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Abstract: In this paper, we discuss travelling wave solutions for image smoothing based on a
fourth-order partial differential equation. One of the recurring issues of digital imaging is the amount
of noise. One solution to this is to minimise the total variation norm of the image, thus giving rise to
non-linear equations. We investigate the variational properties of the Lagrange functionals associated
with these minimisation problems.
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1. Introduction

Decades ago, the introduction of magnetic resonance imaging (MRI) technology revolutionised
the world, primarily impacting medical diagnostics which benefited from images at the sub-millimeter
scale. Since then, scanner technology has grown in leaps and bounds, but is still limited with
degradation issues. A primary source of image degradation is thermal noise entering the MR data in
the time domain [1]. Noise is also often described as the corrupted data or artificial imprints added to
digital images by sensors [2].

To overcome such problems, the use of non-linear diffusion filters have been proposed, for further
discussion and examples, we refer the reader to [3,4]. These filters involve the introduction of a
small non-linear diffusion term with large gradient, |∇u|. To this end, Rudin–Osher–Fatemi [5]
found that one way to achieve this is to minimise the total variation norm of the image under some
given conditions. This idea inspired a number of similar models [6–8], and propelled the use of
several mathematical tools for analysing non-linear diffusion filters and the algorithms to aid noise
removal of digital images. In this paper, we consider the class of non-linear diffusion filters developed
by [9]—comprised of a fourth-order partial differential equation (PDE) noise suppression model.
We consider this noise removal model within the framework of Lie symmetries, mainly to obtain exact
solutions to the model. The immense and diversified contribution of symmetries to all areas of science
can be seen in, among numerous others, the works of [10–16]. An important byproduct of the Lie point
symmetry method is that one may use its applications to recognise patterns in imaging [17,18].

Let u(xi), where i = 1, 2, be a digital image and u0 be its observation with random noise η(xi) for
(xi) ∈ Ω. Noise is superimposed on the pixel intensity value by the formula

u0 = u(xi) + η(xi).

Noise recognition involves oscillating signals over small areas, so that noise removal implies
filtering out high frequency signals while preserving the important features in the images [9].
Different functionals R(u) measure the oscillations and a general formulation of the noise removal
problem is to solve the min R(u) subject to some approximate noise level [19]. The general approach is
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to minimise the total variation norm of ∇u and use higher-order derivatives to measure oscillations.
One option is to consider a Lagrange functional that is not rotational invariant [9], viz.

R1(u) =
∫

Ω
L (u) dxi, (1)

where
L (u) = |uxixi |, (2)

to measure oscillations in a noisy data. Another alternative would be choosing [5,19]

RA (u) =
∫

Ω

√
u2

xi
dxi

or
RB(u) =

∫
Ω

f (|∆u|) dxi

where ∆u denotes the Laplacian.
As these Lagrange functionals increase in complexity, as does the cost of the denoising process.

For greater than 1-D and 2-D data, the number of unknowns increases and the type of functional will
have a significant impact on cost. Here, we consider the constrained minimisation problem described
by R1(u) as a 2-D case, but a generalisation to higher dimensions is also possible.

The paper is organised as follows. In Section 2, we provide all mathematical preliminaries to
tackle the underlying noise reduction problem. Section 3 lists the Lagrangians and the non-linear
fourth-order PDEs associated with the function R1(u), with and without the addition of source terms.
The variational (Noether) symmetries and conservation laws are presented in Section 4. In Section 5,
some travelling wave solutions for digital images are derived. Finally, in Section 6 we conclude.

2. Symmetry Methods: An Overview

We first review the definitions and properties of point symmetries.
Consider a PDE with unknown function u which depends on n independent variables xl , i.e.,

x = (x1, . . . , xn), respectively. Let
G
(

x, u(k)

)
= 0, (3)

be such a PDE, where u(k) represents the kth derivative of u with respect to x. A one-parameter Lie
group of transformations (ε is the group parameter) that is invariant under (3) is given by

x̄ = Ξ(x, u; ε) ū = Φ(x, u; ε). (4)

Invariance of (3) under the transformation (4) gives that any solution u = Θ(x) of (3) maps
into another solution v = Ψ(x; ε) of (3). Expanding (4) around ε = 0, we can find the infinitesimal
transformations:

x̄l = xl + εξ l(x, u) +O(ε2),
ū = u + εη(x, u) +O(ε2).

(5)

The action of the Lie group can be recovered from that of its infinitesimal generators acting on the
space of independent and dependent variables. Hence, we consider the following vector field

X = ξ l∂xl + η∂u (6)

The action of X is extended to all derivatives appearing in the equation in question through the
appropriate prolongation. The infinitesimal criterion for invariance is given by

X
[
LHS G

(
x, u(k)

)
= 0

]
|G(x,u(k))=0= 0. (7)
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A considerably detailed discussion can be found in [20].
The generalised total differentiation operator Dl with respect to xl is

Dl =
∂

∂xl
+ ul

∂

∂u
+ ul j

∂

∂uj
+ . . . . (8)

and W is the characteristic function
W=η − ξ juj . (9)

The Euler–Lagrange equations, if they exist, is given by δL/δu = 0, where δ/δu is the
Euler–Lagrange operator

δ

δu
=

∂

∂u
+ ∑

s≥1
(−1)sDl1 · · ·Dls

∂

∂ul1···ls
. (10)

The term L is referred to as a Lagrangian. If we include point dependent gauge terms f1, . . . , fn,
the Noether symmetries X are given by

XL + LDlξ
l = Dl fl . (11)

The operator in Equation (6) can be used to define the characteristic system

dxl

ξ l =
du
η

= . . . (12)

whose solution provides the invariant functions

W [r](xl , u). (13)

These invariants can be used in order to reduce the order of the PDE. More explanations and
formulae can be found in [21].

3. Noise Reduction PDEs

Consider the 2D space (n = 2) for the functional R1(u), with

L1(u) =
√

ux1x1 +
√

ux2x2 . (14)

A fourth-order PDE arises from the Euler–Lagrange equation of (14), namely

3
8

u2
xixixi

u5/2
xixi

− 1
4

uxixixixi

u3/2
xixi

= 0. (15)

If a time evolving situation is required, then let the digital image u(xi) satisfy the following
non-linear partial differential equation in Ω, which is a parabolic equation with time as an
evolution parameter.

We solve for t > 0, (xi) ∈ Ω,

ut +
3
8

u2
xixixi

u5/2
xixi

− 1
4

uxixixixi

u3/2
xixi

= 0. (16)

Moreover, for finding minimum values of R1(u) subject to some noise level, a modification can be
made to the Lagrange functional, based on the addition of source terms, namely let

L2 (u, uxixi ) = L1(u) + λ1u +
1
2

λ2u2, (17)
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where λ1−2 are constants. Thus, the time evolution PDE in this instance is

ut + λ1 + λ2u +
3
8

u2
xixixi

u5/2
xixi

− 1
4

uxixixixi

u3/2
xixi

= 0, (18)

and the time-independent Euler–Lagrange equation of (17) is

λ1 + λ2u +
3
8

u2
xixixi

u5/2
xixi

− 1
4

uxixixixi

u3/2
xixi

= 0. (19)

4. Conservation Laws

The Noether condition (11) corresponding to the Lagrangian (14) provides an over-determined
system of equations. Without presenting the details, once solved, we find the variational symmetries

X1 = ∂x1 , X2 = ∂x2 , X3 = −x1∂x1 − x2∂x2 . (20)

Each of these vector fields give a conserved form ω = Tx
1 dx1 + Tx

2 dx2. Specifically, the conserved
forms are:

• X1:

−1
4

ux2,x2,x2 ux1 + 2 ux1,x2 ux2,x2

ux2,x2
3/2 dx1 −

1
4

2 ux1,x1
2 + 4

√ux2,x2 ux1,x1
3/2 − ux1,x1,x1 ux1

ux1,x1
3/2 dx2,

• X2:

1
4

4√ux1,x1 ux2,x2
3/2 + 2 ux2,x2

2 − ux2,x2,x2 ux2

ux2,x2
3/2 dx1 +

1
4

ux1,x1,x1 ux2 + 2 ux1,x2 ux1,x1

ux1,x1
3/2 dx2,

• X3:

−1
4

4 x2ux2,x2
3/2√ux1,x1 + 2 ux2,x2

2x2 − x1ux1 ux2,x2,x2 − 2 ux2,x2 x1ux1,x2 − x2ux2 ux2,x2,x2 − 2 ux2,x2 ux2

ux2,x2
3/2 dx1

+
1
4

2 ux1,x1
2x1 + 4 x1ux1,x1

3/2√ux2,x2 − x1ux1 ux1,x1,x1 − x2ux2 ux1,x1,x1 − 2 ux1,x1 x2ux1,x2 − 2 ux1,x1 ux1

ux1,x1
3/2 dx2.

On the other hand, the Lagrangian (17) admits the variational symmetries

X1, X2, (21)

with conserved forms

• X1:

−1
4

ux2,x2,x2 ux1 + 2 ux1,x2 ux2,x2

ux2,x2
3/2 dx1

−1
4

2 λ2u2ux1,x1
3/2 + 4 λ1uux1,x1

3/2 + 4
√ux2,x2 ux1,x1

3/2 + 2 ux1,x1
2 − ux1,x1,x1 ux1

ux1,x1
3/2 dx2

• X2:

1
4

2 λ2u2ux2,x2
3/2 + 4 λ1uux2,x2

3/2 + 4√ux1,x1 ux2,x2
3/2 + 2 ux2,x2

2 − ux2,x2,x2 ux2

ux2,x2
3/2 dx1
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+
1
4

ux1,x1,x1 u2 + 2 ux1,x2 ux1,x1

ux1,x1
3/2 dx2.

5. Exact Solutions

Every variational symmetry is a Lie symmetry and may be used for the purposes of invariant
solutions. Thus, the system (12) can be used to find invariants to reduce some of the PDEs of Section 3.
A reduced equation is commonly easier to solve. In this section, we explore travelling wave solutions
of the noise-suppressing PDEs.

A travelling wave solution of the Euler–Lagrange Equation (15) can be found using a reduction
by X1 + cX2, so that (16) transforms to

(c + 1)

(
−2

d4F (ζ)

dζ4
d2F (ζ)

dζ2 + 3
(

d3F (ζ)

dζ3

)2)
= 0, (22)

where ζ = −cx1 + x2 and (22) solves to give

F (ζ) = −4 c1 ln (c2 + ζ) + c3 ζ + c4. (23)

A solution for the digital image is then

u (xi) = −4 c1 ln (c2 − cx1 + x2) + c3 (−cx1 + x2) + c4,

where the c1−4 are four constants of integration.
Equation (16) admits the Lie point symmetries

X1, X2, X∞ = K(xi)∂u, X4 = u∂u +
3
2

t∂t,

X5 = t∂t + x1∂x1 + x2∂x2 , X6 = ∂t, (24)

whose Lie brackets appear in Table 1.

Table 1. Lie brackets of the symmetry algebra.

[,] X1 X2 X4 X5 X6

X1 0 0 0 X1 0
X2 0 0 0 X2 0
X4 0 0 0 0 − 1

2
(
3X6)

X5 −X1 −X2 0 0 −X6

X6 0 0 3X6

2 X6 0

For the evolution Equation (16), we may apply the vector X4 so that

u (t, xi) = h (xi) t2/3.

This transformation leads to a PDE that inherits the symmetries X1 and X2, and admits the vector
− 2

3 h∂h + xi∂xi . A travelling wave solution thereafter, again from X1 + cX2 leads to the ODE

c5

(
(c + 1)

(
−6

d4k (ζ)
dζ4

(
d2k (ζ)

dp2

)7/2

+ 9
(

d3k (ζ)
dζ3

)2 (d2k (ζ)
dζ2

)5/2)
+ 16

(
d2k (ζ)

dζ2

)5

k (ζ)

)
= 0, (25)
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with the invariant h (xi) = k (ζ) . Equation (25) possesses the Lie point symmetries

X̄1 = k∂k −
3
2

ζ∂ζ , X̄2 = ∂ζ .

The commutator relation here is [
X̄1, X̄2

]
=

3
2

X̄2.

In a similar process as above, the application of X̄1 leads to the solution

u (t, xi) =


(
(−100 c− 100)

√
10 (−cx1 + x2)

2
)2/3

100 (−cx1 + x2)
2

 t
2
3 . (26)

Moreover, Equation (19) also has a travelling wave solution from X1 + cX2. By quadrature,
Equation (19) reduces to

8 ( λ2m (ζ) + λ1)

(
d2m (ζ)

dζ2

)5/2

− 2 (c + 1)

(
d4m (ζ)

dζ4
d2m (ζ)

dζ2 + 3
(

d3m (ζ)

dζ3

)2)
, (27)

which admits the Lie point symmetries

X̄2, X̄3 = (2 λ2m + 2 λ1) ∂m − 3 λ2ζ∂ζ .

The non-vanishing Lie bracket is [
X̄2, X̄3

]
= −3λ2X̄3.

The point symmetry X̄3 yields a solution for Equation (27), and ultimately the digital image is

u (xi) = −
λ1

λ2
+

(
−225

√
10 (c + 1) λ2

2(−cx1 + x2)
2
)2/3

225 (−cx1 + x2)
2λ2

2
. (28)

On the other hand, the evolution equation with a source term, (18) admits the Lie point symmetries

X1, X2, X6, X7 = (2 λ2u + 2 λ1) ∂u − 3λ2 ( x1∂x1 + x2∂x2) , X∞,

X8 = e−
3
2 λ2t∂t − e−

3
2 λ2t (λ2u + λ1) ∂u,

with Lie brackets in Table 2.

Table 2. Lie brackets of the symmetry algebra.

[,] X1 X2 X6 X7 X8

X1 0 0 0 −3λ2X1 0
X2 0 0 0 −3λ2X2 0
X6 0 0 0 0 − 1

2
(
3λ2X8)

X7 3λ2X1 3λ2X2 0 0 0
X8 0 0 3λ2X8

2 0 0
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Hence, we may obtain an exact solution for (18) with the use of the vector field X8—that is,
Equation (18) transforms to the PDE

3
(

∂2w (qi)

∂qr2

)5/2 (
∂3w (qi)

∂qi
3

)2

− 2
(

∂2w (qi)

∂q1
2

)5/2
∂4w (qi)

∂q24
∂2w (qi)

∂q22 = 0, r = 1, 2 i 6= r. (29)

This PDE has the Lie point symmetries

X̄4 = q1∂q1 + q2∂q2 , X̄5 = ∂q1 , X̄6 = ∂q2 , X̄∞ = J(qi)∂w,

with non-zero commutators [
X̄4, X̄5

]
= X̄4,

[
X̄5, X̄6

]
= X̄5.

Therefore, a travelling wave solution is obtainable from X̄5 + cX̄6, where qi ≡ xi and

w (qi) =
1
6
(3 c + 1)2 (c2 − cq1 + q2)

2 4(3 c+1)−1

c (−1 + 3 c)
c1

3 c
3 c+1

(
− 1
(3 c + 1) (c2 + (−cq1 + q2))

)2 (3 c+1)−1

+c3 (−cq1 + q2) + c4. (30)

That leaves us with the digital image solution of

u (t, xi) =
e−λ2tw (qi) λ2 − λ1

λ2
.

The corresponding invariant transformations of every symmetry generator is provided in Table 3.

Table 3. Invariants of the symmetry algebras. PDE: partial differential equation; ODE: ordinary
differential equation.

PDEs/ODEs Dependency Point Symmetry Invariants

Time-independent X1 x2, u(xi)
X2 x1, u(xi)
X3 x2

x1
, u(xi)

X̄1 k(ζ)ζ2/3

X̄2 k(ζ) or m(ζ)

X̄3 ζ2/3(λ2m(ζ)+λ1)
λ2

X̄4 q2, w(qi)
X̄5 q1, w(qi)
X̄6 q2

q1
, w(qi)

Time-dependent X1 x2, t, u(t, xi)
X2 x1, t, u(t, xi)
X4 x1, x2, u(t, xi)t−2/3

X5 x2
x1

, t
x1

, u(t, xi)

X6 x1, x2, u(t, xi)

X7 t, x2
x1

, x2/3
1 (λ2u(t,xi)+λ1)

λ2

X8 x1, x2, eλ2t(λ2u(t,xi)+λ1)
λ2

6. Conclusions

The focus of this study was to explore travelling wave solutions of PDEs found in image processing.
As these models are highly non-linear, an advantageous approach of dealing with them is to consider
their invariance properties. This entails a Lie or Noether symmetry classification, which was applied
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to a static and non-static fourth-order PDE. Additionally, we looked at several solutions in the case
of the PDEs having a source term. Our application of Lie’s theory provided the four digital image
solutions, whereas the use of Noether’s theorem enabled us to obtain conservation laws of the Lagrange
functionals. Both the evolution PDEs admitted a five-dimensional Lie algebra (excluding the X∞

vector). The invariants of the symmetry classification are given so that other solutions, not presented
here, can be calculated.

To perceive our solutions compared to existing noise suppression, consider Figure 1. The first

graph is simply a noisy data set and (b) is the Gaussian function G = 1√
4πt

e−
x2
4t which is a solution of

the heat equation ut = ∆u. The heat equation is the benchmark for noise smoothing, eliminating noise
but leaving blurry edges at times. In (b), as expected we observe a smoothing of the image and
interestingly, (c) also has this feature. We conclude that these solutions are effective in noise smoothing.

(a) (b)

(c)

Figure 1. Smoothing and edge enhancement in 1D. We select the parameter values λ1 = 1,
λ2 = −1, c = −4, t = x2 = 1: (a) a noisy data set; (b) Gaussian solution of the heat equation;
(c) the solution (26), note that (28) is similar.

Some limitations of this study include: (a) the model and our results are only relevant to
post-processing noise reduction, (b) this particular noise suppression PDE, like most other denoising
methods, does not incorporate signal-dependent noise characteristics (or so-called noise-statistic
subtleties) in the model, and (c) to further evaluate the performance of the PDE model, one must
consider the signal-to-noise ratio.

The results of this study can be further tested on a range of medical MRIs and synthesised images
so that improvements can be made by considering boundary preservation, computational costs and
applicability to various image types.
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In medical diagnostics in particular, noise reduction is an expensive process. It is therefore
paramount to have a denoising model with efficient computing time, which suppresses noise and
produces good edges. In 2D, digital images have very similar spatial resolution along the x and
y dimensions. However, in medical MRI applications, volumetric 3D images and also time series
of volume images in 4D are also important. Fortunately, the method used to solve above can be
extended to include higher dimensional data. However, as noise functionals get more complex,
the computing time grows as well. In 1D and 2D data sets, this is not a big concern, but as the
dimensions and unknown parameters increase, the functional will have a dramatic effect on computing
time. Regarding the computational efficiency, the fourth-order scheme is slightly slower than the
second-order schemes that exist in the literature. This is due to the complexity of the PDE in terms of
the presence of mixed derivatives. Thus, our fourth-order model would incur higher computational
costs. However, we emphasise that our reduced equations and solutions diminish some of these costs
of processing data.

The symmetry and conservation law analysis of the variational noise functionals provide a
rigorous mathematical tool to introduce solutions to the digital image. In conclusion, our graphical
analysis demonstrates that our results are robust and exhibit good noise suppression, and more
importantly, preserve significant structural details in images. In future work, we will explore several
other noise associated variational functionals as well as higher spatial dimensions.
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