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Abstract: Multiobjective stochastic programming is a field that is well suited to tackling problems that
arise in many fields: energy, financial, emergencies, among others; given that uncertainty and multiple
objectives are usually present in such problems. A new concept of solution is proposed in this work,
which is especially designed for risk-averse solutions. The proposed concept combines the notions
of conditional value-at-risk and ordered weighted averaging operator to find solutions protected
against risks due to uncertainty and under-achievement of criteria. A small example is presented
in order to illustrate the concept in small discrete feasible spaces. A linear programming model is
also introduced to obtain the solution in continuous spaces. Finally, computational experiments
are performed by applying the obtained linear programming model to the multiobjective stochastic
knapsack problem, gaining insight into the behaviour of the new solution concept.

Keywords: multiobjective stochastic programming; linear programming; risk-aversion

1. Introduction

Decision making is never easy, yet we often have to make decisions. Emergencies and disaster
management are fields in which many difficulties often arise, such as high uncertainty and multiple
conflicting objectives. Risk-averse decisions are usually sought to overcome such difficulties.
Risk-aversion is the attitude for which we prefer to lower uncertainty rather than gambling extreme
outcomes (positive or negative).

Risk-aversion, although typically studied in problems with uncertainty, can as well be considered
when making decisions with multiple criteria. For instance, in the field of disaster management,
solutions that are sufficiently good for all criteria are usually preferred to others that perform
exceptionally good for some criteria, but inadequately for the others.

Multicriteria decision making (MCDM) is a field worth of consideration when studying real-world
problems. This situation, in which multiple conflicting objectives have to be optimized, has led to
the definition of different solution concepts and methodologies. A specific methodology should be
applied depending on the problem and the type of solution considered. A key concept in MCDM is
the notion of efficiency, which reflects the intuition that, for a solution to be acceptable, another cannot
exist improving that one in every objective.

Uncertainty is another feature that is present in the studied problems, in which risk-averse
decisions will be preferred. The most common ways for dealing with the uncertainty are
stochastic programming and robust optimization, in which fuzzy optimization is also included [1].
Stochastic programming is the widest used technique when there are historical data or information to
infer a probability distribution. Moreover, usually discrete distributions are used, calling scenarios the
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different values. The concepts of value-at-risk (VaR) and conditional value-at-risk (CVaR) are widely
used for quantifying risk. They are typically defined for losses distributions in finance, where the right
tail of the distributions are of interest.

Consider now the following problem, in which multiple objectives to be minimized and
uncertainty are included simultaneously:

min (f1(x,@), .., fi(x, @)

The above problem is typically called multiobjective stochastic programming problem (MSP),
especially if w, the uncertainty source, has a known probability distribution.

In this paper, we introduce a new solution concept in multiobjective stochastic programming
based on risk-averse preferences. Such a concept is complemented with a mathematical programming
model in order to compute it efficiently, and computational experiments are performed to assess
its strengths.

The remaining of this paper is organized as follows. Section 2 presents a literature review of
multicriteria decision-making and uncertain optimization. Section 3 includes the definition of a novel
concept of solution for MSP problems and studies its properties. In Section 3.2, such a solution concept
is illustrated with a basic example when the decision space is finite and small.

Section 4 shows how to obtain such a solution with a linear programming model. An application
to the multicriteria knapsack problem is developed in Section 5, and general conclusions of the research
are drawn in Section 6.

2. Literature Review

2.1. Multicriteria Decision-Making and Optimization Under Uncertainty

MCDM techniques have recently been used for solving real world problems as varied as:
disaster management [2,3], engineering [4], finance [5,6], forest planning [7], healthcare [8], location of
waste facilities [9], police districting [10], route planning [11], train scheduling [12], or urban
planning [13,14].

An important concept used throughout this paper is the one of efficiency. The notation used is the
given in [15]:

Definition 1 (Efficiency, [15]). Let f1(x),..., fx(x) be objective functions to be minimized, and let X be the
feasible set. A feasible solution £ € X is called:

e  Weakly efficient if there is no x € X, x # X, such that f(x) < f(%) ie. fr(x) < fi(®) for all
k=1,...,K

e  Efficient or Pareto optimal if there is no x € X such that fi(x) < fi(%) forallk =1,...,K and
fi(x) < fi(%) for somei € {1,...,K}.

e  Strictly efficient if there is no x € X, x # %, such that f(x) < f(%).

The different approaches for dealing with uncertainty do not respond to the desires of the modeller;
instead, they reflect the nature of the uncertainty. If the uncertainty comes with an underlying known
or estimated probability distribution, then stochastic programming is used. For an introduction to
stochastic programming, the reader is referred to [16]. On the other hand, if uncertainty comes from
a lack of precision or semantic uncertainty, then robust optimization is used. Robust optimization
does not assume a known (or existing) distribution [17-19]. A recent review of robust optimization is
written in [20].

Stochastic programming seeks the optimization of a characteristic value of a random variable,
usually its average. However, in risk-averse contexts the usage of value-at-risk and conditional
value-at-risk is common for quantifying risk (see, for instance, [21-25]).
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Definition 2 (CVaR, [26]). Given Fx(x) distribution function, and p € [0,1], the B-CVaR is the conditional
expected value over {x : Fx(x) > B}.

2.2. Multiobjective Stochastic Programming

Multiobjective stochastic programming refers to models in which there are several criteria and
stochastic uncertainty simultaneously. Reference [27] develops the PROTRADE method, where utility
functions are defined to aggregate objectives into a single objective stochastic problem. The resulting
problem is solved with an interactive method, where the decision-maker defines an expected solution
and a feasibility probability. Reference [28] reduces the stochasticity by adding some good measures
to the list of objectives, such as the mean, variance, or probability of being over/below a threshold.
The resulting multiobjective deterministic problem is solved aggregating the objectives, but it could be
solved via other techniques.

Reference [29] compares the stochastic approach with the multiobjective approach when using
different techniques. The stochastic approach transforms the MSP on a single-objective stochastic
problem, while the multiobjective approach first reduces the stochasticity transforming the MSP on a
deterministic multiobjective problem. They highlight that “the multiobjective approach forgets the
possible existence of stochastic dependencies between objectives”. Reference [30] studies stochastic
goal programming, where the deviation of the objective functions to some goals set beforehand to
stochastic values is minimized.

In [31], a chance-constrained compromise approach is proposed, with an example presented
in [32]. In [33], the INTEREST method is proposed. It is an interactive reference point method.
The decision-maker gives reference levels u; and probabilities f;, hoping to achieve a solution x*
such that P (f;(x*) < u;) > B;. If this is infeasible, then the decision-maker should either increase
the reference levels or decrease the probabilities of achievement. [34] reviews different solutions
methods for the MSP problem, categorizing them as stochastic approach or multiobjective approach.
Reference [35] surveys methods for MSP problems that do not reduce the multiple objectives
before the analysis of the problem, acknowledging the difficulty of risk-averse decision-making.
More recently, in [36], different ordering relations for multicriteria problems with uncertainty are
presented, building upon existing notions of robustness.

Some fields where MSP models have been developed are: forest management [37], multiple response
optimization [38], energy generation [39,40], energy exchange [41], capacity investment [42],
disaster management [43,44], portfolio optimization [45], and cash management [46], among others.

3. Methodology

The concept of CVaR allows aggregating several scenarios by just looking at what happens in the
worst ones. The ordered weighted averaging (OWA) operators are defined in [47], and independently
in the field of locational analysis [48,49] under the name of ordered median function. These concepts
will allow for us to aggregate different criteria by looking at the least desirable ones, as a
risk-aversion measure.

Definition 3 (OWA, [47]). Given ay,...,a, € R, the ordered weighted averaging (OWA) operator with
weights Ay, ..., Ay, is defined as:
OWA(ay,...,a,) = Z)\iﬂ(i)
i

where (a(l), .. .,a(n)> is the ordered vector from largest to smallest (ay,...,a,).

Remark 1. For certain weights, the OWA represents a known quantity:

o IfA; =1 theresulting OWA is the average of a.
o IfAy=1and A; =0forj> 1, the OWA is the maximum of a.
o IfA,=1,and Aj =0 for j < n, the OWA is the minimum of a.
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Reference [50] later studies how to assign weights for an OWA when criteria have
different importances.

Definition 4 (OWA with importances, [50]). Given ay,...,a, € R with importances uy, ..., u, such that
Yiu; = 1 the weights A; for the OWA can be calculated with f, the weight generating function in the
following manner:

1. Sort vector a such that a) > a() > ... > A(n)-

2. With (x) as the order induced by a, deﬁne T = Z,; U(k)-
3. Let f bea function, such that f : [0,1] — [0 1] and f (0 ) 0, f(1) = 1. This function is called weight
generating function.

4. Obtain the weights as Aj = f(T;) — f(Tj-1).

Example 1 (of Definition 4). Consider the following weight generating function, for a given r € (0,1]:

X oifx<r
x)=<" 1
f(x) { | x> ¢))
Let (x) be the order, such that ag) > e > A(ny, U(j) the weight associated to agy, and also let

T, = Z;(=1 U (k). We shall now see how the weights are obtained from f. Let j* be such that Tj» 1 <1 < Tjs.

o M=f(Th)=fluy) = u(Tl), assuming uy < r
° Ay = f(Tz) _f(T1> = f(u(l) + M(z)) —f(u(l)) = u(l)ju(z) — @ = @/ assuming U () + U (2) <r
[ ] PN

=1- (”(1)“‘(2)*7”'*”(1'*—1) ), since Ty« > 7
/ +1 = f T]*+1) f( ) =0

A= f(Tu) = f(Tyq) =1—1=

Consequently the OWA of aq, . .., a, with importances uy, . .., uy is:

uaq U@ Uy Hue) UG
OWA:()a(l)-l-()a(z)—l-"'—l—[l—( O . G )>}a(j*)

U1)) T8+ T (f —Ua) T T ) a(j)

r

That is, the OWA that is characterized by the weight generating function given in (1) is the average of the
worst aj, weighted by their importances, with the total importance adding up to r. The values of A reflect the
preferences of the decision-maker. The parameter r leads to incorporating the different attributes, from worst to
best, until a threshold is reached.

The starting point of this paper is the recurrent idea of representing ordered weighted or ordered
median operators while using k-sums. k-sums (or k-centra in the location analysis literature) are
sums of the k-largest terms of a vector [51]. One can trace back, at least to [52], the use of k-sums
to represent ordered median objectives. More recent references are, for instance, [53-56]. This last
reference introduces a normalized version of k-centrum, named B-average, which will be used in
our paper.

Through the remaining of the paper, consider that f,i (x) are functions to be minimized within a
feasible set X, with k = 1,..., K representing K different objectives with importances wy and j =1, ...,
J encoding | different scenarios with probabilities 7t;.
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Definition 5 (B-average, gf (x), [56]). Given p € (0,1], for each criterion k it can be defined gf (x) which
measures the average of f on the worst scenarios ( f(x),..., ka (x)) , with accumulated probability equal to B.

Remark 2 ([56]). Given a value B, if the sum of the probabilities of the worst scenarios is exactly B, then the
B-average is exactly (1 — B)-CVaR.

Example 2. Consider a point x, a fixed criterion k, and five different scenarios with probabilities 7t; and values

of f,i given. Table 1 shows the B-averages for different values of B, in which the scenarios have been ordered from
largest value of f to smallest.

o  For B = 0.2, the scenario j = 1 is the only one needed to obtain the worst scenario with probability 0.2,

and hence gk( x) = 020x210 = 10.

When  equals 0.3 it is necessary to include scenario 2, obtaining a B-average of w 9.
anally, if B = 0.5 scenario 3 needs to be added as well, but only with the probability needed until reaching
0.5: gk< ) — 02><10+0015><7+0 2x4 _ 7

Table 1. Small example of B-average for different values of S.

Scenario B
1 2 3 4 5 02 03 0.5
02 01 03 025 015

i ' 0 9 7
fly 10 7 4 3 2

When using the -average the functions f,ﬁ(x) were transformed into gf (x), a collection of K

functions not depending on the scenario. An OWA will be defined now, via its weight generating
function, which will reduce the K B-averages into a scalar function.

Definition 6 (r-OWA, O,(X)). Given xq,...,xx € R with importances wy, ..., wg, such that Zszl we =1
and r € (0,1], the function O, (X) is defined as the OWA with the following weight generating function:

f(x)z{f fr<r

1 ifx>r

Remark 3. The definition of O, (X) is made in a similar manner that the one given of the B-average (Definition 5),
but it is done on a context with importances rather than probabilities. Example 3 shows the similarities between
both of the approaches.

Example 3. Consider a point x and let gy (x) be the evaluation of x under five different criteria with importances
wj. Table 2 shows the r-OWAS for different values of r, in which the criteria have been ordered from largest
values of gi(x) to smallest. Consider the case r = 0.5:

1. As gi(x) are already ordered for largest to smallest, the values of Ty are:

T) =02,T,=02401=03T3=06,T, =0.85T5 =1
2. The values of Ty under f:

F(T) = G5 f(T) = 52 f(Ts) = F(Ty) = £(T5) = 1
3. The weights of the OWA:
0.2 03-02 01, _ 03 _ 02

)\ zi)t =
1 0.5/2
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4. Consequently, the -OWA is:

0.2(1)(x) +0.18(2)(x) +0.2(3)(x)  02x10+01x7+02x4
0.5 N 0.5 N

r-OWA = 7

Table 2. Small example of r-OWA for different values of r.

Criterion r
1 2 3 4 5 02 03 0.5

we 02 01 03 025 015
q(x) 10 7 4 3 2

10 9 7

Remark 4. Given x1, ..., xg and its associated importances wy, . . ., wg, then the Ay of the r-OWA are Ay = 7",
with Ay being determined as:

A A B ~
Or(x1,...,xg) = max { 1+ ARYK | Ay < wk,Z)\k = r}
Al Ak r

Givenr, B € (0,1] and x € X, let us introduce the function hP (x) as the r-OWA of the B-averages.
That is:

W () = O (81(x), . gk (%))

Remark 5. If the importance of all the criteria is the same (wy, = & for all k) and r = % withn € {1,...,K},
then hg (x) is the average of the n worst B-averages. Recall that this is called n-centra [57].

Definition 7 (Dominance). Let x and y feasible solutions (x,y € X) and r, B € (0,1]. Then x dominates y
(xZy) thf(x) <nb (y), where hf(x) is the r-OWA of the B-averages.

Definition 7 induces a domination relationship with the following properties:

Reflexivity Given x, hf (x) < hf (x), and then x - x, so 77 is reflexive.

Transitiveness Given x 7 y, y - z, we have hf(x) < hr’g(y) and h,ﬁ(y) < hf(z), and then
hrﬁ (x) < hrﬁ (z), which leads to x 7 z, and we conclude that - is transitive.

Antisymmetry Given x 7 y, y 2 x, we have hf(x) < hE(y) and h,ﬁ(y) < hf(x), but,
from hP (x) = hP (y), it cannot be guaranteed that x = y, and, hence, 77 is not
antisymmetric.

3.1. Idea of Solution and Dominance Properties

Consider the multiobjective stochastic programming problem:

min (f1(x,w), ..., fxk(x,w))

xeX

The previously defined concepts of f-average and r-OWA transform the MSP problem into a
deterministic multiple objective problem, and then into a deterministic single objective problem.

MSP — MOP — LP(MIP)

fl(x) EE8G o () ZOWA, 1)
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1. For every x € X there is a function f]i to be minimized which depends on the scenario j and the
criterion k.

2. The problem is transformed into a deterministic one with multiple objectives (MOP) while using
the B-average concept.

3. When computing the r-OWA, each x € X is assigned a scalar. The problem consists of finding the

x, which minimizes this (x).

The solution procedure lies into what is usually called a scalarization approach. When obtaining

a minimizer of hr’5 (x), it is also desired that the optimal solution is efficient for the associated
MOP problem:

min (gf(x),...,gﬁ(x)) (MOP)

xeX

Proposition 1. Given x* minimum of he (x) the following statements hold:

1. x* is not necessarily efficient of the MOP problem.

2. x™is weakly efficient of the MOP problem.

3. Ifx* is the only minimum ofh,ﬁ(x), then x* is efficient.

4. Given x* not efficient, an alternative y* can be found on a second phase, such that y* is efficient and

W (x7) = H ("),

These properties are known when using scalarization techniques [15]. Hence, only an example of
the first statement will be shown.

Example 4 (x* is not necessarily efficient). Consider the example that is displayed in Table 3, in which there
are only two feasible solutions, two equiprobable scenarios (111 = 1, = %), three equally important criteria
(w1 =wy = w3 = %), and consider the values of p = % and r = % are taken.

Table 3. Values of two alternatives for each scenario j and criterion k, together with their -averages
(B = %) and r-OWAs (r = 3).

(a) Alternative 1 (b) Alternative 2
kq ko ks k1 ko ks
I 0.80 0.40 0.30 1 0.70 045 0.65
j2 0.60 020 0.65 j2 0.80 0.30 0.50
B-average 0.80 040 0.65 p-average 0.80 045 0.65
r-OWA 0.725 r-OWA 0.725

The B-averages are (0.8,0.4,0.65) for the first alternative and (0.8,0.45,0.65) for the second alternative.
When computing the function hg , both of the alternatives have an objective value of 0.725. Consequently,
even though the second alternative is an optimal solution of h,’5 , it is not an efficient solution of the MOP problem
as its B-averages are dominated by those of the first alternative.

The transformation of the problem from a multiple objective one to a single objective one is
done using weights. These weights correspond to a subjective scale that is introduced by the expert,
representing the importance of the criteria considered in the problem as accurately as possible.

3.2. An Illustrative Example

The proposed solution concept will now be applied, first with a discrete (and small) case. When the
solution space is discrete, and all feasible solutions can be explicitly enumerated, the steps are
as follows:
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Step 0 Normalize all objective functions f,i(x)
Step 1 Set values for B, 7 € (0,1].
Step 2 For every x € X and every criterion define gf (x) as:

average of worst scenarios for criterion k

HOE
k with probabilities adding up to 8

Step 3 Define hr’g(x) as:
hﬁ(x __ average of worst gf(x) values
' with importances adding up to r

Step 4 Search for x € X minimizing ne (x).

Assume a decision space with only four alternatives, evaluated under five different scenarios with
six criteria. For each of those alternatives, it can be computed the value of the functions f]i(x) to be
minimized. Table 4 shows the values of f, evaluated on the feasible point x1, by each of the scenarios
and criteria considered.

Table 4. Values of alternative 1 by scenario (j) and criteria (k).

Criteria
w1 =020 wy; =010 w3 =020 wq =025 w5=015 we=0.10

k1 ko ks k4 ks ke

" m =015 j; 0.51 0.27 0.39 0.45 0.75 0.76
.g m =020 jp 0.58 0.65 0.47 0.26 0.90 0.24
s 3 =030 3 0.48 0.44 0.90 0.50 0.93 0.65
g};’ g =025 g 0.76 0.18 0.01 0.90 0.56 0.02
5 =010 s 0.86 0.36 0.21 0.28 0.63 0.72

The first step is calculating the B-averages. Let us assume a value of g = 0.3:

1. For the first criterion the worst scenario is j5, which has probability 0.1. The second worst is j4,
with a probability of 0.25. As the sum of those probabilities exceeds the § fixed, for computing
the B-average just a probability of 0.2 is considered:

0.1 x 0.86+ 0.2 x 0.76
gh(x1) = 03 = 0.793
2. gg(xl) = (0.2 x 0.65+ 0.1 x 0.44) /0.3 = 0.580
3. gh(x1) = (03 x0.90) /0.3 =0.900
4. gh(x) = 0833, ¢P(x1) = 0930, ¢ (x1) = 0.728

The last step is calculating the function h,’3 (x), which is, the r-OWA of the p-averages. Table 5
calculates the -OWA, and also shows the information of the previously calculated S-averages, when the
value of r = 0.17 is taken.
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Table 5. Values of alternative 1 by scenario (j) and criteria (k).
Criteria
w1 =020 wr, =010 w3=020 w4 =025 w5=015 we=0.10
k] kz k3 k4 k5 k6
" m =015 j 0.51 0.27 0.39 0.45 0.75 0.76
~8 m =020 jp 0.58 0.65 0.47 0.26 0.90 0.24
g 3 =030 3 0.48 0.44 0.90 0.50 0.93 0.65
§ my =025 s 0.76 0.18 0.01 0.90 0.56 0.02
5 =010 s 0.86 0.36 0.21 0.28 0.63 0.72
B-average, p = 0.30 0.793 0.580 0.900 0.833 0.930 0.728
r-OWA, r = 0.17 0.927

The values of the functions for the other alternatives, as well as its f-averages and r-OWAs are
shown in Tables A1-A3, starting on Page 21. Table 6 illustrates a summary of the results, where all of
the B-averages and r-OWAs are shown, whcih determines that the optimal alternative for the values of

B and r given is Alternative 1.

Table 6. B-averages and -OWAs for each of the four feasible alternatives of the example.

B-Averages r-OWA

S0 g Sw do g dw W

Alternativel 0.793 0580 0900 0.833 0.930 0.728 0.927
Alternative2 0930 0.832 0703 0.820 0.660 0.770 0.930
Alternative3  0.765  0.775 0468 0643 0950 0.883 0.943
Alternative4 0993 0.760 0473 0773 0.820  0.990 0.993

Variations on  and r yield very different results. Figure 1a shows which of the four alternatives

has the lowest & value, depending on the values of  and r.

Figure 1b shows the optimal objective value when varying the parameters g and r. It can be

appreciated how / decreases when S and r increase. This is due to the fact that the original f,i functions
are to be minimized and, the larger the parameters  and r, the more favourable scenarios/ criteria will

take part on the computation of hf (x), hence decreasing its optimal value.

1.0 1.0 1

0.8 1

0.8

0.6 0.6 1

ENEWIN

0.4 0.4 4

0.2 0.2

0.0 0.0 1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
r
r

@) (b)

1.0

Figure 1. The results from illustrative example. (a) Optimal alternative for some values of r and S,

where each of the four alternatives is colour-coded. (b) Optimal values of function hf (x) for some

values of r and .
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The solution concept that is defined for MSP problems can be applied to numerous fields, but it is
especially relevant for situations in which risk-aversion is strictly preferred, such as the selection of
socially responsible portfolios [58] or disaster management problems.

4. Computing the Minimum: Continuous Case

A concept of solution was proposed with Definition 7. When the functions f]i(x) to be minimized

are given, a new function hg (x) to be minimized is defined, with parameters  and r, such that hr/5 (x)
is the r-OWA of the B-averages. If the decision space is sufficiently small, then the procedure that is
shown in the above example obtains such a solution.

In this section, a mathematical programming model will be developed in order to obtain the
minimum of hr’g (x), which allows for one to obtain the proposed solution for bigger decision spaces,
including continuous ones.

Mathematical Programming Model

Given k and x € X we have the vector (f,} (x),,f{(x)) Let (fk(l)(x),..., k(])(x)) be the

ordered vector, such that fk(h) (x) > fk(jZ)(x) when j; < jp.
Given B € (0,1], let ] be the ordered scenario, such that:

j—1
L7y zp L) <P
£
Alternatively:
02 [P0 22 (02 0 22 0

<P
2p
Additionally, let:
o je{)G-1)
A= B-X V=i
0 otherwise

The definition of 7; is made in such a way that }_;7t; = B. In this way, the average of the 8

worst values can be computed as % Z]Izl 7t fk(] ) (x), which coincides with the definition of B-average
(Definition 5). This computation can be written as the following optimization problem:

J .
max 1 Y i1y x fl(x)
Uj B j=1
/
s.t. 2 11] = [3
j=1
0< 11] < 7-[] ]: 1, r]
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1

A more natural approach would be to consider u; = 4. These u; represent the proportion in
which scenario j plays a part on the aggregated S-average. Introducing that change, the model is:

J
s.t Zuj_l
j=1
7T
O<u/§ﬁ ]:1/ r]

The dual formulation is:

Z,y/'

. / TTj
min z+4 2 —Yj
=
L e
st z+y; > filx)  j=1...,]
zfree,y]- >0

Additionally, hence, finding the x € X, which minimizes the average of the worst 8 scenarios for
a given k is: 4
min ( max FEL_yiTifl(x)
s.t. Z]Llﬁj =8
0§L7]-§7'cj i=1...,]
Or, alternatively:

. . ] 7
mm 2z . - Y
Y zy; LB Y

s.t. z—l—ijf,Z(x) i=1,...,] ©)
zfree,yjzo j=1,...,]

Which is equivalent to model (4):

n 2ty (42)
min =z —1Y; a
s = B Yj

stz > flx) j=1...,] (4b)
z free,yjzo i=1,...,] (40)
xe X (4d)

Remark 6. Models (3) and (4) are equivalent, as for any x € X chosen in (4) the values z and y; will get as
small as permitted by constraint (4b), as this improves the objective function (4a). Consequently for every x,
its B-average will be computed appropriately and, thus, (4) obtains the x € X with smallest B-average, as desired
on (3).
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For every k € {1,...,K}, thanks to the problem (2), the function gf(x) can be defined,

which measures, for each x € X, the B-average for that criterion, being:

B . | 7
g (x) =minz + ) Fyk]-
=

Zk/Ykj
o ®)
st.zptyy > fl(x) j=1...,]

zkfree,ykj20 j=1,...,]

The already known approach for single criterion problems ends here. Given that, the next step is
finding a “good” solution for all k. That is:

min (g5(x), .., gk (x))

xeX

Given r € (0,1] the -OWA of the B-averages will be now computed (in accordance with the
definition given in Section 3). That is, the solution of the following problem is sought:

Lvg o oF
max ;tk x g (x)
ka =7
k
ngkgwk k:1,...,K
Or equivalently:
max Ztk X gf(x)
k

tk
Y te=1
k

w
0<tk§7k k=1,...,K
Its dual formulation is:
. Wi
min z )T

s.t. z+vk2gf(x) k=1,...,K
z free, v > 0 k=1,...,K

Replacing the value of gf (x) given in (5), the next model (model (6)) is obtained:

. Wy
+) = 6
I;’/I%? z - p Uk ( a)
t. z4 v > mi + Ej —j Vk (6b)
s.t. Z (Y min z H
K=y F = B Yij

st zp+yk > f,i(x) Vj
zi free, y,; >0 V)
z free, vy > 0 vk (60)
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Model (6) calculates for a given x € X the r-OWA of its B-averages, which coincides with the
notion of the function hf (x) given in Section 3. This problem is not explicit, as it contains nested
optimization problems in the constraints. For that reason, we propose a single level alternative for
x € X fixed.

Consider the following linear programming model:

. Wi
— 7

SRR P 72
s

st. z+v >z + 2 - Ykj vk (7b)
=

Ze+ Y = filx) vk, j (7¢)

yij > 0 VK, j (7d)

z free, v > 0 vk (7e)

z free (71)

Proposition 2. The transformation from model (6) to model (7) is valid, since their optimal solution and
objective values coincide.

Proof. Let (z*,v,’g,zz,yzj) be the optimal solution of model (7). (z*,v;) is feasible of model (6),

and it will be shown that it is also optimal for such model. Assume that it exists (z’ , v;() feasible of
model (6) with:
z'—i-zﬂv,’( <z +Z%v,’(‘
r ! 7

This and constraint (7b) implies there exists ko, such that:
/ / J TTj
* *
z + Uk, < Zk, + Z Fykoj
j=1

otherwise (z’ , v;{, zl’g, yltj) would be optimal of model (7). Since z,’(‘0 and y,’jo j are feasible of model (7)

they are also feasible of the model on the RHS of constraint (6b) and, thus, z’ and U;CO violate
constraint (6b). [

Proposition 2 showed that the optimal solutions of models (6) and (7) coincide. Proposition 3
goes further, showing the connection between their feasible sets.

Proposition 3. The feasible set of model (6) is a projection of the feasible set of model (7).

Proof.

1. For each feasible solution (z, vx) of model (6), there is at least one feasible solution of model (7)
with the same values (z, vy ), being so the same objective function.

Let (z!,0}) be a feasible solution of model (6), and (z¢, ;) the optimal solution for each k

minimizing glf (x) (right-hand-side of equation (6b)). Because constraints (7), (7c), (7d), and (7e)
are satisfied in model (6), (z!, v]%, z;,Yy;) is a feasible solution or model (7).

2. For each feasible solution (z, v, zk, yxj) of model (7), (z,vx) is a feasible solution of model (6),
hence being the same objective function. Let (22, v%,zi,y%) a feasible solution of model (7).

Since constraints (7b), (7c) and (7d) are included in model (7), (zi, y%j) is feasible for the model
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that is included in the RHS of constraint (6b) and therefore greater than or equal to the minimum
of that model, verifying:

2 4+ ‘U% > z% + Z F]y%] > min {Zk + Z 'B]yk]}
= =

and so, feasible for model (6).
O

Finally, after proving the validity of model (7), it is possible to let x € X free, with the purpose of
finding the one minimizing the function he (x):

. w
min z—l—Z—kvk
r
k

2,0k 2k Ykj X
I 7
stoz+oe>ze+ )~y VK
=
ze+ i > fl(x) vk, j
zy free, v, >0 Yk
z free
xeX

5. Application to the Knapsack Problem

The multiobjective stochastic knapsack problem is used in order to illustrate the usefulness of the
previously defined concept.

Definition 8 (Multiobjective stochastic knapsack problem). Let I be a collection of objects with weights v;,
which can be selected as members of a knapsack with maximum weight V. There is a set of scenarios ], each of
them with probability 7t;, and a set of criteria K, with importances wy. For every pair of scenario-criterion,
there is a benefit that is associated with selecting object i, denoted by b;.k. Which objects should be taken in order
to maximize benefit?

The above problem differs with the well-known knapsack problem, in that there is stochasticity
and multiple objectives to be maximized.

The following MSP model can be adapted in order to analyze the problem. Note that, to preserve
the sense of the optimization, rather than to maximize the benefits of the carried objects, the value of
the objects not chosen will be minimized.

Xi

1

min {f,ﬂ(x) =) (1-x) b;;j Vk,j}
s.t. Zvixi <V Vi (8)
X; € {0,1} Vi

When using the methodology developed in the previous sections, problem (8) is transformed into
the following mixed-integer linear programming model:
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. w
min z+27kvk

2,0k 2k Ykjri *

] 7
st. z4+o >z + Z —]yk]- vk

=1
Zp + Yk > Z(l_xi)blicj vk, j

i
Zvixi <V Vi (MSP)
i

X; € {0,1} Vi
zy free, v, > 0 vk

z free

Givenr, B € (0,1], model (MSP) obtains the x* minimizing the r-OWA of the p-averages. In order
to illustrate the benefits of using model (MSP), a naive way of solving problem (8) is considered:

k,j i
s.t. Z‘U,‘Xi <V Vi (MIP)
i
x; € {0,1} Vi

Hence, model (MIP) computes the average of the f,i, while using the importances of the criteria
and the probability of the scenarios. It is clear that, for “average” criteria-scenarios xy;p, the optimal
solution of model (MIP), outperforms xy,sp, the optimal solution of model (MSP). Conversely, x{qp
will improve xy;p in unfavourable criteria-scenarios, as expected of a risk-averse solution.

5.1. Computational Experiments

The following sections will show computational experiments, for different values of r and § and
different number of objects, scenarios, and criteria. The capacity of the knapsack, V, is set to 1 in
every instance. Algorithm 1 shows how the random instances are created, given a number of objects,
scenarios, and criteria.

Algorithm 1 Generating random data, with /(a, b) the uniform distribution in [a, b]

1: function RANDOMINSTANCE(|I|, |]], |K])

2 p < U(0.25,0.75) > proportion of objects that can fit on average
3 W ﬁ > average weight of each object
4 foric Ido

5: w; < U(0.5W,1.5W) > weight of each object
6 forj,k € | xKdo

7 bi. <+ U(0,1) > value of each object
8 end for

9: end for

10: end function

For each of the solved instances, it will be reported:
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tnmsp, tvrp: solution time in seconds of models (MSP) and (MIP). With them, the following value
is calculated:

t ,
Atime 1= 2L (time penalty factor)

tnvip
Atime, the time penalty factor, indicates the increase of computing time when solving model (MSP)
rather than model (MIP).
®  Zyop, Zyp: Optimal values of the models.
fvse (Xip)  fvie (Xiqgp): Objective value of x3p in model (MSP) and vice versa.
o  To grasp the difference between the MSP and the naive approach, the following will be calculated:

fmre (Xsp) — Zhap
:= 100 ‘

Aavg := (deteriorating rate)
ZMIP

* _ o~k
A = 10OfMSP (xMIP>* ZMSP
fusp (¥qrp)

(improvement rate)

These quantities reflect what is the effect of making decision xy;qp instead of xyp. Large values of
Aavg indicate high penalties for making decision xy,qp instead of xy;p in average scenarios-criteria.
Similarly, the larger A,j, the higher benefit obtained from making decision xygp in tail events.
They will be, respectively, called deteriorating rate and improvement rate.

The models are solved in GAMS 26.1.0 with solver IBM ILOG CPLEX 12.8.0.0, while using a
personal computer with an Intel Core i7 processor and 16GB RAM.

Experiment 1

The first experiment will consist on a full factorial design, in which the values of |I|, ]|, |K|, 7, B
fall in these sets:

|1 € {50,100,200}
]| € {5,25,100}
K| € {3,6,9}

r € {0.33,0.5,0.67}
B € {0.05,0.1,0.5}

For each tuple (I, ], K) a random instance will be generated using Algorithm 1, which will then

be solved for every pair (7, ). All of the criteria and scenarios are given the same importance and
=1
I
but three of the 3% = 243 configurations were solved to optimality.

probabilities. That is, wy = ﬁ, 7T The time limit was set in two hours by instance, in which all

Experiment 2

For the next experiment, 100 random instances will be created, keeping the values of |I|, |J|, |K|, 7, B
constant and equal to the median value of the previous experiment. That is, |I| = 100, |J| = 25, |K| =
6,7 =0.5,8 = 0.1. All of the criteria and scenarios are given the same importance and probabilities.
All 100 instances were solved to optimality.

5.2. Results

Experiment 1

Table A4 (in the Appendix A) shows, for each of the 243 instances, the solution times of the MSP
and the MIP models, and the deteriorating and improvement rates of using the MSP solution instead
of the MIP solutions (measured in deviation to MIP solution).
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Table 7 shows the objective values, by scenario and criterion, of the first instance of the experiment.
Such an instance contains 50 objects, five scenarios, three criteria, and the parameters r and § are set to
0.33 and 0.05 respectively. Results show that the MSP solution (Table 7a) is more balanced through
every scenario and criterion, with a worst value of 13.71. On the other hand, the MIP solution (Table 7b)
attains larger (worse) values on some scenarios and criteria.

Table 7. Objective values by scenario-criterion of solutions obtained with the multiobjective stochastic
programming problem (MSP) and MIP models, for the first instance of the first experiment.

(a) MSP Solution

(b) MIP Solution

k1 kz k3 k1 k2 k3
i 1197 1126 11.00 j; 9.65 1075 9.71
jo 1196 992 1371 j, 11.19 1017 14.90
js 1348 1351 1092 j3 1405 13,55 9.40
ja 1362 1313 1371 j, 1412 13.00 13.35
j5 1294 1135 1347 j5 13.64 1033 1142

Table 8 shows the correlations between the times and rates with the parameters of the instance.
It can be seen how the MSP solution has a higher impact when fewer scenarios are considered.
In addition to that, it can be appreciated that the MSP solution times decrease when § increase,
which is, when more scenarios are included in the S-average computation.

Table 8. Correlations.

Il I K| r B
tmsp 034 009 —0.11 -0.05 —0.19
e 051 018 —014 —003 —0.07
Agme 031 011 —008 —0.02 -0.18
Aavg —005 —057 —028 —0.09 —036
Ay —007 —056 —018 —021 —0.50

This observation is confirmed by Table 9, in which it can be seen that the median time penalty
factor (how much longer does it take to solve the MSP model than the MIP model) is much smaller
when B = 0.5 than when 8 = 0.05.

Table 9. MSP runtimes and increases as compared to MIP runtimes, grouped by B.

8 tvisp Atime

Min Mean Median Max Std Min Mean Median Max Std
0.05 0.12 659.49 6.32 722295 1787.07 094 3188.96 32.77 50473.04 947255
0.10 0.12 21247 2.23  4765.42 72849 098 1002.35 11.09 2019248 3245.85
050 0.13 3.49 0.67 62.14 9.05 1.06 19.14 3.75 414.29 55.51

The solution times of the MSP model are alarmingly high for some instances, due to the fact
that the admissible integrality gap has been set to zero. If that is relaxed, it can be seen that all of the
243 instances reach an integrality gap smaller than 5% in about three seconds, 2% in about five seconds
and 1% in about 88 seconds.

Table 10 groups instances by r and j, and shows the deteriorating and improvement rates. It can
be seen that the improvement rate (in the tail) is generally higher than the deteriorating rate (in the
average), especially in cases with small r and .
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Table 10. Values of Aqyg and Ay,jj, grouped by r and B.
, ,3 Aavg Atail

Min Mean Median Max Std Min Mean Median Max Std

0.33 0.05 0.03 1.94 1.87 5.68 142 0.28 4.37 4.21 9.18 243
0.10 0.02 1.70 1.61 568 144 0.18 3.54 2.85 9.18 242

0.50 0.00 0.93 0.52 446 1.08 0.00 1.57 0.92 499 146

0.50 0.05 0.03 1.87 1.90 430 130 0.29 3.58 3.30 6.73 1.89
0.10 0.02 1.65 1.14 430 137 0.13 2.87 2.47 6.59 1.86

0.50 0.00 0.72 0.54 351 0.75 0.00 1.07 0.79 3.79 1.01

0.67 0.05 0.03 1.64 1.17 393 124 0.32 3.04 3.06 6.15 1.62
0.10 0.01 1.50 1.10 393 131 0.12 2.43 2.02 584 158

0.50 0.00 0.60 0.50 316 0.66 0.00 0.80 0.59 3.64 081

This claim is also supported with Figure 2, where each of the 243 instances is shown according to
the values of Aayg and Ay, and are grouped by the values of (r, ). Almost all of the instances are
above the imaginary line Aayg = Ag,j1, which shows that considering the MSP solution improves in
the tail more than it loses in the average situations. In addition to that, it can be seen that the largest
improvements in the tail are on instances with f = 0.05 (one of the usual values taken for CVaR),
and especially with the smallest values of r. When r and 8 grow, the differences between the MIP and
MSP solutions are reduced.

[ ]
8 o
o
o & o
6 * 9
o .0 ; °
= o MO8 o
K ¢ ® * e (0.33,0.05)
41 o ::15 o + (033,01)
g Pe * (0.33,05)
» 1’19 ® (0.5,0.05)
® 3
, 4,231'! + (05,01)
4 e o * (05,0.5)
° ® (0.67,0.05)
+ (0.67,0.1)
ol * (0.67,0.5)

Aavg

8

Figure 2. Values A,yg and Ay, for each of the 243 instances, grouped by values of (r, ).

Finally, Figure 3 shows the values of fli(x), where x = x{;;p in blue squares and x = xygp in

orange circles, for just one of the created instances: 200 objects, 100 scenarios, three criteria, r = 0.33,

B = 0.05. The values of f,l (x) are represented for each criterion, sorting the scenarios from most to least
favourable. It can be appreciated how xy;p performs better than xy,qp in average criteria-scenarios,
on the central part of the images; but, xysp is better with unfavourable situations, those with higher

values of f,i(x) This can be especially appreciated for the second criterion, in which there are three
scenarios with objective values of xyp out of control.
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f(x) f5(x)

5254 = MIP 5254 = MIP

MSP MSP -
50.0 - 50.0 4 -

-
47.5 4 2 47.54 e
- ’
J ‘e

45.0 45.0 it

40.0 4 40.0 1 /
.-""‘ s
37.5 4 37.54 J
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.
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f3(x)
525 = MIP
MsP
50.0
47.5 1 -
45.0
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375{ &
35.0
.
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Figure 3. Single instance with 100 scenarios and three criteria. For each k, sorted values of fli(x), where x =
Xy qp in blue squares and x = x{gp in orange circles.

Experiment 2

Table A5 (in the appendix) contains the results for each of the 100 instances, all of them with
constant parameters |I| = 100, |J| = 25, |K| = 6,7 = 0.5, = 0.1.

Table 11 contains a summary of the results, where it is again seen that the improvements in the
tail are better than the loses in the average situations. Although single instances might take a long
computing time, the median MSP solution time (3.74 s) is definitely satisfactory. It is worth mentioning
that the models were implemented without providing any extra bounds or known cuts that could
reduce the solution times.

Table 11. Summary of experiment 2.

tmsp tMIP Atime  Davg  Auil

mean 1698  0.20 91.31 2.03 3.09
std 46.57 0.03 25468 112 149
min 0.53 0.14 2.81 0.16 0.86
25% 1.37 0.17 6.73 118  2.09
50% 3.74 0.19 19.72 193 281
75% 1550 0.21 86.19 252 351
max 40470 034 217582 5.67 857

6. Conclusions

In this paper, a new concept of solution has been proposed for Multiobjective Stochastic
Programming problems, exploiting risk-aversion. The proposed concept combines the notions of
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conditional value-at-risk and ordered weighted averaging operator to find solutions protected against
risks due to the uncertainty and under-achievement of criteria. Thus, this concept can be particularly
useful in real-life situations, where there exists a great concern with respect to unfavourable situations,
such as emergency management or portfolio optimization.

The solution concept is supported by an efficient way to compute it by a Mathematical
Programming problem. This model is linear, provided that the underlying problem can be linearly
representable. Numerical experiments have been conducted for validating this approach, solving a
multiobjective stochastic knapsack problem.

The research has shown that the improvements in the tail (unfavourable situations) are consistently
higher than loses on average situations, especially when small values of the parameters § and r are
chosen. These differences, although clearly noticeable, are not as high as one could expect. This is
possibly due to the randomness of the data. It is reasonable to assume that, in actual real-life problems,
there are choices that are more conservative for every scenario and criterion, and thus being preferable
for risk-averse attitudes.

The results have shown that there is a clear increase in computational time as compared with
risk neutral methods; however, this is arguably acceptable as a price to pay for being risk-averse.
Furthermore, this could also be due to the random nature of the data. Nevertheless, it was also
shown that allowing for even rather small integrality gaps (1%) leads to a drastic improvement in
computing times.
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MSP Multiobjective stochastic programming

OWA Ordered weighted averaging
MOP Multiple objective problem

Appendix A
Table A1. Values of alternative 2 by scenario (j) and criteria (k).
Criteria
w1 =020 w; =010 w3 =020 wq4 =025 w5=015 we=0.10
k1 kz k3 k4 k5 k6
” m =015 j 0.40 0.58 0.39 0.45 0.54 0.18
2 m =020 j» 0.68 0.74 0.70 0.15 0.54 0.72
g 3 =030 j3 0.93 0.52 0.23 0.82 0.21 0.03
é’ g =025 0.37 0.85 0.07 0.42 0.52 0.22
5 =0.10 s 0.92 0.13 0.71 0.39 0.90 0.87
B-average, p = 0.30 0.930 0.832 0.703 0.820 0.660 0.770

r-OWA, r = 0.17 0.930
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Table A2. Values of alternative 3 by scenario (j) and criteria (k).
Criteria
w1 =020 wy; =010 w3 =020 wyq =025 ws5=015 wg=0.10
k1 kz k3 k4 k5 k6
” m =015 j 0.80 0.90 0.61 0.28 0.94 0.09
.8 m =020 jp 0.29 0.48 0.26 0.23 0.21 0.07
s 3 =030 3 0.73 0.65 0.32 0.56 0.95 0.65
§ my =025 s 0.58 0.39 0.21 0.66 0.70 0.93
5 =010 s 0.73 0.22 0.33 0.31 0.32 0.38
B-average, p = 0.30 0.765 0.775 0.468 0.643 0.950 0.883
r-OWA, r = 0.17 0.943
Table A3. Values of alternative 4 by scenario (j) and criteria (k).
Criteria
w1 =020 wy; =010 w3 =020 wq =025 w5=015 we=0.10
k1 k2 ks ks ks ke
” m =015 j; 0.30 0.52 0.12 0.68 0.46 0.73
,g T =020 jp 1.00 0.57 0.46 0.82 0.90 0.72
S 3 =030 3 0.18 0.76 0.30 0.34 0.54 0.99
g};’ g =025 s 0.53 0.21 0.13 0.12 0.66 0.86
5 =010 s 0.98 0.46 0.50 0.29 0.27 0.40
B-average, p = 0.30 0.993 0.760 0473 0.773 0.820 0.990
r-OWA, r = 0.17 0.993
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Table A4. All instances of first experiment. The three instances with 200 objects, 100 scenarios, 6 criteria and f = 0.05 did not reach the optimal solution in 2 h.
The integrality gaps of the solution shown are 0.31%, 0.24% and 0.19% for r = 0.33,0.5 and 0.67 respectively.

B— 0.05 0.1 0.5

r— 0.33 0.5 0.67 0.33 0.5 0.67 0.33 0.5 0.67
I 1yl 1Kl tvsp tmip Bavg  Buwil  tmsp tmip Bavg Bl fmsp EMIP Bavg  Awil  tmsp tMip Bavg Bl tmsp tmip Bavg  Buwil  fmsp  EMIP Bavg Al tmsp P Bavg  Buail  tmsp tip Bavg Bl ftmsp IMIP Aavg  Arail
50 5 3 0.12 013 375 801 0.15 012 375 8.01 0.18 0.14 351 454 0.14 014 375 6.59 0.12 012 375 6.59 0.20 017 351 379 0.12 012 375 584 0.12 012 375 584 0.13 012 316 3.64
6 0.22 011 379 5.07 0.25 011 379 507 018 011 103 3.01 0.30 013 379 401 0.25 013 379 401 023 015 148 210 0.23 016 377 358 0.23 014 377 358 018 017 148 147
9 0.28 014 176 6.67 0.36 014 176 667 020 015 158 3.26 0.22 014 202 566 0.21 014 202 566 022 014 124 210 0.20 015 202 439 0.22 013 202 439 025 015 120 137
25 3 0.76 0.18 247 537 0.66 017 247 285 0.26 017 200 155 0.64 0.18 247 5.08 0.62 016 247 251 0.25 015 100 097 0.60 017 247 493 0.51 0.16 179 252 0.26 014 100 0.69
6 1.20 016 187 577 091 029 196 370 049 018 079 181 115 018 1.87 493 0.74 018 114 351 041 018 070 155 0.93 016 117 433 0.78 018 117 345 038 016 071 122
9 0.69 016 061 421 0.78 016 043 278 057 016 067 092 0.52 015 061 3.90 0.96 016 044 214 061 016 0.67 0.65 0.69 015 061 325 1.02 018 039 175 047 018 051 0.68
100 3 1.15 015 0.07 243 0.78 015 0.07 215 0.44 0.14 0.07 0.16 1.07 0.14 0.07 202 0.83 019 0.07 174 0.34 0.14 0.07 0.16 1.14 015 0.07 181 0.85 016 0.07 153 0.36 0.14 0.07 0.14
6 2.51 020 077 224 4.45 022 078 119 352 020 023 047 2.62 025 077 199 5.09 018 031 110 545 020 019 029 2.70 022 077 138 3.31 019 047 063 559 019 023 027
9 4.06 018 0.03 041 147 017 003 030 1.07 016 0.00 0.00 2.75 017 0.03 029 1.12 016 003 030 1.11 0.16 0.00 0.00 2.06 019 0.03 032 1.10 016 003 018 116 017 0.00 0.00
100 5 3 124 026 381 7.63 129 020 381 763 037 022 208 447 0.72 018 381 522 0.66 018 381 522 032 027 156 233 0.74 019 338 4.02 113 023 338 402 028 020 063 136
6 8.68 022 568 712 8.69 019 568 712 043 017 446 292 0.65 020 430 564 1.06 019 430 564 035 017 081 1.28 1.18 022 393 420 0.64 018 393 420 028 018 053 0.88
9 3.31 018 219 3.14 3.26 020 219 314 0.67 018 097 290 1.04 020 219 286 0.96 020 219 286 0.23 014 064 188 1.02 017 092 231 0.90 017 092 231 0.24 0.18 041 1.18
25 3 10.65 017 296 652 3.39 018 207 400 029 015 048 173 7.09 018 296 546 1.83 019 296 367 030 014 048 095 3.46 019 219 498 1.30 016 296 350 034 016 041 059
6 32.12 020 278 447 9.18 019 078 353 044 018 052 131 26.53 018 259 3.06 3.64 022 061 247 032 015 026 079 12.77 017  0.60 262 0.90 017 050 2.00 041 017 026 0.65
9 8.58 018 072 552 1.90 017 097 349 0.42 018 024 082 6.32 019 072 475 1.24 016 097 3.06 0.51 020 024 044 1.60 0.19 112 383 0.88 0.19 112 253 0.59 017 050 023
100 3 51.23 022 221 112 1.67 021 027 136 082 018 009 025 22.70 021 221 116 122 019 034 105 081 018 005 017 18.75 016 221 117 0.84 022 034 092 075 018 005 013
6 48.25 018 076 256 31.87 017 062 205 6214 015 042 0.70 24.73 018 071 248 27.08 018 062 1.81 4218 019 028 0.55 20.26 017 060 210 22.09 020 075 148 7.79 020 017 050
9 2.16 019 037 148 3.34 018 029 077 184 017 018 041 1.80 017 034 125 2.87 020 028 069 222 019 026 022 1.67 018 034 114 277 019 020 063 309 016 008 013
200 5 3 14624 023 1.61 381 14012 020 161 381 771 023 130 1.1 15122 021 161 330 13509 024 161 330 460 021 130 158 83.44 022 110 3.06 89.20 021 110 3.06 421 022 130 155
6 88.70 019 108 250 89.69 019 108 250 514 017 072 083 96.44 019 108 191 91.66 018 1.08 191 293 018 091 058 39.26 018 094 1.68 32.92 018 094 168 070 017 058 044
9 46837 015 373 918 48489 014 373 918 2946 0.16 174 499 30404 016 3.69 624 30590 016 369 624 271 016 174 354 11003 015 338 492 10734 014 338 492 091 017 120 228
25 3 5629.58 033 275 7.84 476542 024 224 533 48 024 081 140 543090 025 275 673 339456 024 275 505 532 028 081 122 689.05 025 275 615 254643 021 275 491 566 034 081 113
6 2886.13  0.19 1.67 436 146.48 017 193 277 0.57 017 019 079 165191 0.21 1.67 420 15.06 0.22 193 229 0.71 0.21 019 081 93.66 0.19 146 3.64 19.36 0.19 193 202 0.55 018 012 040
9 123512 032 205 259 34232 022 096 122 199 021 022 026 40470 029 190 212 28.09 021 08 076 082 020 013 017 99.73 021 199 158 223 022 039 058 087 020 006 0.08
100 3 703.05 023 211 4.15 373.65 022 203 270 1.42 022 047 0.63 731.09 022 211 292 157.29 020 203 196 1.11 022 054 047 596.88 027 206 229 349.78 030 213 158 3.22 029 053 044
6 722295 022 060 343 181425 018 048 208 2211 021 013 044 721764 014 047 257 91642 021 048 175 704 024 028 027 721694 015 047 211 65648 020 037 141 789 022 024 020
9 332123 034 007 028 16.40 020 0.02 018 233 017 008 008 19814 019 0.07 032 14.84 021 002 013 231 021 008 0.05 47.16 023 0.08 033 9.77 021 001 012 263 020 006 0.04
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Table A5. All instances of second experiment. |I| = 100, |J| = 25, |K| = 6,7 = 0.5, = 0.1.

tvMsp EMIP Bavg  Buil fmsp IMip Aavg  Auil

31.15 023 153 320 2.15 016 224 2.09
1.92 021 166 617 2009 016 180 6.14
8.75 024 052 3.07 7.18 016 213 1.93
28.06 023 5.08 286 1.02 016 3.03 3.61
1.36 030 1.00 1.80 3.58 024 181 6.12
3.67 020 227 250 3.64 019 119 3.07
2.00 020 251 203 12869 023 327 298
19211 016 261 823 0.89 018 145 093
0.94 020 043 223 1.62 023 1.8 3.56
0.80 018 164 255 4.19 022 210 197
1640 019 223 245 2.16 019 016 146
1.21 018 282 1.50 1.46 024 248 2.00
1.79 020 072 277 0.69 020 179 254
2178 021 450 461 2073 020 226 350
1.35 019 0.69 0.86 1.86 024 177 2.63
3111 019 098 321 1492 017 199 857
8.44 019 182 381 0.78 020 08 192
1.75 021 088 092 1048 023 250 229
1.94 021 218 2.65 1.63 024 208 229
0.98 020 087 327 1078 018 034 1.80
2772 022 203 520 3880 020 196 4.69
1472 015 334 099 1974 024 065 220
0.67 024 081 269 1.37 030 282 292
3.54 020 264 275 6.28 019 202 2.08
6.37 021 279 635 2227 034 191 3.13
1.86 023 093 2.09 1.69 020 221 242
1.54 020 200 345 2777 019 076 3.28
40.16 017 206 344 2.00 021 257 193
7.23 021 317 317 2.61 018 214 333
5.77 017 284 198 4093 018 153 4.61
2.10 019 139 300 1884 016 089 437
40470 019 150 282 1126 016 398 476
2426 018 481 342 1441 018 182 587
0.76 020 128 388 1214 016 275 275
0.64 020 087 139 1258 017 142 346
0.97 023 177 219 0.84 018 041 215
0.53 018 195 2.04 5.20 019 380 2.02
7.24 022 221 168 2816 015 468 3.56
0.87 025 071 142 3910 016 347 3.59
8.51 020 248 406 1922 016 378 3.13
13.06 020 444 280 0.56 020 063 322
59.78 020 5.67 491 0.68 017 192 244
67.50 019 296 3.02 0.70 017 186 140
3.80 017 079 120 1520 017 078 2.66
325 020 224 157 0.88 017 231 213
5.23 016 114 4091 0.59 015 178 1.68
0.71 017 089 3.01 1.08 020 221 314
4.19 017 3.09 232 1.14 017 076 248
3.53 018 137 6.33 1.58 019 145 314
1999 014 348 505 1348 018 171 541
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