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Abstract: With the growing robustness of modern power systems, the occurrence of load curtailment
events is becoming lower. Hence, the simulation of these events constitutes a challenge in adequacy
indices assessment. Due to the rarity of the load curtailment events, the standard Monte Carlo
simulation (MCS) estimator of adequacy indices is not practical. Therefore, a framework based on the
enhanced cross-entropy-based importance sampling (ECE-IS) method is introduced in this paper for
computing the adequacy indices. The framework comprises two stages. Using the proposed ECE-IS
method, the first stage’s purpose is to identify the samples or states of the nodal generation and
load that are greatly significant to the adequacy indices estimators. In the second stage, the density
of the input variables’ conditional on the load curtailment domain obtained by the first stage are
used to compute the nodal and system adequacy indices. The performance of the ECE-IS method
is verified through a comparison with the standard MCS method and the recent techniques of rare
events simulation in literature. The results confirm that the proposed method develops an accurate
estimation for the nodal and system adequacy indices (loss of load probability (LOLP), expected
power not supplied (EPNS)) with appropriate convergence value and low computation time.

Keywords: cross entropy method; importance sampling technique; power system adequacy;
rare events simulation

1. Introduction

Power system reliability evaluation plays a crucial role in the decision-making process of power
system development planning. The reliability evaluation process invariably involves consideration
of adequacy and security concepts [1,2]. Security is explained as “the measure of how an electric
power system can withstand sudden disturbances such as electric short circuits or unanticipated
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loss of system components”. While adequacy is determined as ”a measure of the ability of a bulk
power system to supply the aggregate electric power and energy requirements of the customers within
component ratings and voltage limits, taking into account scheduled and unscheduled outages of
system components and the operating constraints imposed by operations”. Technically, there is a
strong relationship between both concepts, but they are quite different from the economic aspects [3].
This paper mainly concentrates on the adequacy evaluation problem. As a rule, three main functional
zones of a power system are highlighted in the part of reliability related to adequacy [1]. HL1 is
associated with the total system generation. HL2, in addition to generation facilities, includes
transmission facilities. HL3 considers a full power system structure up to individual consumer points.
The hierarchical levels mentioned above require power system models of different levels of detail.
The adequacy evaluation problem is here considered for HL2.

In power system adequacy analysis, the goal is to assess the effects of uncertain input variables
(generations—loads) on the adequacy of a power system. The main indices of the adequacy of power
systems are the probability and mathematical expectation of a power shortage (load curtailment) [4].
In practice, a widely used method for the adequacy indices calculation is the Monte Carlo simulation
(MCS) because of its advantages [5]. It can handle high-dimensional problems. In addition, the MCS
converges, regardless of the complexity of the power system model. Another important aspect is its
highly distributable aspect, which allows the calls to the model to be run in parallel. However, the MCS
method relies on sampling over the entire input space, no matter where the load curtailment domain is.
After that, power flow analysis is needed for each state. Depending on this analysis, corrective actions
such as load curtailment and generating unit reschedule are applied in the case of power shortage.
The implementation of corrective actions is made through optimization algorithm. The objective of
optimization problem is to minimize the total amount of load curtailment constrained to the operating
limits of generating units and transmission circuits, and to the power flow equations. As there are
several procedures in the evaluation of a state, the computation burden could be very heavy. Moreover,
since the modern power systems are now characterized by the rare occurrence of the load curtailment
events, the MCS method requires a great number of samples before appropriate load curtailment
events are carried out, and so high computation time is needed to reach proper convergence criterion
on the estimation of load curtailment probability. Such a computational burden is often unaffordable
in practice due to the long runtime of a state evaluation for a power system model. Hence, there are
two research tracks for the purpose of overcoming the MCS computational burden. A first research
track is to develop high performance programming paradigms [6-20] for the purpose of reducing
the computation time of state evaluation. A second track could be to derive more efficient sampling
techniques [21-36] for reducing the number of the states needed to be evaluated through concentrating
the sampling effort in the regions of interest. This significantly reduces the number of calls to the
power system model.

Parallel computing (PAC) [6-8], object-oriented programming (OOP) [9], and agent-based
technology (ABT) [10,11] are examples of the programming paradigms that can be used to reduce
the MCS computational burden. However, the relationship between the number of computing
resources and the computational time is close to a linear function [7]. Thus, the hardware could still be
expensive. In order to overcome this shortcoming, advanced techniques-based MCS methods have
been developed such as pattern classification techniques [12,13,20-22] and metamodels or surrogate
models [23-26] to make an equivalent model for the computer code to fasten the computations.
Pattern classification techniques are utilized to categorize states (load curtailment or not) of a power
system. Some models of these techniques are artificial immune recognition systems [13], artificial neural
network [12], least squares support vector machine [20], and deep-learning and multi-label classification
methods [21,22]. However, the computational accuracy and flexibility of the model relies on size of
training samples. In the structural safety analysis, various types of surrogate models [23-26] were
proposed to change the limit-state functions, which expresses the performance of a system, by an
equivalent metamodel-based approximation. These techniques have shown a significant reduction in
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the computational burden of the MCS method. However, reliability results depend on the accuracy
of the surrogate model. Therefore, the accuracy of the surrogate model needs to be ensured to
avoid adding uncertainty to the already existing input uncertainty. The main disadvantage to this
technique is that there is a difficulty in measuring the impact of the modeling errors on reliability
results. Compared with the abovementioned methods, sampling-based methods have the advantages
of being insensitive to the complexity of limit-state functions, avoiding errors from approximations of
the limit-state function, and being straightforward to apply. Thus, more efficient sampling techniques
for overcoming the MCS computation burden are adopted in this paper.

In the context of reducing the number of the states that need to be evaluated, variance reduction
techniques enable us to extract the set of states, which make a significant contribution to the evaluation
of adequacy indices. Since the variance of the MCS estimate is inversely proportional to the failure
probability [5], the variance reduction methods [21-36] have been developed for reducing the variance
of the MCS estimate through generating samples exploring the rare load curtailment events and
so shortening the computation time of obtaining an accurate estimate of the adequacy indices.
The name of variance reduction techniques gathers various techniques, such as subset sampling [16],
importance sampling [17-19], control variates [27], antithetic variates [28], stratified sampling [29],
line sampling [30,31], and directional sampling [32]. For the sake of conciseness, subset simulation (SS)
and importance sampling (IS) are reviewed in this paper, as they are the most substantial variance
reduction approaches applied in adequacy studies. SS is based on splitting the failure domain into
a series of partial failure domains. This facilitates describing the probability of failure event as a
product of conditional probabilities of the partial failure events. The main advantages of SS are
its capability to handle complex limit-state functions (e.g., nonlinear, with possibly multiple failure
regions). On the other hand, SS have some drawbacks. Firstly, the variance estimator is not directly
calculated by an analytical formula as MCS and IS techniques but must be evaluated by repetition.
Secondly, even if SS provides a variance reduction compared to MCS, the number of samples needed
to achieve convergence is larger than that needed with other IS techniques [16]. The IS techniques
propose an alternate sampling density, called the ISD, which is the density of the input variables
conditional on the failure domain. The optimal selection of the ISD can result in zero variance of the
estimate of failure probability. However, in practice, sampling from the theoretically optimal ISD is not
handy, because it needs knowing the failure probability and failure domain in advance. To overcome
this problem, the cross-entropy [33,34] and sequential importance sampling (SIS) [35,36] techniques
were applied to approximate the optimal ISD in a sequential manner.

The CE method determines the ISD iteratively through defining a sequence of more frequent
events (intermediate failure events) in several probability spaces that gradually reach the target
theoretical ISD (small failure event). The densities of intermediate failure events are chosen as
parametric family of densities. Typically, the densities are chosen as the same family as the density of
the input random variables, and the initial intermediate sampling density is chosen as the original
density of the random variables. For each intermediate failure event k, the CE method identifies
the parameter of a chosen density model through minimizing KL divergence between the optimal
ISD of k-th intermediate failure event and the chosen probability density. The optimal ISD of k-th
intermediate failure event is defined based on the intermediate failure threshold ((; > 0), which is
estimated such that a fraction (6 € [0.01, 0.1]) of the limit-state function values of the samples from the
fitted parametric density obtained at the previous sampling step are beyond this threshold (. Starting
from an initial sampling density, the density parameter updating is executed until the threshold Cj
becomes beyond zero (i.e., at least O of the limit-state function values of the samples fall in the actual
failure domain). In this case, the target optimal ISD is approximated well enough by the current
parametric density. The advantage of the CE-IS approach is related to the fact that analytical updating
formulas can be derived for density parameters when dealing with probability densities belonging to
the natural exponential family. Another advantage concerns the fact that, similarly to the standard
MCS, the estimation error is directly controlled using the estimator of the variance [34]. However,



Mathematics 2020, 8, 2021 4 of 21

the major difficulty is to construct efficient intermediate densities used in the adaptive sampling process
to approach the target optimal ISD.

This paper presents an improved version of the CE-ISby incorporating two enhancements. The first
one is developing a new updating scheme for the parameter of the intermediate density. In the proposed
method, the indicator function of the intermediate failure events is defined by a smooth approximation
function instead of using step function as the traditional CE-IS method. This allows exploiting all
the samples from intermediate sampling levels in the density parameter updating, contrary to the
traditional CE-IS method, which uses a small portion of the samples. In addition, a smooth shifting
for the optimal ISD of intermediate failure events towards the target optimal ISD of the small failure
event is achieved. This effective use of the intermediate samples leads to better estimate of the density
parameter and hence to a smaller sampling error in the corresponding probability estimate. Secondly,
exploiting as stopping criterion the coefficient of variation of the weights according to the smooth
approximation of the optimal ISD of intermediate failure events with regard to the target optimal ISD
improves the robustness of the method convergence. These modifications contribute to obtaining the
accurate optimal ISD of nodal generations and loads, and so, the nodal and system adequacy indices
are computed accurately. We compare the performance of the proposed method to the traditional
CE-IS and recently proposed techniques in literature such as sequential importance sampling and
subset simulation. The paper is structured as follows. After a brief introduction, Section 2 illustrates
the principles of adequacy assessment in power systems. Moreover, the mathematical objective
function and constraints of the optimal power flow (OPF) algorithm are defined. Section 3 describes
the framework of adequacy indices evaluation based on the proposed ECE-IS method. In addition,
the mathematical description of the ECE-IS is presented. Section 4 depicts the case study and numerical
results. The results discussion is explained in Section 5. Section 6 outlines the main findings.

2. Principles of Adequacy Evaluation in Power Systems

For adequacy evaluation purposes, a bulk power system model is normally represented by a
group of areas or market nodes connected by transmission lines. Then, the uncertainties of total
available generation capacity and total required load are depicted for each area or node. The available
capacity of generators in each node can be defined by a binomial distribution. Figure 1 shows the
binomial PDF for the failure of m generators in a power plant including y generators with the same
probability of failure (q = 5%). The probability of failure is calculated using Equation (1).

PE = Clq"(1-q)"™ 1)
1,0 m
“IP)F
08 | vs
06 |- y=10
\:
04 ___\,\_/ﬂo
02 '
m

0,0

Figure 1. Binomial PDF for different numbers of generators.
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For a large number of generators, according to the de Moivre-Laplace theorem, the binomial
distribution could be approximated by a Gaussian one. Such an approach is accepted in this paper.
The Gaussian distribution is also used for describing the aggregated load connected to each node.
In order to calculate realistic adequacy indices of each node, it is necessary to take into account both
load curtailment strategy and physical constraints [37,38]. For each sample within the simulation
method, a power flow model must be solved to detect the state of the transmission system. If there
are transmission lines outside their loading limits, an OPF algorithm is executed to apply corrective
actions (e.g., generation rescheduling and/or load curtailment) by solving an optimization problem.
The objective of optimization problem is to minimize the total amount of load curtailment constrained
to the operating limits of generating units and transmission circuits, and to the power flow equations.
As there are several procedures in the evaluation of a state, a linear representation for the power
flow equations is often adopted in HL2 adequacy studies to significantly decrease the computational
effort [39]. This representation cannot analyze the impact of bus voltages and reactive power on the
system adequacy. This simplification is acceptable, since the adequacy studies mainly deal with long
term power system analysis [16]. Hence, a DC-power-flow-based optimization method is used because
it is simpler (being linear model) and faster in computation compared with AC power flow.

2.1. Objective Function

A load curtailment sharing philosophy is considered in this work. Unserved demand is shared
across all the nodes of a power system. Using weight factors in the objective function, a priority order
policy is employed for nodes [18]. The objective function is presented in a quadratic form:

n
min[z chfu " d] 2)
d=1

In addition to the objective function, the power system physical constraints are of paramount importance
and will strongly affect resulting adequacy indices.

2.2. Constraints

The main aim of adequacy evaluation is to calculate adequacy indices of a power system, while
not paying special attention to voltages drops, congestions, and frequency problems of the grid [2].
The nodal power balance constraint can be written in the next form:

ui+Gi+Leya—Li=0,d=1,...n 3)
In addition to (3), a system power balance equation is used:
uy+mny =20 4)
The power flows vector is calculated using a simplified form of DC power flows equations:

PF = —[By,]M'B 4,

5
PF = —Cu, C = [By,]M'B™! ©)

Power losses for each Monte Carlo simulation sample are calculated based on the assumption that all
nodal voltages are equal to the nominal ones.

ng =) —LPF? ©)
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Power flows through transmission lines are limited by maximum transmission line capacities:
- PF?Z’X <PF;; < PF;?X (7)
The generation and curtailed load in each node are restricted by supply and demand bid limits:
0<Gy<GY, ®)
0 < Leyig <Ly )

3. A Framework of Adequacy Indices Evaluation

The framework includes two stages. In the first stage, the samples or states of the nodal available
generations and required loads that lead to load curtailment events are extracted. These samples are
used in the second stage to compute the adequacy indices. The adequacy indices adopted here are loss
of load probability (LOLP) and expected power not supplied (EPNS) for system and nodes.

The load curtailment event is defined as the inability to satisfy the loads at all nodes without
violating the system operating constraints such as the limited capacity of transmission lines. Thus,
the load curtailment event may result from low available generation or high required load or the
limited capacity of transmission lines or union of some (or all) above. To carry out the first stage
aim, the occurrence of load curtailment is verified at each sampled state of the uncertain inputs
{x;; i=1,...,N}, where x; = {G‘l"’, ..., GY, L1,...,Ln}, N is the number of samples, and 7 is the
number of nodes. Suppose the set F is the failure domain in the input parameter space, i.e., x; € F,
which leads to a load curtailment in the system. The failure domain F is expressed by a limit-state
function S(x;) as follows: F = {x; : S(x;) <0,i =1,...,N}.

The function S(x;) defines the degree of deficiency of system state x;. It equals the amount of load
curtailment when the state fails, i.e., Y.);_; Leyrra(xi) > 0. Otherwise, the system deficiency is defined as
the sum of the difference between nodal available generation capacity and the required load as shown
in (10). Since the target load curtailment event has a small probability in the original sample space, the
limit-state function is used to define a sequence of simulations of more frequent events (intermediate
failure events) in several probability spaces. This is illustrated in detail in the following subsections. In
(10), the amount of load curtailment or power not supplied (PNS) is computed through the DC-OPF
algorithm. The OPF algorithm includes two actions: generation redispatch and load curtailment that
aim to minimize the system load curtailment and satisfy the security constraints of the transmission
network, as illustrated in the previous section.

n n
- dzl Lcurt.d(xi)/ if d21 Lcurt.d (xi) > 0;
S(xi) = ' o

dzl va(xi) - Ld<xi)r if dgl Lcurtd(xi) =0.

(10)

For estimating the target failure probability (load curtailment probability), the 2n-variate normal
distribution of uncertain inputs is expressed by g(x;w), which is depicted by mean p and covariance
Y. vectors, and so w = [y;X]. To simplify the writing of equations, the vector {x;, i =1,...,N} is
symbolized by x. Hence, the probability of failure can be computed by the following expression:

Pr = f Lp(x)g(x; w)dx = Eg[Lp(x)], (11)

in which E, indicates that the expectation operator is taken with respect to the density ¢ and Lr(x)
denotes the indicator function. The MCS estimator for Pr is

A 1 N
Pr=y Zi:l Lr(x;),
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where
1 for S(x;) <0
LF(XZ){ 0 for S(x;) >0

Since the estimator is unbiased,
A
E(IP’F) =Pr
and its variance is defined by

V(@’F) = I\l]V(LP) = I%]EDP(l - Pr).

The coefficient of variation CV is considered as the error measure for the Pr estimator. The squared
CV is given as follows:

A 2 NP
E[(Pr) !

Hence, the CV of MCS is approximately (NIP’F)_% and so, for small Pr, the needed number of samples
N is large for getting an accurate estimate. To improve the efficiency of MCS, the proposed method,
ECE-IS, as a variance reduction technique has been developed for reducing the variance of the MCS
estimator. We primarily revise the traditional CE-IS to develop the ECE-IS.

3.1. Implementation of CE-IS Method

IS introduces an alternate sampling density g(x), termed the ISD. A proper selection of g(x) is
required to represent accurately the failure domain of inputs. The probability of failure shown in (10)
is computed regarding q(x) and rewritten in the following manner:

Pr = f Le(x)W(x)q(x)dx = E, [Le (x) W(x)), (13)

where W(x) = g;(c—g) is the likelihood ratio or importance weight function, which is expressed as a
ratio of original and proposed densities. The IS estimate of IPr is given by:

A 1 N

Pr= 5 ), Lr(x) W), (14)
i=1

in which {x;,i = 1,....,N} are identically distributed samples based on g(x). To obtain the optimal
selection of the ISD g*(x), the variance of Pr estimators have to be minimized as follows:

min ¥, L (x) W ()]
The theoretically optimal ISD leading to zero variance is given by the following Equation [5]:

__Le(gww)  Le(x)g(xw)
[ Le(x)g(x; w)dx Pp '

q (x) (15)

Since the optimal ISD is dependent on unknown quantities, Pr and Lr(x), as shown in (14),
the computation of the optimal ISD is not possible directly. The CE as a sampling technique is used
to find a near-optimal ISD through fitting a parametric density model. It exploits the samples from
intermediate sampling levels for fitting the selected parametric density. The parameter vector (u)
is defined through minimizing the cross entropy or KL divergence between the unknown optimal
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ISD given in (15) and the selected probability density g(x;u). In this work, the selected q(x;u) is a
multivariate normal probability distribution having u = [p;s; Xjs]. The cross entropy between the g*(x)
and q(x; u) can be described as follows (see [17]):
* . _ q* (x _ * * .
D(q"(x), q(x;u)) = Eq |In pren | R [In(q" (x))] = B [In(q” (x; u))]. (16)

Then, the optimization problem can be expressed in the following manner:

argmin D(q"(x), q(x; u)) = argmax B [In(q"(x; u))]. (17)

u u

By substituting ¢*(x) in (16) with the Equation (14), the optimization problem becomes

arginin D(g*(x),q(x;u)) = argflnaxf Lr(x)W(x; u)q(x; u) In(g(x; u) )dx
(18
= argmax | g,l Lr(x;)W(xj;u) In(q(xi;u))|, )

u 1=

in which

The CE method solves this optimization problem iteratively through defining a series of
intermediate densities {g(x; 1),k =1,....,NT} that gradually reach the target density representing
well the failure region as shown in Figure 2. The intermediate failure domain Fy is defined using a
threshold (. as stated in (19). (y is calculated as the O-quantile of the sorted limit-state function values
S(x;) from smallest to largest of the samples from the fitted parametric density obtained at the previous
step q(x; ux_1). For each intermediate failure event k, the optimization problem is solved to get its
optimal parameter 1 using the samples distributed based on g(x; 141 ). The aim is to obtain the final
parameter vector unt, which approximates the solution of (17).

Fr = {x : S(x) < Ck}/ Ck = 0;
[ 1 for S(x) < (19)
Lr(x) = { 0 forS(x)>¢ °

Starting from the initial parameter vector 1, each following uy is evaluated by solving the CE
optimization problem written in (20) with target optimal ISD set to g;*(x), which is the optimal ISD of
the k-th intermediate failure event. The ug is taken as nominal parameter vector of input variables,
which is w.

N
. . 1
argmin D(q," (x), 4(x; u)) = argmax [N Z Lr (xi) W (xi; ue—1) In(q (xis ug) ) |, (20)
i Ui i=1
in which qk*(x)%i@m) and W(x; uk‘l)qfx(,fgz)l)' The procedure is repeated until {; becomes a

negative value, i.e., at least Om samples fall in the actual failure domain, where 0 € [0.01,0.1] [17]. Thus,
NT is set to the current event k, and the optimal ISD is approximated quite by the density g(x; un7-1),
and the probability of failure is estimated as follows:

. N
Pr = 1 Z Lr(x;) W (xj; unT-1)- (21)
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q(x; Wper1)

q(x; Uy—1)

Probability density

[}
Failure |

domain |

Figure 2. A gradual approach of the sequence of intermediate distributions to the target failure region.

3.2. Implementation of ECE-IS Method

In the traditional CE-IM, the intermediate failure domain is identified by the intermediate
failure threshold (;. Because of the step indicator function L, (x), (; represents only a fraction
(6 € [0.01, 0.1]) of the samples of the preceding ISD g(x; uj_1), and the other samples are neglected.
In the ECE-IS, the indicator failure function of the intermediate failure events L, (x) is defined by a
smooth approximation function. This allows a smooth transition for the approximately optimal ISD
" (x) towards the optimal ISD of the destination failure event 4*(x) through exploiting all samples
from the intermediate density g(x; 1,1 ) in parameter uy updating.

The indicator failure function can be defined as follows: L, (x;0r) = 61imO(D(—%f)), where 0y is the
k —

control parameter of function bandwidth, and @ is the standard normal CDF. When 0y approaches zero,
the smooth function approaches to the target step indicator function. Hence, 69 > 61 > - > on1 > 0
defines a decreasing series of bandwidths, as shown in Figure 3.

Using the smooth function of L, , the optimization problem (20) becomes as follows:

N
1
g = argmax | = 21 Wi (i tt1) In(g (i uk>>], 22)

Uy

1G] P
q’( 3 )g (x;w) . . . Sl s .
) O is determined such that the optimal ISD g;*(x) is approximated

well enough by samples drawn from q(x;u_1), ie., the variance of the importance weights
Wi (x; 1g_1, 0x) is small. This is done by minimizing the difference between the CV of the weights
{Wi(xi;u-1,0k),i =1,...,N} and the specified CViarger at each intermediate event k, as written in (22).

in which Wy (x; ug_1, 6¢)

O = argmin |(CVwk - Cerget . (23)
0x€(0,04-1)
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0.9

0.8+
07k &, decreasing
06
0.5+
0.4+

0.3

Indicator function

021

0.1

0
S(x)
Figure 3. Indicator function approximation.

Asshownin Algorithm 1, starting with 69 = oo and ug as anominal parameter vector, this procedure
is reiterated and stopped when the CV of the weights calculated in (24) of the present smooth
approximation of the optimal ISD of intermediate failure events with regard to the target optimal ISD
is lower than the (CVWget. Hence, NT is set to the current event k, and the optimal ISD is approximated
well enough by the density g(x; un7_1). Utilizing the CV of the weights as stopping criterion instead
of the parametric density g(x; ux_1) improves the robustness of the method convergence, as will be
shown in the section of results.

q'(xi) _ Lp(S(xi)
k" (x;) @(_S(Xf))'

Ok

W(xi;ék) = i=1,...,N¢. (24)

The samples from the density g(x; uyr-1) will be used in the second stage as shown in Algorithm
1 for computing the system adequacy indices (LOLP-EPNS) for each node and system. The system
LOLP and EPNS can be expressed as follows:

N
1
LOLP = N ZZ; Lr(x;) W (xi; unT-1), (25)

N n
EPNS = % 2[2 Lourtd (x»]w (i unT-1). (26)

i=1\d=1
For nodes, the LOLP and EPNS can be rewritten as follows:

N
1
LOLP = i Z L& (x;)W (xi; unT-1), (27)
i=1
1 N
EPNS =g ;umd(xi))vv(xi;uNm), @8

in which
1for L (x;) >0
Ld N curt.d\Ai
P(XI) { 0 for Lcurt.d (xi) =0
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Algorithm 1. Procedure of adequacy indices assessment using ECE-IS

1. Set k=0, §,=c and u; =w. )
2. Set k=k+1 and draw N samples from {q(x;;u,_4),i =1,....,N}.
3. Calculate the limit-state function {S(x;),i =1,....,N} and evaluate the weights Y
{W(x;; 64-1),i =1,....,N}, as shown in (24). __%
4. Ifthe CV of the weights is lower than CV 4,4, go to step 8. g
5. Solve the optimization problem in (23) to detect &. -
6. Estimate u; from solving the optimization problem in (22).
7. Return to step 2. -
8. Set NT =k.
9.  For the samples from {q(x;; uyr—1),i = 1,...., N}, run DC-OPF algorithm to estimate g(;D
the nodal and system load curtailment values. &
10. Evaluate the nodal and system indicator functions L%(x;)& Lg(x;) and likelihood '_g
ratio W (x;; unr—1)- %
11. Calculate the LOLP and EPNS indices and their coefficient of variation (convergence)
for each node and system, as shown in the equations from (25) to (28). _

4. Results

The proposed method is tested and evaluated for the five-bus test scheme, presented in Figure 4.
The data for the buses and transmission lines are presented in Table 1. In terms of mean values of the
generation and demand capacities, the test scheme includes two in surplus, one in balance, and two
deficient buses. The probabilistic nature of the generation and demand could potentially result in
different combinations of operational states of the power system buses. All the buses are connected by
transmission lines of the same transmission capacity but different resistance and reactance. All tests are
carried out using MATLAB 2017 on an Intel Core i5-8 G memory personal computer. The standard MCS
simulation method is used as a benchmarking method. The maximum number of simulation samples
for MCS is 5 x 10%. A coefficient of variation (convergence) of 5% for both system adequacy indices
(LOLP-EPNS) is used as the stopping criterion. The rare events simulation techniques (CE-IS [33],
SIS [35], SS [16], ECE-IS) use the following parameter values: 0 = 0.1, CVigget = 0.05, maximum
number of iterations = 50, and number of samples per iteration = 2000.

In Figure 5, the PDFs of the system limit-state function S(x) are shown for different methods
(CE-IS, SIS, SS, ECE-IS) and MCS. It illustrates that the proposed ECE-IS method has the largest
probability of S(x) < 0, which is 80% in comparison with 23, 55, 32, and 20% for MCS, CE-IS, SIS,
and SS, respectively. This means that the samples extracted by the ECE-IS method are more likely
to cause the load curtailment events. It represents 80% of the total sampled system states. Once the
samples from the optimal distributions of nodal generations and loads are obtained, the adequacy
indices (EPNS, LOLP) can be evaluated. For test purposes the EPNS, LOLP are calculated for all the
buses. The histogram in Figure 6 shows the computation time and the EPNS values obtained by the
different methods. The computation time includes the time spent in the first stage for extracting the
rare load curtailment events.
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Figure 4. Test scheme.

Table 1. Test scheme data.

Nodes Data Transmission Lines Data
Available Load Demand From To Resistance  Reactance  Capacity
Bus Generation (MW) (MW) Bus Bus (Ohm) (Ohm) (MW)
Mean STD Mean STD 1 5 10 100 500
1 1700 170 600 60 1 4 5 50 500
2 50 5 50 5 2 3 1 10 500
3 1440 144 900 90 2 4 3 33 500
4 1200 120 1500 150 3 4 2 10 500
5 1500 150 2000 200 4 5 5 50 500
-3
x10
3 T T T
- - -MCS
251 —CE-IS |1
—SIS
2 SS .
——ECE-IS

—
T
)
4
1

Probability density
O

0.5 1
4
A
0 — 1 VI
-2000 -1000 0 1000 2000 3000
S(x)[MW]

Figure 5. Probability distribution of system limit-state function for different methods.
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Figure 6. Test scheme buses—expected power not supplied (EPNS).

The load curtailment sharing philosophy results in relatively small EPNS values of potentially
deficient buses 4 and 5. At the same time, the limited transmission lines capacity does not allow
unlimited power supply from surplus buses and so the greatest EPNS is at bus 5. From the simulation
results, it became clear that all the discussed methods significantly reduce a computation burden and
the most computationally effective is the CE-IS method. It also could be seen that the method used in
extracting load curtailment events could significantly affect results. Figure 7 shows the LOLP values
for all the busses of the test scheme. Theoretically, in the case of unlimited transmission lines capacity,
the objective function (1) must result in equal LOLP of all the buses. However, in terms of mean
values, the power surplus of the bus 1 is 10% higher than the transmission capacity of the connected
lines. Possible power supply from bus 1 is locked, and as a result, in some deficient test scheme state
samples, the demand at the bus is not curtailed. It can be seen from the histogram that the LOLP
of bus 1 is relatively small in comparison to other bus values. Figures 8 and 9 show the errors of
methods in comparison to the standard MCS method. For almost all the buses, EPNS values computed
using the proposed method are accurate within range of 8%. Even though the ECE-IS method is less
computationally effective than other methods, it could provide significantly more accurate results.
In comparison to the traditionally used MCS approach, the proposed method is nearly eleven times
faster. The smallest LOLP error values are generally also represented by the ECE-IS approach. Notice,
that in the case of LOLP, even small deviations would introduce a great error, as it can be seen.
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Figure 7. Test scheme buses—loss of load probability (LOLP).
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Figure 8. EPNS error compared to the standard Monte Carlo simulation (MCS) method.
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Figure 9. LOLP error compared to the standard MCS method.
5. Discussion

A trade-off between the computational accuracy and computational efficiency leads to a wide
number of approaches for a power system adequacy evaluation. Therefore, the comparison among
methods must include the number of samples or computation time required to reach the accurate
adequacy indices with acceptable convergence. In terms of the number of samples, the system LOLP
and EPNS indices and their convergence using the standard MCS method and the different rare
events simulation approaches are shown in Figures 10-13. For MCS, the number of samples to reach
a convergence of 5% for both system LOLP and EPNS indices is 38,945 samples. The CE-IS and
SS methods have the fastest convergence rate, while they do not develop accurate LOLP values.
The ECE-IS has performed better, reaching a 0.0099 LOLP value with 4.7% convergence and 8.95 MW
EPNS with 2.4% convergence. On the other hand, the standard MCS has achieved 0.0102 with 5%
and 8.8 MW with 2.5% for LOLP and EPNS, respectively. Therefore, the ECE-IS can achieve the same
accuracy of the standard MCS method for both nodal indices, as shown in Figures 8 and 9, and system
indices, as shown in Figures 10 and 12. In the attitude of computational efficiency, the ECE-IS needs
seven iterations for extracting 2000 samples representing the load curtailment events, and so, the total
number of samples is 14,000 samples. Hence, the ECE-IS can achieve accurate results with a smaller
number of samples and computation time. As shown in Figure 6, an 11-times speedup is achieved.

0.02 T
—CE-IS
—3SIS
0.015 . 0.1 ——SS |
' —ECE-IS
o 5 0.08
0.01 1 1)
9 Ww”’v S 006
0.005 1 0.04
0.02
0.01
0 0 : .
0 1 2 3 4 0 500 1000 1500 2000

Number of samples x10% Number of samples

(@) (b)

Figure 10. (a) System LOLP in case of using standard MCS method; (b) system LOLP in case of using
CE-IS, SIS, SS, and ECE-IS approaches.
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Figure 11. (a) System LOLP convergence in case of using standard MCS method; (b) system LOLP
convergence in case of using CE-IS, SIS, SS, and ECE-IS approaches.
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Figure 12. (a) System EPNS in case of using standard MCS method; (b) system EPNS in case of using
CE-IS, SIS, SS, and ECE-IS approaches.
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Figure 13. (a) System EPNS convergence in case of using MCS method; (b) system EPNS convergence
in case of using CE-IS, SIS, SS, and ECE-IS approaches.
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For comparing the robustness of the ECE-IS method with other rare events simulation techniques,
the system LOLP, LOLP relative bias, and LOLP convergence values are illustrated in Table 2 for
different numbers of samples per iteration. The sample analyzing times differ from each other;
hence, the computation time is included in Table 2. Taken the LOLP value (0.0102) obtained by the

standard MCS method as a reference value, the relative bias of LOLP values is computed as follows:

LOLP-LOLP(MCS)
LOLP(MCS)

by increasing the number of samples. However, there is a significant accuracy loss with a small number

of samples for CE-IS and SS methods, while the SIS achieves a proper LOLP bias at 1000 samples but
bad convergence. However, the ECE-IS is still effective for a small number of samples. It achieves a
small LOLP bias (17%) with 21% convergence at 250 number of samples.

. From the results in Table 2, the convergence acceleration for all methods is achieved

Table 2. Methods comparison for different numbers of samples.

Number of Samples Number of System Relative Bias of System LOLP  Time

Methods

per Iteration Iterations LOLP System LOLP Convergence [sec]
CE-IS 3 0.0329 2.2 0.35 19

250 SIS 4 0.023 1.25 0.59 30
SS 3 0.0613 5 0.52 21

ECE-IS 8 0.012 0.17 0.21 43

CE-IS 3 0.0219 1.14 0.055 96

1000 SIS 5 0.0038 -0.63 0.44 106
SS 3 0.041 3 0.064 85

ECE-IS 8 0.0114 0.12 0.085 140

CE-IS 3 0.0191 0.87 0.045 154

2000 SIS 4 0.0052 -0.49 0.20 238
SS 3 0.0272 1.67 0.042 167

ECE-IS 7 0.0099 0.03 0.048 320

In order to verify the computation accuracy and efficiency of the proposed method with the
dimension of the power network and the number of random variables being considered, the results
of adequacy indices are presented for the IEEE-RTS 79 system. The system includes 24 buses
and 32 generators divided among 14 generating stations totalizing 3405 MW of installed capacity.
The annual system peak load is 2850 MW. More information on the IEEE-RTS 79 can be found in [40].
The mean and standard deviation values for the loads were taken at the peak value and the +10% of
the peak value, respectively. A coefficient of variation (convergence) of 5% for both system adequacy
indices (LOLP-EPNS) is used as the stopping criterion. For the ECE-IS and MCS methods, Table 3
shows the results of the system LOLP and EPNS indices, number of samples, and computation time.
The computation time includes the time spent in the first stage for extracting the rare load curtailment
events. The results of the ECE-IS method are 0.00121 and 0.16 MW for LOLP and EPNS, respectively.
On the other hand, the standard MCS has achieved 0.00119 and 0.154 MW for LOLP and EPNS,
respectively. Therefore, the ECE-IS can achieve the same accuracy of the standard MCS method for
both system indices. Moreover, the ECE-IS method is considerably more efficient than the standard
MCS method. The proposed method needs only a small fraction (23%) of the samples needed by the
MCS. However, in contrast to MCS, the ECE-IS method, as other techniques of rare events simulation,
come along with its own set of tuning parameters, which are the target the coefficient of variation
of importance weight function and the number of samples per iteration. The proper tuning of these
parameters has consequences on the efficiency of the technique.

Table 3. System adequacy indices for IEEE-RTS 79.

Methods Number of Samples System LOLP System EPNS [MW] Time [sec]

MCS 382,000 0.00119 0.154 6220
ECE-IS 87,000 0.00121 0.16 810
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6. Conclusions

In this paper, a framework of adequacy indices evaluation has been proposed in composite
generation and transmission power systems. The main purpose of the framework is to obtain accurate
adequacy indices and enhance the computational efficiency of the standard MCS method. This is
achieved by integrating rare events simulation methods in the framework’s first stage for identifying
the approximately optimal distortion of the nodal generations and load distributions, making rare load
curtailment events more likely to be drawn. As a result of the integration of the rare event simulation
methods, a new approach named ECE-IS is proposed that is more efficient and robust than other
methods, such as traditional CE-IS, SIS, and SS in extracting the optimal distortion. From the reported
results of the framework’s second stage, the proposed method contributes to accurately evaluating the
adequacy indices (LOLP-EPNS) and further enhancing the convergence of the indices in comparison
with other methods. Moreover, a great speed-up was shown in terms of computation time with respect
to the standard MCS method.

The implementation of the proposed method in adequacy evaluation could allow us to use more
detailed power system models, which would more accurately reflect real power system operation.
The impact of different network topologies (i.e., transmission network contingencies), non-linearity of
the power flow equations, and chronological characteristics of power systems, such as time and spatially
correlated load models, the time-dependency of renewable energy resources could be included into the
power system model. This method can also be included into the many problems in both operation and
planning phases, such as the evaluation of spinning reserve margins and the integration of renewable
energy resources. Using adequacy indices assessments and knowing the critical nodes during system
disturbance, planners can better manage the penetration of renewable sources, ensuring sustainable
and reliable operation at both the system and nodal level. In the context of power system operation,
operators schedule the generating units and allocate enough generation reserve amounts to ensure a
lower adequacy index (the probability of load curtailment) than the maximum allowed. These issues
will be adopted in future works.
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Abbreviations
CDF -  Cumulative distribution function
CE-IS —  Cross entropy-based importance sampling

ECE-IS - Enhanced cross entropy-based importance sampling
EPNS - Expected power not supplied
HL1(2,3) -  Hierarchical level 1 (2,3)

IS - Importance sampling

ISD —  Importance sampling density
KL - Kullback-Leibler

LOEE —  Loss of energy expectation
LOLE - Loss of load expectation

LOLH —  Loss of load hours

LOLP - Loss of load probability

MCS - Monte Carlo simulation

OPF - Optimal power flow

PDF - Probability distribution function

SS —  Subset simulation
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Notations

Py —  Probability of m generators failure

q - Unavailability factor

Cy - Binomial coefficient

cq -  Load weight factor for the load of the node d

Leurtd —  Curtailed load at the node d

n —  Number of nodes in the power system

Uy - Power injection at the node d

PF; ; - Power flow from the node d to the node j

G4 —  Used generation at the node d

Ly —  Load at the node d

us, - Sum of power injections at all the nodes of the power system

US> —  Sum of transmission lines power losses

PF -  Power flows vector

M —  Power system incidence matrix reduced by one row

B —  Bus susceptance matrix

By, - Diagonal matrix made of transmission lines susceptance

u —  Vector of power injections

R; —  Transmission line resistance [Ohm]

Vv - Nominal voltage of a power system [KV]

PF; - Power flow through line I [MW]

PEYY - Maximum power flow from the node j to the node d

PFZZ?X - Maximum power flow from the node d to the node j

GY —  Available generation at the node d
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