (u(1) + u(2))− f (u(1)) =
u(1)+u(2)

r − u(1)
r =

u(2)
r , assuming u(1) + u(2) < r

• . . .
• λj∗ = f (Tj∗)− f (Tj∗−1) = 1−

( u(1)+u(2)+···+u(j∗−1)
r

)
, since Tj∗ ≥ r

• λj∗+1 = f (Tj∗+1)− f (Tj∗) = 1− 1 = 0
• . . .
• λn = f (Tn)− f (Tn−1) = 1− 1 = 0

Consequently the OWA of a1, . . . , an with importances u1, . . . , un is:

OWA =
u(1)

r
a(1) +

u(2)

r
a(2) + · · ·+

[
1−

(u(1) + u(2) + · · ·+ u(j∗−1)

r

)]
a(j∗)

=
u(1)a(1) + u(2)a(2) + · · ·+

(
r− u(1) − u(2) − . . .

)
a(j∗)

r

That is, the OWA that is characterized by the weight generating function given in (1) is the average of the
worst aj, weighted by their importances, with the total importance adding up to r. The values of λ reflect the
preferences of the decision-maker. The parameter r leads to incorporating the different attributes, from worst to
best, until a threshold is reached.

The starting point of this paper is the recurrent idea of representing ordered weighted or ordered
median operators while using k-sums. k-sums (or k-centra in the location analysis literature) are
sums of the k-largest terms of a vector [51]. One can trace back, at least to [52], the use of k-sums
to represent ordered median objectives. More recent references are, for instance, [53–56]. This last
reference introduces a normalized version of k-centrum, named β-average, which will be used in
our paper.

Through the remaining of the paper, consider that f j
k(x) are functions to be minimized within a

feasible set X, with k = 1, . . . , K representing K different objectives with importances wk and j = 1, . . . ,
J encoding J different scenarios with probabilities πj.
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Definition 5 (β-average, gβ
k (x), [56]). Given β ∈ (0, 1], for each criterion k it can be defined gβ

k (x) which

measures the average of f on the worst scenarios
(

f 1
k (x), . . . , f J

k (x)
)

, with accumulated probability equal to β.

Remark 2 ([56]). Given a value β, if the sum of the probabilities of the worst scenarios is exactly β, then the
β-average is exactly (1− β)-CVaR.

Example 2. Consider a point x, a fixed criterion k, and five different scenarios with probabilities πj and values

of f j
k given. Table 1 shows the β-averages for different values of β, in which the scenarios have been ordered from

largest value of f to smallest.

• For β = 0.2, the scenario j = 1 is the only one needed to obtain the worst scenario with probability 0.2,
and hence gβ

k (x) = 0.2×10
0.2 = 10.

• When β equals 0.3 it is necessary to include scenario 2, obtaining a β-average of 0.2×10+0.1×7
0.3 = 9.

• Finally, if β = 0.5 scenario 3 needs to be added as well, but only with the probability needed until reaching
0.5: gβ

k (x) = 0.2×10+0.1×7+0.2×4
0.5 = 7.

Table 1. Small example of β-average for different values of β.

Scenario β

1 2 3 4 5 0.2 0.3 0.5

πj 0.2 0.1 0.3 0.25 0.15 10 9 7
f j
k(x) 10 7 4 3 2

When using the β-average the functions f j
k(x) were transformed into gβ

k (x), a collection of K
functions not depending on the scenario. An OWA will be defined now, via its weight generating
function, which will reduce the K β-averages into a scalar function.

Definition 6 (r-OWA, Or(~x)). Given x1, . . . , xK ∈ R with importances w1, . . . , wK, such that ∑K
k=1 wk = 1

and r ∈ (0, 1], the function Or(~x) is defined as the OWA with the following weight generating function:

f (x) =

{
x
r if x < r

1 if x ≥ r

Remark 3. The definition of Or(~x) is made in a similar manner that the one given of the β-average (Definition 5),
but it is done on a context with importances rather than probabilities. Example 3 shows the similarities between
both of the approaches.

Example 3. Consider a point x and let gk(x) be the evaluation of x under five different criteria with importances
wj. Table 2 shows the r-OWAs for different values of r, in which the criteria have been ordered from largest
values of gk(x) to smallest. Consider the case r = 0.5:

1. As gk(x) are already ordered for largest to smallest, the values of Tk are:

T1 = 0.2, T2 = 0.2 + 0.1 = 0.3, T3 = 0.6, T4 = 0.85, T5 = 1

2. The values of Tk under f :

f (T1) =
0.2
0.5

, f (T2) =
0.3
0.5

, f (T3) = f (T4) = f (T5) = 1

3. The weights of the OWA:

λ1 =
0.2
0.5

, λ2 =
0.3− 0.2

0.5
=

0.1
0.5

, λ3 = 1− 0.3
0.5

=
0.2
0.5

, λ4 = λ5 = 0
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4. Consequently, the r-OWA is:

r-OWA =
0.2g(1)(x) + 0.1g(2)(x) + 0.2g(3)(x)

0.5
=

0.2× 10 + 0.1× 7 + 0.2× 4
0.5

= 7

Table 2. Small example of r-OWA for different values of r.

Criterion r

1 2 3 4 5 0.2 0.3 0.5

wk 0.2 0.1 0.3 0.25 0.15 10 9 7gk(x) 10 7 4 3 2

Remark 4. Given x1, . . . , xK and its associated importances w1, . . . , wK, then the λk of the r-OWA are λk =
λ̃k
r ,

with λ̃k being determined as:

Or(x1, . . . , xK) = max
λ̃1,...,λ̃K

{
λ̃1x1 + · · ·+ λ̃KxK

r
| λ̃k ≤ wk, ∑ λ̃k = r

}

Given r, β ∈ (0, 1] and x ∈ X, let us introduce the function hβ
r (x) as the r-OWA of the β-averages.

That is:
hβ

r (x) = Or

(
gβ

1 (x), . . . , gβ
K(x)

)
Remark 5. If the importance of all the criteria is the same (wk =

1
K for all k) and r = n

K with n ∈ {1, . . . , K},
then hβ

r (x) is the average of the n worst β-averages. Recall that this is called n-centra [57].

Definition 7 (Dominance). Let x and y feasible solutions (x, y ∈ X) and r, β ∈ (0, 1]. Then x dominates y
(x % y) if hβ

r (x) ≤ hβ
r (y), where hβ

r (x) is the r-OWA of the β-averages.

Definition 7 induces a domination relationship with the following properties:

Reflexivity Given x, hβ
r (x) ≤ hβ

r (x), and then x % x, so % is reflexive.

Transitiveness Given x % y, y % z, we have hβ
r (x) ≤ hβ

r (y) and hβ
r (y) ≤ hβ

r (z), and then
hβ

r (x) ≤ hβ
r (z), which leads to x % z, and we conclude that % is transitive.

Antisymmetry Given x % y, y % x, we have hβ
r (x) ≤ hβ

r (y) and hβ
r (y) ≤ hβ

r (x), but,
from hβ

r (x) = hβ
r (y), it cannot be guaranteed that x = y, and, hence, % is not

antisymmetric.

3.1. Idea of Solution and Dominance Properties

Consider the multiobjective stochastic programming problem:

min
x∈X

( f1(x, ω), . . . , fK(x, ω))

The previously defined concepts of β-average and r-OWA transform the MSP problem into a
deterministic multiple objective problem, and then into a deterministic single objective problem.

MSP→ MOP→ LP(MIP)

f j
k(x)

β-average−−−−−→ gβ
k (x) r-OWA−−−−→ hβ

r (x)
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1. For every x ∈ X there is a function f j
k to be minimized which depends on the scenario j and the

criterion k.
2. The problem is transformed into a deterministic one with multiple objectives (MOP) while using

the β-average concept.
3. When computing the r-OWA, each x ∈ X is assigned a scalar. The problem consists of finding the

x, which minimizes this hβ
r (x).

The solution procedure lies into what is usually called a scalarization approach. When obtaining
a minimizer of hβ

r (x), it is also desired that the optimal solution is efficient for the associated
MOP problem:

min
x∈X

(
gβ

1 (x), . . . , gβ
K(x)

)
(MOP)

Proposition 1. Given x∗ minimum of hβ
r (x) the following statements hold:

1. x∗ is not necessarily efficient of the MOP problem.
2. x∗ is weakly efficient of the MOP problem.
3. If x∗ is the only minimum of hβ

r (x), then x∗ is efficient.
4. Given x∗ not efficient, an alternative y∗ can be found on a second phase, such that y∗ is efficient and

hβ
r (x∗) = hβ

r (y∗).

These properties are known when using scalarization techniques [15]. Hence, only an example of
the first statement will be shown.

Example 4 (x∗ is not necessarily efficient). Consider the example that is displayed in Table 3, in which there
are only two feasible solutions, two equiprobable scenarios (π1 = π2 = 1

2 ), three equally important criteria
(w1 = w2 = w3 = 1

3 ), and consider the values of β = 1
2 and r = 2

3 are taken.

Table 3. Values of two alternatives for each scenario j and criterion k, together with their β-averages
(β = 1

2 ) and r-OWAs (r = 2
3 ).

(a) Alternative 1 (b) Alternative 2

k1 k2 k3 k1 k2 k3
j1 0.80 0.40 0.30 j1 0.70 0.45 0.65
j2 0.60 0.20 0.65 j2 0.80 0.30 0.50

β-average 0.80 0.40 0.65 β-average 0.80 0.45 0.65
r-OWA 0.725 r-OWA 0.725

The β-averages are (0.8, 0.4, 0.65) for the first alternative and (0.8, 0.45, 0.65) for the second alternative.
When computing the function hβ

r , both of the alternatives have an objective value of 0.725. Consequently,
even though the second alternative is an optimal solution of hβ

r , it is not an efficient solution of the MOP problem
as its β-averages are dominated by those of the first alternative.

The transformation of the problem from a multiple objective one to a single objective one is
done using weights. These weights correspond to a subjective scale that is introduced by the expert,
representing the importance of the criteria considered in the problem as accurately as possible.

3.2. An Illustrative Example

The proposed solution concept will now be applied, first with a discrete (and small) case. When the
solution space is discrete, and all feasible solutions can be explicitly enumerated, the steps are
as follows:
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Step 0 Normalize all objective functions f j
k(x).

Step 1 Set values for β, r ∈ (0, 1].
Step 2 For every x ∈ X and every criterion define gβ

k (x) as:

gβ
k (x) =

average of worst scenarios for criterion k
with probabilities adding up to β

Step 3 Define hβ
r (x) as:

hβ
r (x) = average of worst gβ

k (x) values
with importances adding up to r

Step 4 Search for x ∈ X minimizing hβ
r (x).

Assume a decision space with only four alternatives, evaluated under five different scenarios with
six criteria. For each of those alternatives, it can be computed the value of the functions f j

k(x) to be
minimized. Table 4 shows the values of f , evaluated on the feasible point x1, by each of the scenarios
and criteria considered.

Table 4. Values of alternative 1 by scenario (j) and criteria (k).

Criteria

w1 = 0.20 w2 = 0.10 w3 = 0.20 w4 = 0.25 w5 = 0.15 w6 = 0.10

k1 k2 k3 k4 k5 k6

sc
en

ar
io

s π1 = 0.15 j1 0.51 0.27 0.39 0.45 0.75 0.76
π2 = 0.20 j2 0.58 0.65 0.47 0.26 0.90 0.24
π3 = 0.30 j3 0.48 0.44 0.90 0.50 0.93 0.65
π4 = 0.25 j4 0.76 0.18 0.01 0.90 0.56 0.02
π5 = 0.10 j5 0.86 0.36 0.21 0.28 0.63 0.72

The first step is calculating the β-averages. Let us assume a value of β = 0.3:

1. For the first criterion the worst scenario is j5, which has probability 0.1. The second worst is j4,
with a probability of 0.25. As the sum of those probabilities exceeds the β fixed, for computing
the β-average just a probability of 0.2 is considered:

gβ
1 (x1) =

0.1× 0.86 + 0.2× 0.76
0.3

= 0.793

2. gβ
2 (x1) = (0.2× 0.65 + 0.1× 0.44) /0.3 = 0.580

3. gβ
3 (x1) = (0.3× 0.90) /0.3 = 0.900

4. gβ
4 (x1) = 0.833, gβ

5 (x1) = 0.930, gβ
6 (x1) = 0.728

The last step is calculating the function hβ
r (x), which is, the r-OWA of the β-averages. Table 5

calculates the r-OWA, and also shows the information of the previously calculated β-averages, when the
value of r = 0.17 is taken.



Mathematics 2020, 8, 2026 9 of 26

Table 5. Values of alternative 1 by scenario (j) and criteria (k).

Criteria

w1 = 0.20 w2 = 0.10 w3 = 0.20 w4 = 0.25 w5 = 0.15 w6 = 0.10

k1 k2 k3 k4 k5 k6

sc
en

ar
io

s π1 = 0.15 j1 0.51 0.27 0.39 0.45 0.75 0.76
π2 = 0.20 j2 0.58 0.65 0.47 0.26 0.90 0.24
π3 = 0.30 j3 0.48 0.44 0.90 0.50 0.93 0.65
π4 = 0.25 j4 0.76 0.18 0.01 0.90 0.56 0.02
π5 = 0.10 j5 0.86 0.36 0.21 0.28 0.63 0.72

β-average, β = 0.30 0.793 0.580 0.900 0.833 0.930 0.728

r-OWA, r = 0.17 0.927

The values of the functions for the other alternatives, as well as its β-averages and r-OWAs are
shown in Tables A1–A3, starting on Page 21. Table 6 illustrates a summary of the results, where all of
the β-averages and r-OWAs are shown, whcih determines that the optimal alternative for the values of
β and r given is Alternative 1.

Table 6. β-averages and r-OWAs for each of the four feasible alternatives of the example.

β-Averages r-OWA

gβ
1 (x) gβ

2 (x) gβ
3 (x) gβ

4 (x) gβ
5 (x) gβ

6 (x) hβ
r (x)

Alternative 1 0.793 0.580 0.900 0.833 0.930 0.728 0.927
Alternative 2 0.930 0.832 0.703 0.820 0.660 0.770 0.930
Alternative 3 0.765 0.775 0.468 0.643 0.950 0.883 0.943
Alternative 4 0.993 0.760 0.473 0.773 0.820 0.990 0.993

Variations on β and r yield very different results. Figure 1a shows which of the four alternatives
has the lowest h value, depending on the values of β and r.

Figure 1b shows the optimal objective value when varying the parameters β and r. It can be
appreciated how h decreases when β and r increase. This is due to the fact that the original f j

k functions
are to be minimized and, the larger the parameters β and r, the more favourable scenarios/criteria will
take part on the computation of hβ

r (x), hence decreasing its optimal value.

(a) (b)
Figure 1. The results from illustrative example. (a) Optimal alternative for some values of r and β,
where each of the four alternatives is colour-coded. (b) Optimal values of function hβ

r (x) for some
values of r and β.
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The solution concept that is defined for MSP problems can be applied to numerous fields, but it is
especially relevant for situations in which risk-aversion is strictly preferred, such as the selection of
socially responsible portfolios [58] or disaster management problems.

4. Computing the Minimum: Continuous Case

A concept of solution was proposed with Definition 7. When the functions f j
k(x) to be minimized

are given, a new function hβ
r (x) to be minimized is defined, with parameters β and r, such that hβ

r (x)
is the r-OWA of the β-averages. If the decision space is sufficiently small, then the procedure that is
shown in the above example obtains such a solution.

In this section, a mathematical programming model will be developed in order to obtain the
minimum of hβ

r (x), which allows for one to obtain the proposed solution for bigger decision spaces,
including continuous ones.

Mathematical Programming Model

Given k and x ∈ X we have the vector
(

f 1
k (x), . . . , f J

k (x)
)

. Let
(

f (1)k (x), . . . , f (J)
k (x)

)
be the

ordered vector, such that f (j1)
k (x) ≥ f (j2)

k (x) when j1 ≤ j2.
Given β ∈ (0, 1], let ̂ be the ordered scenario, such that:

̂

∑
j=1

π(j) ≥ β,
̂−1

∑
j=1

π(j) < β

Alternatively:

f (1)k (x) ≥ f (2)k (x) ≥ · · · ≥ f ( ̂)
k (x) ≥ f ( ̂+1)

k (x) ≥ · · · ≥ f (J)
k (x)

1 = π(1) + π(2) + · · ·+ π( ̂−1)︸ ︷︷ ︸
<β

+π( ̂)

︸ ︷︷ ︸
≥β

+ · · ·+ π(J)

Additionally, let:

π̂j =


πj j ∈ {(1), . . . , ( ̂− 1)}
β−∑

j=( ̂−1)
j=(1) πj j = ̂

0 otherwise

The definition of π̂ ̂ is made in such a way that ∑j π̂j = β. In this way, the average of the β

worst values can be computed as 1
β ∑J

j=1 π̂j f (j)
k (x), which coincides with the definition of β-average

(Definition 5). This computation can be written as the following optimization problem:

max
ũj

1
β

J

∑
j=1

ũj × f j
k(x)

s.t.
J

∑
j=1

ũj = β

0 ≤ ũj ≤ πj j = 1, . . . , J
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A more natural approach would be to consider uj =
ũj
β . These uj represent the proportion in

which scenario j plays a part on the aggregated β-average. Introducing that change, the model is:

max
uj

J

∑
j=1

uj × f j
k(x)

s.t.
J

∑
j=1

uj = 1

0 ≤ uj ≤
πj

β
j = 1, . . . , J

The dual formulation is:

min
z,yj

z +
J

∑
j=1

πj

β
yj

s.t. z + yj ≥ f j
k(x) j = 1, . . . , J

z free, yj ≥ 0

(2)

Additionally, hence, finding the x ∈ X, which minimizes the average of the worst β scenarios for
a given k is:

min
x∈X


max

ũj

1
β ∑J

j=1ũj f j
k(x)

s.t. ∑J
j=1ũj = β

0 ≤ ũj ≤ πj j = 1, . . . , J


Or, alternatively:

min
x∈X


min
z,yj

z + ∑J
j=1

πj
β yj

s.t. z + yj ≥ f j
k(x) j = 1, . . . , J

z free, yj ≥ 0 j = 1, . . . , J

 (3)

Which is equivalent to model (4):

min
z,yj ,x

z +
J

∑
j=1

πj

β
yj (4a)

s.t. z + yj ≥ f j
k(x) j = 1, . . . , J (4b)

z free, yj ≥ 0 j = 1, . . . , J (4c)

x ∈ X (4d)

Remark 6. Models (3) and (4) are equivalent, as for any x ∈ X chosen in (4) the values z and yj will get as
small as permitted by constraint (4b), as this improves the objective function (4a). Consequently for every x,
its β-average will be computed appropriately and, thus, (4) obtains the x ∈ X with smallest β-average, as desired
on (3).
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For every k ∈ {1, . . . , K}, thanks to the problem (2), the function gβ
k (x) can be defined,

which measures, for each x ∈ X, the β-average for that criterion, being:

gβ
k (x) ≡ min

zk ,ykj
zk +

J

∑
j=1

πj

β
ykj

s.t. zk + ykj ≥ f j
k(x) j = 1, . . . , J

zk free, ykj ≥ 0 j = 1, . . . , J

(5)

The already known approach for single criterion problems ends here. Given that, the next step is
finding a “good” solution for all k. That is:

min
x∈X

(
gβ

1 (x), . . . , gβ
K(x)

)
Given r ∈ (0, 1] the r-OWA of the β-averages will be now computed (in accordance with the

definition given in Section 3). That is, the solution of the following problem is sought:

max
t̃k

1
r ∑

k
t̃k × gβ

k (x)

∑
k

t̃k = r

0 ≤ t̃k ≤ wk k = 1, . . . , K

Or equivalently:

max
tk

∑
k

tk × gβ
k (x)

∑
k

tk = 1

0 ≤ tk ≤
wk
r

k = 1, . . . , K

Its dual formulation is:

min
z,vk

z + ∑
k

wk
r

vk

s.t. z + vk ≥ gβ
k (x) k = 1, . . . , K

z free, vk ≥ 0 k = 1, . . . , K

Replacing the value of gβ
k (x) given in (5), the next model (model (6)) is obtained:

min
z,vk

z + ∑
k

wk
r

vk (6a)

s.t. z + vk ≥ min
zk ,ykj

zk +
J

∑
j=1

πj

β
ykj ∀k (6b)

s.t. zk + ykj ≥ f j
k(x) ∀j

zk free, ykj ≥ 0 ∀j

z free, vk ≥ 0 ∀k (6c)
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Model (6) calculates for a given x ∈ X the r-OWA of its β-averages, which coincides with the
notion of the function hβ

r (x) given in Section 3. This problem is not explicit, as it contains nested
optimization problems in the constraints. For that reason, we propose a single level alternative for
x ∈ X fixed.

Consider the following linear programming model:

min
z,vk ,zk ,ykj

z + ∑
k

wk
r

vk (7a)

s.t. z + vk ≥ zk +
J

∑
j=1

πj

β
ykj ∀k (7b)

zk + ykj ≥ f j
k(x) ∀k, j (7c)

ykj ≥ 0 ∀k, j (7d)

zk free, vk ≥ 0 ∀k (7e)

z free (7f)

Proposition 2. The transformation from model (6) to model (7) is valid, since their optimal solution and
objective values coincide.

Proof. Let
(

z∗, v∗k , z∗k , y∗kj

)
be the optimal solution of model (7).

(
z∗, v∗k

)
is feasible of model (6),

and it will be shown that it is also optimal for such model. Assume that it exists
(
z′, v′k

)
feasible of

model (6) with:
z′ + ∑

k

wk
r

v′k < z∗ + ∑
k

wk
r

v∗k

This and constraint (7b) implies there exists k0, such that:

z′ + v′k0
< z∗k0

+
J

∑
j=1

πj

β
y∗k0 j

otherwise
(

z′, v′k, z∗k , y∗kj

)
would be optimal of model (7). Since z∗k0

and y∗k0 j are feasible of model (7)

they are also feasible of the model on the RHS of constraint (6b) and, thus, z′ and v′k0
violate

constraint (6b).

Proposition 2 showed that the optimal solutions of models (6) and (7) coincide. Proposition 3
goes further, showing the connection between their feasible sets.

Proposition 3. The feasible set of model (6) is a projection of the feasible set of model (7).

Proof.

1. For each feasible solution (z, vk) of model (6), there is at least one feasible solution of model (7)
with the same values (z, vk), being so the same objective function.

Let (z1, v1
k) be a feasible solution of model (6), and (z∗k , y∗kj) the optimal solution for each k

minimizing gβ
k (x) (right-hand-side of equation (6b)). Because constraints (7), (7c), (7d), and (7e)

are satisfied in model (6), (z1, v1
k , z∗k , y∗kj) is a feasible solution or model (7).

2. For each feasible solution (z, vk, zk, ykj) of model (7), (z, vk) is a feasible solution of model (6),
hence being the same objective function. Let (z2, v2

k , z2
k , y2

kj) a feasible solution of model (7).

Since constraints (7b), (7c) and (7d) are included in model (7), (z2
k , y2

kj) is feasible for the model
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that is included in the RHS of constraint (6b) and therefore greater than or equal to the minimum
of that model, verifying:

z2 + v2
k ≥ z2

k +
J

∑
j=1

πj

β
y2

kj ≥ min

{
zk +

J

∑
j=1

πj

β
ykj

}

and so, feasible for model (6).

Finally, after proving the validity of model (7), it is possible to let x ∈ X free, with the purpose of
finding the one minimizing the function hβ

r (x):

min
z,vk ,zk ,ykj ,x

z + ∑
k

wk
r

vk

s.t. z + vk ≥ zk +
J

∑
j=1

πj

β
ykj ∀k

zk + ykj ≥ f j
k(x) ∀k, j

ykj ≥ 0 ∀k, j

zk free, vk ≥ 0 ∀k

z free

x ∈ X

5. Application to the Knapsack Problem

The multiobjective stochastic knapsack problem is used in order to illustrate the usefulness of the
previously defined concept.

Definition 8 (Multiobjective stochastic knapsack problem). Let I be a collection of objects with weights vi,
which can be selected as members of a knapsack with maximum weight V. There is a set of scenarios J, each of
them with probability πj, and a set of criteria K, with importances wk. For every pair of scenario-criterion,
there is a benefit that is associated with selecting object i, denoted by bi

jk. Which objects should be taken in order
to maximize benefit?

The above problem differs with the well-known knapsack problem, in that there is stochasticity
and multiple objectives to be maximized.

The following MSP model can be adapted in order to analyze the problem. Note that, to preserve
the sense of the optimization, rather than to maximize the benefits of the carried objects, the value of
the objects not chosen will be minimized.

min
xi

{
f j
k(x) := ∑

i
(1− xi) bi

kj ∀k, j

}
s.t. ∑

i
vixi ≤ V ∀i

xi ∈ {0, 1} ∀i

(8)

When using the methodology developed in the previous sections, problem (8) is transformed into
the following mixed-integer linear programming model:
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min
z,vk ,zk ,ykj ,xi

z + ∑
k

wk
r

vk

s.t. z + vk ≥ zk +
J

∑
j=1

πj

β
ykj ∀k

zk + ykj ≥∑
i
(1− xi) bi

kj ∀k, j

∑
i

vixi ≤ V ∀i

ykj ≥ 0 ∀k, j

xi ∈ {0, 1} ∀i

zk free, vk ≥ 0 ∀k

z free

(MSP)

Given r, β ∈ (0, 1], model (MSP) obtains the x∗ minimizing the r-OWA of the β-averages. In order
to illustrate the benefits of using model (MSP), a naive way of solving problem (8) is considered:

min
xi

∑
k,j

wkπj ∑
i
(1− xi) bi

kj

s.t. ∑
i

vixi ≤ V ∀i

xi ∈ {0, 1} ∀i

(MIP)

Hence, model (MIP) computes the average of the f j
k, while using the importances of the criteria

and the probability of the scenarios. It is clear that, for “average” criteria-scenarios x∗MIP, the optimal
solution of model (MIP), outperforms x∗MSP, the optimal solution of model (MSP). Conversely, x∗MSP
will improve x∗MIP in unfavourable criteria-scenarios, as expected of a risk-averse solution.

5.1. Computational Experiments

The following sections will show computational experiments, for different values of r and β and
different number of objects, scenarios, and criteria. The capacity of the knapsack, V, is set to 1 in
every instance. Algorithm 1 shows how the random instances are created, given a number of objects,
scenarios, and criteria.

Algorithm 1 Generating random data, with U (a, b) the uniform distribution in [a, b]

1: function RANDOMINSTANCE(|I|, |J|, |K|)
2: p← U (0.25, 0.75) . proportion of objects that can fit on average
3: W ← 1

p|I| . average weight of each object
4: for i ∈ I do
5: wi ← U (0.5W, 1.5W) . weight of each object
6: for j, k ∈ J × K do
7: bi

kj ← U (0, 1) . value of each object
8: end for
9: end for

10: end function

For each of the solved instances, it will be reported:
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• tMSP, tMIP: solution time in seconds of models (MSP) and (MIP). With them, the following value
is calculated:

∆time :=
tMSP

tMIP
(time penalty factor)

∆time, the time penalty factor, indicates the increase of computing time when solving model (MSP)
rather than model (MIP).

• z∗MSP, z∗MIP: optimal values of the models.
• fMSP (x∗MIP) , fMIP

(
x∗MSP

)
: objective value of x∗MIP in model (MSP) and vice versa.

• To grasp the difference between the MSP and the naive approach, the following will be calculated:

∆avg := 100
fMIP

(
x∗MSP

)
− z∗MIP

z∗MIP
(deteriorating rate)

∆tail := 100
fMSP (x∗MIP)− z∗MSP

fMSP
(
x∗MIP

) (improvement rate)

These quantities reflect what is the effect of making decision x∗MSP instead of x∗MIP. Large values of
∆avg indicate high penalties for making decision x∗MSP instead of x∗MIP in average scenarios-criteria.
Similarly, the larger ∆tail, the higher benefit obtained from making decision x∗MSP in tail events.
They will be, respectively, called deteriorating rate and improvement rate.

The models are solved in GAMS 26.1.0 with solver IBM ILOG CPLEX 12.8.0.0, while using a
personal computer with an Intel Core i7 processor and 16GB RAM.

Experiment 1

The first experiment will consist on a full factorial design, in which the values of |I|, |J|, |K|, r, β

fall in these sets:

• |I| ∈ {50, 100, 200}
• |J| ∈ {5, 25, 100}
• |K| ∈ {3, 6, 9}
• r ∈ {0.33, 0.5, 0.67}
• β ∈ {0.05, 0.1, 0.5}

For each tuple (I, J, K) a random instance will be generated using Algorithm 1, which will then
be solved for every pair (r, β). All of the criteria and scenarios are given the same importance and
probabilities. That is, wk =

1
|K| , πj =

1
|J| . The time limit was set in two hours by instance, in which all

but three of the 35 = 243 configurations were solved to optimality.

Experiment 2

For the next experiment, 100 random instances will be created, keeping the values of |I|, |J|, |K|, r, β

constant and equal to the median value of the previous experiment. That is, |I| = 100, |J| = 25, |K| =
6, r = 0.5, β = 0.1. All of the criteria and scenarios are given the same importance and probabilities.
All 100 instances were solved to optimality.

5.2. Results

Experiment 1

Table A4 (in the Appendix A) shows, for each of the 243 instances, the solution times of the MSP
and the MIP models, and the deteriorating and improvement rates of using the MSP solution instead
of the MIP solutions (measured in deviation to MIP solution).
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Table 7 shows the objective values, by scenario and criterion, of the first instance of the experiment.
Such an instance contains 50 objects, five scenarios, three criteria, and the parameters r and β are set to
0.33 and 0.05 respectively. Results show that the MSP solution (Table 7a) is more balanced through
every scenario and criterion, with a worst value of 13.71. On the other hand, the MIP solution (Table 7b)
attains larger (worse) values on some scenarios and criteria.

Table 7. Objective values by scenario-criterion of solutions obtained with the multiobjective stochastic
programming problem (MSP) and MIP models, for the first instance of the first experiment.

(a) MSP Solution (b) MIP Solution

k1 k2 k3 k1 k2 k3
j1 11.97 11.26 11.00 j1 9.65 10.75 9.71
j2 11.96 9.92 13.71 j2 11.19 10.17 14.90
j3 13.48 13.51 10.92 j3 14.05 13.55 9.40
j4 13.62 13.13 13.71 j4 14.12 13.00 13.35
j5 12.94 11.35 13.47 j5 13.64 10.33 11.42

Table 8 shows the correlations between the times and rates with the parameters of the instance.
It can be seen how the MSP solution has a higher impact when fewer scenarios are considered.
In addition to that, it can be appreciated that the MSP solution times decrease when β increase,
which is, when more scenarios are included in the β-average computation.

Table 8. Correlations.

|I| |J| |K| r β

tMSP 0.34 0.09 −0.11 −0.05 −0.19
tMIP 0.51 0.18 −0.14 −0.03 −0.07
∆time 0.31 0.11 −0.08 −0.02 −0.18
∆avg −0.05 −0.57 −0.28 −0.09 −0.36
∆tail −0.07 −0.56 −0.18 −0.21 −0.50

This observation is confirmed by Table 9, in which it can be seen that the median time penalty
factor (how much longer does it take to solve the MSP model than the MIP model) is much smaller
when β = 0.5 than when β = 0.05.

Table 9. MSP runtimes and increases as compared to MIP runtimes, grouped by β.

β
tMSP ∆time

Min Mean Median Max Std Min Mean Median Max Std

0.05 0.12 659.49 6.32 7222.95 1787.07 0.94 3188.96 32.77 50473.04 9472.55
0.10 0.12 212.47 2.23 4765.42 728.49 0.98 1002.35 11.09 20192.48 3245.85
0.50 0.13 3.49 0.67 62.14 9.05 1.06 19.14 3.75 414.29 55.51

The solution times of the MSP model are alarmingly high for some instances, due to the fact
that the admissible integrality gap has been set to zero. If that is relaxed, it can be seen that all of the
243 instances reach an integrality gap smaller than 5% in about three seconds, 2% in about five seconds
and 1% in about 88 seconds.

Table 10 groups instances by r and β, and shows the deteriorating and improvement rates. It can
be seen that the improvement rate (in the tail) is generally higher than the deteriorating rate (in the
average), especially in cases with small r and β.
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Table 10. Values of ∆avg and ∆tail, grouped by r and β.

r β
∆avg ∆tail

Min Mean Median Max Std Min Mean Median Max Std

0.33 0.05 0.03 1.94 1.87 5.68 1.42 0.28 4.37 4.21 9.18 2.43
0.10 0.02 1.70 1.61 5.68 1.44 0.18 3.54 2.85 9.18 2.42
0.50 0.00 0.93 0.52 4.46 1.08 0.00 1.57 0.92 4.99 1.46

0.50 0.05 0.03 1.87 1.90 4.30 1.30 0.29 3.58 3.30 6.73 1.89
0.10 0.02 1.65 1.14 4.30 1.37 0.13 2.87 2.47 6.59 1.86
0.50 0.00 0.72 0.54 3.51 0.75 0.00 1.07 0.79 3.79 1.01

0.67 0.05 0.03 1.64 1.17 3.93 1.24 0.32 3.04 3.06 6.15 1.62
0.10 0.01 1.50 1.10 3.93 1.31 0.12 2.43 2.02 5.84 1.58
0.50 0.00 0.60 0.50 3.16 0.66 0.00 0.80 0.59 3.64 0.81

This claim is also supported with Figure 2, where each of the 243 instances is shown according to
the values of ∆avg and ∆tail, and are grouped by the values of (r, β). Almost all of the instances are
above the imaginary line ∆avg = ∆tail, which shows that considering the MSP solution improves in
the tail more than it loses in the average situations. In addition to that, it can be seen that the largest
improvements in the tail are on instances with β = 0.05 (one of the usual values taken for CVaR),
and especially with the smallest values of r. When r and β grow, the differences between the MIP and
MSP solutions are reduced.

Figure 2. Values ∆avg and ∆tail for each of the 243 instances, grouped by values of (r, β).

Finally, Figure 3 shows the values of f j
k(x), where x = x∗MIP in blue squares and x = x∗MSP in

orange circles, for just one of the created instances: 200 objects, 100 scenarios, three criteria, r = 0.33,
β = 0.05. The values of f j

k(x) are represented for each criterion, sorting the scenarios from most to least
favourable. It can be appreciated how x∗MIP performs better than x∗MSP in average criteria-scenarios,
on the central part of the images; but, x∗MSP is better with unfavourable situations, those with higher

values of f j
k(x). This can be especially appreciated for the second criterion, in which there are three

scenarios with objective values of x∗MIP out of control.
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Figure 3. Single instance with 100 scenarios and three criteria. For each k, sorted values of f j
k(x), where x =

x∗MIP in blue squares and x = x∗MSP in orange circles.

Experiment 2

Table A5 (in the appendix) contains the results for each of the 100 instances, all of them with
constant parameters |I| = 100, |J| = 25, |K| = 6, r = 0.5, β = 0.1.

Table 11 contains a summary of the results, where it is again seen that the improvements in the
tail are better than the loses in the average situations. Although single instances might take a long
computing time, the median MSP solution time (3.74 s) is definitely satisfactory. It is worth mentioning
that the models were implemented without providing any extra bounds or known cuts that could
reduce the solution times.

Table 11. Summary of experiment 2.

tMSP tMIP ∆time ∆avg ∆tail

mean 16.98 0.20 91.31 2.03 3.09
std 46.57 0.03 254.68 1.12 1.49
min 0.53 0.14 2.81 0.16 0.86
25% 1.37 0.17 6.73 1.18 2.09
50% 3.74 0.19 19.72 1.93 2.81
75% 15.50 0.21 86.19 2.52 3.51
max 404.70 0.34 2175.82 5.67 8.57

6. Conclusions

In this paper, a new concept of solution has been proposed for Multiobjective Stochastic
Programming problems, exploiting risk-aversion. The proposed concept combines the notions of



Mathematics 2020, 8, 2026 20 of 26

conditional value-at-risk and ordered weighted averaging operator to find solutions protected against
risks due to the uncertainty and under-achievement of criteria. Thus, this concept can be particularly
useful in real-life situations, where there exists a great concern with respect to unfavourable situations,
such as emergency management or portfolio optimization.

The solution concept is supported by an efficient way to compute it by a Mathematical
Programming problem. This model is linear, provided that the underlying problem can be linearly
representable. Numerical experiments have been conducted for validating this approach, solving a
multiobjective stochastic knapsack problem.

The research has shown that the improvements in the tail (unfavourable situations) are consistently
higher than loses on average situations, especially when small values of the parameters β and r are
chosen. These differences, although clearly noticeable, are not as high as one could expect. This is
possibly due to the randomness of the data. It is reasonable to assume that, in actual real-life problems,
there are choices that are more conservative for every scenario and criterion, and thus being preferable
for risk-averse attitudes.

The results have shown that there is a clear increase in computational time as compared with
risk neutral methods; however, this is arguably acceptable as a price to pay for being risk-averse.
Furthermore, this could also be due to the random nature of the data. Nevertheless, it was also
shown that allowing for even rather small integrality gaps (1%) leads to a drastic improvement in
computing times.
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Appendix A

Table A1. Values of alternative 2 by scenario (j) and criteria (k).

Criteria

w1 = 0.20 w2 = 0.10 w3 = 0.20 w4 = 0.25 w5 = 0.15 w6 = 0.10

k1 k2 k3 k4 k5 k6

sc
en

ar
io

s π1 = 0.15 j1 0.40 0.58 0.39 0.45 0.54 0.18
π2 = 0.20 j2 0.68 0.74 0.70 0.15 0.54 0.72
π3 = 0.30 j3 0.93 0.52 0.23 0.82 0.21 0.03
π4 = 0.25 j4 0.37 0.85 0.07 0.42 0.52 0.22
π5 = 0.10 j5 0.92 0.13 0.71 0.39 0.90 0.87

β-average, β = 0.30 0.930 0.832 0.703 0.820 0.660 0.770

r-OWA, r = 0.17 0.930



Mathematics 2020, 8, 2026 21 of 26

Table A2. Values of alternative 3 by scenario (j) and criteria (k).

Criteria

w1 = 0.20 w2 = 0.10 w3 = 0.20 w4 = 0.25 w5 = 0.15 w6 = 0.10

k1 k2 k3 k4 k5 k6

sc
en

ar
io

s π1 = 0.15 j1 0.80 0.90 0.61 0.28 0.94 0.09
π2 = 0.20 j2 0.29 0.48 0.26 0.23 0.21 0.07
π3 = 0.30 j3 0.73 0.65 0.32 0.56 0.95 0.65
π4 = 0.25 j4 0.58 0.39 0.21 0.66 0.70 0.93
π5 = 0.10 j5 0.73 0.22 0.33 0.31 0.32 0.38

β-average, β = 0.30 0.765 0.775 0.468 0.643 0.950 0.883

r-OWA, r = 0.17 0.943

Table A3. Values of alternative 4 by scenario (j) and criteria (k).

Criteria

w1 = 0.20 w2 = 0.10 w3 = 0.20 w4 = 0.25 w5 = 0.15 w6 = 0.10

k1 k2 k3 k4 k5 k6

sc
en

ar
io

s π1 = 0.15 j1 0.30 0.52 0.12 0.68 0.46 0.73
π2 = 0.20 j2 1.00 0.57 0.46 0.82 0.90 0.72
π3 = 0.30 j3 0.18 0.76 0.30 0.34 0.54 0.99
π4 = 0.25 j4 0.53 0.21 0.13 0.12 0.66 0.86
π5 = 0.10 j5 0.98 0.46 0.50 0.29 0.27 0.40

β-average, β = 0.30 0.993 0.760 0.473 0.773 0.820 0.990

r-OWA, r = 0.17 0.993
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Table A4. All instances of first experiment. The three instances with 200 objects, 100 scenarios, 6 criteria and β = 0.05 did not reach the optimal solution in 2 h.
The integrality gaps of the solution shown are 0.31%, 0.24% and 0.19% for r = 0.33, 0.5 and 0.67 respectively.

β→ 0.05 0.1 0.5

r→ 0.33 0.5 0.67 0.33 0.5 0.67 0.33 0.5 0.67

|I| |J| |K| tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail

50 5 3 0.12 0.13 3.75 8.01 0.15 0.12 3.75 8.01 0.18 0.14 3.51 4.54 0.14 0.14 3.75 6.59 0.12 0.12 3.75 6.59 0.20 0.17 3.51 3.79 0.12 0.12 3.75 5.84 0.12 0.12 3.75 5.84 0.13 0.12 3.16 3.64
6 0.22 0.11 3.79 5.07 0.25 0.11 3.79 5.07 0.18 0.11 1.03 3.01 0.30 0.13 3.79 4.01 0.25 0.13 3.79 4.01 0.23 0.15 1.48 2.10 0.23 0.16 3.77 3.58 0.23 0.14 3.77 3.58 0.18 0.17 1.48 1.47
9 0.28 0.14 1.76 6.67 0.36 0.14 1.76 6.67 0.20 0.15 1.58 3.26 0.22 0.14 2.02 5.66 0.21 0.14 2.02 5.66 0.22 0.14 1.24 2.10 0.20 0.15 2.02 4.39 0.22 0.13 2.02 4.39 0.25 0.15 1.20 1.37

25 3 0.76 0.18 2.47 5.37 0.66 0.17 2.47 2.85 0.26 0.17 2.00 1.55 0.64 0.18 2.47 5.08 0.62 0.16 2.47 2.51 0.25 0.15 1.00 0.97 0.60 0.17 2.47 4.93 0.51 0.16 1.79 2.52 0.26 0.14 1.00 0.69
6 1.20 0.16 1.87 5.77 0.91 0.29 1.96 3.70 0.49 0.18 0.79 1.81 1.15 0.18 1.87 4.93 0.74 0.18 1.14 3.51 0.41 0.18 0.70 1.55 0.93 0.16 1.17 4.33 0.78 0.18 1.17 3.45 0.38 0.16 0.71 1.22
9 0.69 0.16 0.61 4.21 0.78 0.16 0.43 2.78 0.57 0.16 0.67 0.92 0.52 0.15 0.61 3.90 0.96 0.16 0.44 2.14 0.61 0.16 0.67 0.65 0.69 0.15 0.61 3.25 1.02 0.18 0.39 1.75 0.47 0.18 0.51 0.68

100 3 1.15 0.15 0.07 2.43 0.78 0.15 0.07 2.15 0.44 0.14 0.07 0.16 1.07 0.14 0.07 2.02 0.83 0.19 0.07 1.74 0.34 0.14 0.07 0.16 1.14 0.15 0.07 1.81 0.85 0.16 0.07 1.53 0.36 0.14 0.07 0.14
6 2.51 0.20 0.77 2.24 4.45 0.22 0.78 1.19 3.52 0.20 0.23 0.47 2.62 0.25 0.77 1.99 5.09 0.18 0.31 1.10 5.45 0.20 0.19 0.29 2.70 0.22 0.77 1.38 3.31 0.19 0.47 0.63 5.59 0.19 0.23 0.27
9 4.06 0.18 0.03 0.41 1.47 0.17 0.03 0.30 1.07 0.16 0.00 0.00 2.75 0.17 0.03 0.29 1.12 0.16 0.03 0.30 1.11 0.16 0.00 0.00 2.06 0.19 0.03 0.32 1.10 0.16 0.03 0.18 1.16 0.17 0.00 0.00

100 5 3 1.24 0.26 3.81 7.63 1.29 0.20 3.81 7.63 0.37 0.22 2.08 4.47 0.72 0.18 3.81 5.22 0.66 0.18 3.81 5.22 0.32 0.27 1.56 2.33 0.74 0.19 3.38 4.02 1.13 0.23 3.38 4.02 0.28 0.20 0.63 1.36
6 8.68 0.22 5.68 7.12 8.69 0.19 5.68 7.12 0.43 0.17 4.46 2.92 0.65 0.20 4.30 5.64 1.06 0.19 4.30 5.64 0.35 0.17 0.81 1.28 1.18 0.22 3.93 4.20 0.64 0.18 3.93 4.20 0.28 0.18 0.53 0.88
9 3.31 0.18 2.19 3.14 3.26 0.20 2.19 3.14 0.67 0.18 0.97 2.90 1.04 0.20 2.19 2.86 0.96 0.20 2.19 2.86 0.23 0.14 0.64 1.88 1.02 0.17 0.92 2.31 0.90 0.17 0.92 2.31 0.24 0.18 0.41 1.18

25 3 10.65 0.17 2.96 6.52 3.39 0.18 2.07 4.00 0.29 0.15 0.48 1.73 7.09 0.18 2.96 5.46 1.83 0.19 2.96 3.67 0.30 0.14 0.48 0.95 3.46 0.19 2.19 4.98 1.30 0.16 2.96 3.50 0.34 0.16 0.41 0.59
6 32.12 0.20 2.78 4.47 9.18 0.19 0.78 3.53 0.44 0.18 0.52 1.31 26.53 0.18 2.59 3.06 3.64 0.22 0.61 2.47 0.32 0.15 0.26 0.79 12.77 0.17 0.60 2.62 0.90 0.17 0.50 2.00 0.41 0.17 0.26 0.65
9 8.58 0.18 0.72 5.52 1.90 0.17 0.97 3.49 0.42 0.18 0.24 0.82 6.32 0.19 0.72 4.75 1.24 0.16 0.97 3.06 0.51 0.20 0.24 0.44 1.60 0.19 1.12 3.83 0.88 0.19 1.12 2.53 0.59 0.17 0.50 0.23

100 3 51.23 0.22 2.21 1.12 1.67 0.21 0.27 1.36 0.82 0.18 0.09 0.25 22.70 0.21 2.21 1.16 1.22 0.19 0.34 1.05 0.81 0.18 0.05 0.17 18.75 0.16 2.21 1.17 0.84 0.22 0.34 0.92 0.75 0.18 0.05 0.13
6 48.25 0.18 0.76 2.56 31.87 0.17 0.62 2.05 62.14 0.15 0.42 0.70 24.73 0.18 0.71 2.48 27.08 0.18 0.62 1.81 42.18 0.19 0.28 0.55 20.26 0.17 0.60 2.10 22.09 0.20 0.75 1.48 7.79 0.20 0.17 0.50
9 2.16 0.19 0.37 1.48 3.34 0.18 0.29 0.77 1.84 0.17 0.18 0.41 1.80 0.17 0.34 1.25 2.87 0.20 0.28 0.69 2.22 0.19 0.26 0.22 1.67 0.18 0.34 1.14 2.77 0.19 0.20 0.63 3.09 0.16 0.08 0.13

200 5 3 146.24 0.23 1.61 3.81 140.12 0.20 1.61 3.81 7.71 0.23 1.30 1.61 151.22 0.21 1.61 3.30 135.09 0.24 1.61 3.30 4.60 0.21 1.30 1.58 83.44 0.22 1.10 3.06 89.20 0.21 1.10 3.06 4.21 0.22 1.30 1.55
6 88.70 0.19 1.08 2.50 89.69 0.19 1.08 2.50 5.14 0.17 0.72 0.83 96.44 0.19 1.08 1.91 91.66 0.18 1.08 1.91 2.93 0.18 0.91 0.58 39.26 0.18 0.94 1.68 32.92 0.18 0.94 1.68 0.70 0.17 0.58 0.44
9 468.37 0.15 3.73 9.18 484.89 0.14 3.73 9.18 29.46 0.16 1.74 4.99 304.04 0.16 3.69 6.24 305.90 0.16 3.69 6.24 2.71 0.16 1.74 3.54 110.03 0.15 3.38 4.92 107.34 0.14 3.38 4.92 0.91 0.17 1.20 2.28

25 3 5629.58 0.33 2.75 7.84 4765.42 0.24 2.24 5.33 4.86 0.24 0.81 1.40 5430.90 0.25 2.75 6.73 3394.56 0.24 2.75 5.05 5.32 0.28 0.81 1.22 6896.05 0.25 2.75 6.15 2546.43 0.21 2.75 4.91 5.66 0.34 0.81 1.13
6 2886.13 0.19 1.67 4.36 146.48 0.17 1.93 2.77 0.57 0.17 0.19 0.79 1651.91 0.21 1.67 4.20 15.06 0.22 1.93 2.29 0.71 0.21 0.19 0.81 93.66 0.19 1.46 3.64 19.36 0.19 1.93 2.02 0.55 0.18 0.12 0.40
9 1235.12 0.32 2.05 2.59 342.32 0.22 0.96 1.22 1.99 0.21 0.22 0.26 404.70 0.29 1.90 2.12 28.09 0.21 0.88 0.76 0.82 0.20 0.13 0.17 99.73 0.21 1.99 1.58 2.23 0.22 0.39 0.58 0.87 0.20 0.06 0.08

100 3 703.05 0.23 2.11 4.15 373.65 0.22 2.03 2.70 1.42 0.22 0.47 0.63 731.09 0.22 2.11 2.92 157.29 0.20 2.03 1.96 1.11 0.22 0.54 0.47 596.88 0.27 2.06 2.29 349.78 0.30 2.13 1.58 3.22 0.29 0.53 0.44
6 7222.95 0.22 0.60 3.43 1814.25 0.18 0.48 2.08 22.11 0.21 0.13 0.44 7217.64 0.14 0.47 2.57 916.42 0.21 0.48 1.75 7.04 0.24 0.28 0.27 7216.94 0.15 0.47 2.11 656.48 0.20 0.37 1.41 7.89 0.22 0.24 0.20
9 3321.23 0.34 0.07 0.28 16.40 0.20 0.02 0.18 2.33 0.17 0.08 0.08 198.14 0.19 0.07 0.32 14.84 0.21 0.02 0.13 2.31 0.21 0.08 0.05 47.16 0.23 0.08 0.33 9.77 0.21 0.01 0.12 2.63 0.20 0.06 0.04
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Table A5. All instances of second experiment. |I| = 100, |J| = 25, |K| = 6, r = 0.5, β = 0.1.

tMSP tMIP ∆avg ∆tail tMSP tMIP ∆avg ∆tail

31.15 0.23 1.53 3.20 2.15 0.16 2.24 2.09
1.92 0.21 1.66 6.17 20.09 0.16 1.80 6.14
8.75 0.24 0.52 3.07 7.18 0.16 2.13 1.93

28.06 0.23 5.08 2.86 1.02 0.16 3.03 3.61
1.36 0.30 1.00 1.80 3.58 0.24 1.81 6.12
3.67 0.20 2.27 2.50 3.64 0.19 1.19 3.07
2.00 0.20 2.51 2.03 128.69 0.23 3.27 2.98

192.11 0.16 2.61 8.23 0.89 0.18 1.45 0.93
0.94 0.20 0.43 2.23 1.62 0.23 1.85 3.56
0.80 0.18 1.64 2.55 4.19 0.22 2.10 1.97

16.40 0.19 2.23 2.45 2.16 0.19 0.16 1.46
1.21 0.18 2.82 1.50 1.46 0.24 2.48 2.00
1.79 0.20 0.72 2.77 0.69 0.20 1.79 2.54

21.78 0.21 4.50 4.61 20.73 0.20 2.26 3.50
1.35 0.19 0.69 0.86 1.86 0.24 1.77 2.63

31.11 0.19 0.98 3.21 14.92 0.17 1.99 8.57
8.44 0.19 1.82 3.81 0.78 0.20 0.85 1.92
1.75 0.21 0.88 0.92 10.48 0.23 2.50 2.29
1.94 0.21 2.18 2.65 1.63 0.24 2.08 2.29
0.98 0.20 0.87 3.27 10.78 0.18 0.34 1.80

27.72 0.22 2.03 5.20 38.80 0.20 1.96 4.69
14.72 0.15 3.34 0.99 19.74 0.24 0.65 2.20
0.67 0.24 0.81 2.69 1.37 0.30 2.82 2.92
3.54 0.20 2.64 2.75 6.28 0.19 2.02 2.08
6.37 0.21 2.79 6.35 22.27 0.34 1.91 3.13
1.86 0.23 0.93 2.09 1.69 0.20 2.21 2.42
1.54 0.20 2.00 3.45 27.77 0.19 0.76 3.28

40.16 0.17 2.06 3.44 2.00 0.21 2.57 1.93
7.23 0.21 3.17 3.17 2.61 0.18 2.14 3.33
5.77 0.17 2.84 1.98 40.93 0.18 1.53 4.61
2.10 0.19 1.39 3.00 18.84 0.16 0.89 4.37

404.70 0.19 1.50 2.82 11.26 0.16 3.98 4.76
24.26 0.18 4.81 3.42 14.41 0.18 1.82 5.87
0.76 0.20 1.28 3.88 12.14 0.16 2.75 2.75
0.64 0.20 0.87 1.39 12.58 0.17 1.42 3.46
0.97 0.23 1.77 2.19 0.84 0.18 0.41 2.15
0.53 0.18 1.95 2.04 5.20 0.19 3.80 2.02
7.24 0.22 2.21 1.68 28.16 0.15 4.68 3.56
0.87 0.25 0.71 1.42 39.10 0.16 3.47 3.59
8.51 0.20 2.48 4.06 19.22 0.16 3.78 3.13

13.06 0.20 4.44 2.80 0.56 0.20 0.63 3.22
59.78 0.20 5.67 4.91 0.68 0.17 1.92 2.44
67.50 0.19 2.96 3.02 0.70 0.17 1.86 1.40
3.80 0.17 0.79 1.20 15.20 0.17 0.78 2.66
3.25 0.20 2.24 1.57 0.88 0.17 2.31 2.13
5.23 0.16 1.14 4.91 0.59 0.15 1.78 1.68
0.71 0.17 0.89 3.01 1.08 0.20 2.21 3.14
4.19 0.17 3.09 2.32 1.14 0.17 0.76 2.48
3.53 0.18 1.37 6.33 1.58 0.19 1.45 3.14

19.99 0.14 3.48 5.05 13.48 0.18 1.71 5.41
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