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Abstract: In this research, an easy-to-use particle swarm optimizer (PSO) for solving constrained
engineering design problems involving mixed-integer-discrete-continuous (MIDC) variables that
adopt two kinds of diversity-enhancing mechanisms to achieve superior reliability and validity
was developed. As an initial diversity-boosting tool, the local neighborhood topology of each
particle is set up such that information exchange is restricted to a limited number of consecutively
numbered particles. This topological mechanism forces each particle to move in the search space
while interacting only with its neighboring subpopulation. The second diversity-enhancing task is
to ensure that the exploration behavior of each particle in the search space is governed such that
it follows the diversity classifier decision applied to its subpopulation. This diversity classification
iteratively adjusts the three-phase velocity-related mechanism of each particle such that it approaches
or retreats from its previous best position/the current best position among the subpopulation. In
summary, this PSO tool not only introduces the social interaction of the particle within its cyclically
neighboring subpopulation but also exploits the three-phase velocity behavior law governed by the
distributed diversity measures categorized for each neighboring subpopulation. This scheme has
superior reliability, as well as high practicality for engineering optimization problems involving
MIDC variables, which are handled by the widely adopted straightforward rounding-off technique
used in most swarm-inspired metaheuristic search technologies.

Keywords: particle swarm optimization; constrained optimization; evolutionary algorithm; global
optimization; mixed-integer-discrete-continuous optimization

1. Introduction

Several real-life engineering design tasks require the use of numerical optimization techniques
that can handle highly nonlinear multimodal problems, with several complicated constraints on factors
such as stress, deflection, load-carrying capability, and geometric configuration [1]. Although several
gradient-based deterministic algorithms have been introduced during the past decades, their solution
is a function of the initial search points and thus might not be the global optimum. This drawback
of classical methods has induced the widespread adoption of biologically inspired metaheuristic
algorithms; i.e., algorithms that mimic the behavior of different species or the social-cooperative
behavior of swarms [1–3]. Some popular metaheuristic optimizers include the differential evolution
(DE) algorithm, genetic algorithm (GA), particle swarm optimization (PSO), simulated annealing (SA)
algorithm, and ant colony optimization. In this area of research, the PSO algorithm has attracted much
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attention as a reliable treatment for a wide range of large-scale, multimodal, non-convex, and nonlinear
unconstrained optimization problems [4,5].

When handling engineering optimization problems via PSO, one frequently faces the following
two obstacles.

(I) Most engineering design tasks include multiple real-life physical constraints and thus necessitate
PSO techniques that can account for these. Furthermore, such physical constraints are, in
general, treated as hard constraints that should be satisfied by any feasible solution found via the
optimization procedure.

(II) A large fraction of design problems in engineering fields belong in the category of mixed-integer-
discrete-continuous (MIDC) optimization problems and thus particular care has to be taken to
find feasible solutions, which makes design tasks more challenging.

However, since PSO was initially devised not only to handle unconstrained optimization problems
but also to work only with real-valued variables, the presence of non-continuous design variables
results increases the difficulty of finding feasible or optimal solutions, as in most other evolutionary
algorithms [6–10]. Trends and ways of tackling constrained mixed-variable problems in evolutionary
algorithms can be found in several articles [9,11–21]. Nevertheless, a rigorous mechanism for
handling integer/discrete variables is still challenging and the focus of intensive research, even
in PSO applications for unconstrained optimization problems, as mentioned in [6].

Recently, [10] preliminarily investigated a straightforward procedure for solving constrained
MIDC optimal design problems. In their research, they recommended a constrained PSO algorithm
combined with the conventional technique of rounding the variable values to the nearest discrete or
integer values for objective function evaluation, while all particles still freely evolve with floating-point
values within a continuous search domain, regardless of the type of variable. Although this primitive
technique seems to be rather unrefined, it has been widely introduced with promising application
results in several studies on evolutionary algorithms [11–21]. Nevertheless, their constrained
PSO-based method combined with the rounding-off mechanism may not guarantee acceptable
reliability; i.e., the probability of finding the required design variables satisfying the optimality
criteria may be insufficient. This performance degradation is certainly due to the insufficient
diversification characteristics of swarms, which, in practical implementation, may accelerate the
premature convergence phenomenon of particles to a local optimum. It should be noted that
diversification helps the optimizer to explore the search space on a global scale, possibly resulting
in the exploration of various diverse solutions for attaining global optimality [1]. However,
most population-based evolutionary computation techniques, including PSO, depend on the basic
underlying principle of reducing the search space in the progression toward a global optimum.
Updating the position vector for each particle that outperforms the current global best position of the
population could no longer be achieved after a certain iteration number owing to the swarm-movement
pattern and, in this case, the whole swarm may remain trapped in a search region containing a local
optimal solution [22,23]. In such a case, if a method to enhance population diversity is not introduced,
particles evolving based on the conventional PSO mechanism may have difficulty reaching the true
global optimal position. Such a diversity improvement is expected to motivate research studies of our
diversity-guided PSO with a cyclic network mechanism.

The purpose of the present study is the realization of an easy-to-use diversity-guided PSO scheme
for constrained mixed-variable optimization problems, which uses diversity classifiers for cyclically
neighboring subpopulations and is characterized by superior reliability and validity. To achieve this
aim, this paper develops a novel constrained PSO strategy that combines the following two kinds of
diversity-enhancing mechanisms. The first diversity-boosting tool is to construct cyclically neighboring
multi-subpopulations, one for each particle (host particle), where the subpopulation is composed
of some successively numbered particles, with the host particles as the center. In this structure, the
host particle only interacts with a limited number of neighboring particles (i.e., particles belonging to
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the subpopulation) during the search process within the problem-solution space. Thus, the “nearby
neighbor” in this mechanism implies the particle within the subpopulation that transfers individual
positional information and fitness values to the host particle [24–26]. Note that the host particle of
a certain subpopulation can be one of several nearby neighbors of other subpopulations; thus, any
information on the good fitness value of one host particle is cyclically propagated to other neighboring
host particles during the evolution process. Therefore, this structure forces each particle to achieve
social learning from its respective neighborhoods and not directly from the best position of the entire
swarm, which results in enhancing the population diversity. Second, to achieve diversity improvement
for each subpopulation, the aforementioned PSO mechanism is extended and combined with the
three-phase velocity update law, which is introduced to governs the behavior of the host particles at
each iteration. In this extended PSO algorithm, the velocity behavior of each host particle per iteration
is governed by attraction, repulsion, and in-between phases [23,27], chosen according to the diversity
classifier applied to the subpopulation of the host particle. In summary, our PSO scheme not only
exploits constricted social learning of each particle through cyclically neighboring subpopulations
but also incorporates the three-phase velocity behavior law, implemented by following the locally
distributed diversity measures categorized for each subpopulation. This novel PSO scheme features
high reliability, as well as superior practicality for engineering optimization problems involving
MIDC variables, which are handled via the straightforward rounding-off technique that has been
widely adopted in swarm-inspired metaheuristic search technologies. Note that the conventional PSO
scheme proposed by [23,27] evaluates the sole diversity measure obtained from the position data of
the entire swarm and targets optimization problems having continuous variables and no constraint
functions. Therefore, their method may not reliably provide a sufficient level of population diversity
to produce offspring that outperform their parents, in the case of MIDC nonlinear programming
with multimodal characteristics; even when no constraint is involved. Several benchmark MIDC
design problems are presented to clearly verify that the proposed PSO scheme is a highly useful tool,
providing remarkable reliability.

The remainder of this paper is organized as follows. In the following section, typical MIDC
engineering design problems and a brief sketch of the conventional evolutionary PSO algorithm
are presented. In Section 3, the development of a novel PSO scheme with a diversity classifier for
cyclically neighboring subpopulations is described, and its distinctive features are discussed in depth.
The details of eight typical benchmark design examples are given in the successive sections, and then,
simulation results obtained using the proposed PSO tool are compared in depth with those obtained
using other PSO methods and various other evolutionary algorithms. Further discussions on the
influence of variations in neighboring particle sizes on the performance of the proposed PSO scheme
are also presented. Finally, we present our conclusions in Section 5.

2. Engineering Design Problem and Particle Swarm Optimizer

The classical PSO is a population-based stochastic computational technique with a powerful global
search capability for resolving the following form of the optimization problem, without constraints:

min f (x), over x ∈ Rn and f (x) : Rn 7→ R (1)

where the linear or nonlinear objective function f : Rn 7→ R is minimized with respect to the vector of
design variables x ∈ Rn. Therefore, a particle in the PSO algorithm represents a potential solution x in
(1). Let D denote the limited sub-region of an entire n-dimensional Euclidean space and be assumed to
contain the optimal solutions. The conventional evolutionary PSO searching mechanism is initiated
with a swarm randomly generated over the space D. Thereafter, each particle moves in a coordinated
way through the n-dimensional search space D. The behavior of each particle is mainly influenced by



Mathematics 2020, 8, 2016 4 of 29

both its own best previous experience and a social compulsion to move toward a single best particle
among the entire swarm, as follows:

xk+1
i = xk

i + vk+1
i , (2)

vk+1
i = c0vk

i + c1rk
1,i(xpbest,i−xk

i ) + c2rk
2,i(xgbest−xk

i ) (3)

where i = 1, 2, · · · , np denotes the index of the particle where np is the number of particles in the
swarm; k = 1, 2, · · · , kmax represents the iteration number where kmax is the maximum number of
allowable iterations; xk

i ∈ Rn and vk
i ∈ Rn denotes the position and velocity vectors, respectively, for

the ith particle at the k-th iteration; xpbest,i denotes the vector of the best previous position yielding
the minimum fitness value f (·) for the ith particle; xgbest denotes the vector of the global best position
found by the entire swarm; c0 denotes the inertia weight and c1 and c2 represent the cognitive and
social scaling parameters, respectively; and rk

1,i and rk
2,i are random parameters generated uniformly in

the range of [0, 1].
However, the above classical PSO method frequently faces the following two obstacles. First,

for engineering optimal design problems that include several physical constraints, it necessarily
introduces a technique that is capable of handling the problem (1), subject to

F := {x ∈ Rn| h1(x) ≤ 0, h2(x) ≤ 0, h3(x) ≤ 0, · · · , hm(x) ≤ 0}, (4)

where h`(x) : Rn 7→ R denotes the constraint function and a feasible region denoted by F represents
the set of design variables that satisfy the given constraint conditions. It should be noted that h`(x) ≤ 0,
` = 1, 2, · · · , m in (4) is generally treated as a hard constraint in most engineering design problems.
It is therefore critical to handle such constraint functions within the framework of PSO for evaluating
the fitness of each particle over the PSO iteration and eventually obtaining the resultant optimal vector
x∗. Second, in practical engineering design work, some or all optimization problem design variables
very commonly have integer/discrete values, as

x := (xI, xD, xC)T = (xI
1, xI

2, · · · , xI
nI

, xD
1 , xD

2 , · · · , xD
nD

, xC
1 , xC

2 , · · · , xC
nC
)T (5)

where the number of design variables becomes n := nI + nD + nC. Let the feasible subsets of integers
and discrete and continuous design variables, be denoted by RnI , RnD and RnC . Using this information,
researchers have tried to modify the original PSO scheme to handle constraint conditions, as well as
integers and discrete variables [6–21]. In the following section, we propose an easy-to-use PSO scheme
with a diversity classifier for cyclically neighboring subpopulations, which allows superior reliability
and validity for constrained MIDC optimization problems.

3. PSO with a Diversity Classifier for Cyclically Neighboring Subpopulations

To improve the behavior performance of the swarm via a diversity-boosting mechanism, [23,27]
studied a diversity-guided PSO (ATRE-PSO) strategy. Comparing to (3), the sole velocity update law
for each particle is modified so that its velocity behavior follows one of the three-phase update laws,
where the attraction, in-between, and repulsion phases are classified by the diversity measure DIV(·)
per iteration, as follows:

vk+1
i =


c0vk

i + c1rk
1,i(xpbest,i − xk

i ) + c2rk
2,i(xgbest − xk

i ) if DIV(k) > Dhigh;

c0vk
i − c1rk

1,i(xpbest,i − xk
i )− c2rk

2,i(xgbest − xk
i ) if DIV(k) < Dlow;

c0vk
i + c1rk

1,i(xpbest,i − xk
i )− c2rk

2,i(xgbest − xk
i ) otherwise,

(6)
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where Dhigh and Dlow are chosen by the designer. The diversity classifier for each iteration is
obtained by

DIV(k) =
1

np

np

∑
i=1

√√√√ n

∑
j=1

(
xk

i,j − x̂k
j

)2
, x̂k

j :=
1

np

( np

∑
`=1

xk
`,j

)
. (7)

where xi,j denotes the jth entry of xi. They verified that their diversity-boosting mechanism allows
particles to maintain an acceptable level of diversity for various benchmark problems with continuous
variables and no constraint functions and thus helps to address the premature convergence problem.
However, the above method may not reliably provide a level of population diversity that is sufficiently
high to produce offspring that outperform their parents in the case of MIDC nonlinear programming
with multimodal characteristics, even when no constraint is involved. Therefore, the PSO scheme that
exploits the constricted social learning of each particle through cyclically neighboring subpopulations
is presented in the following and such a scheme is extended for combination with the three-phase
velocity update law to achieve diversity improvement for each subpopulation.

To consider the constraint functions of the optimization problem within the framework of our
PSO algorithm, an efficient constraint handling mechanism introducing a so-called virtual objective
function, fv(x) : Rn 7→ R, is summarized below [28]. Note that any function can be such a virtual
objective function if it guarantees that: (i) for any x ∈ Rn satisfying all constraint conditions, fv(x) <
0 holds; and (ii) for any xi ∈ Rn and xj ∈ Rn, satisfying f (xi) < f (xj), fv(xi) < fv(xj) holds.
For example, the function arctan{ f (x)} − π/2 can be a virtual function satisfying the above two
properties (refer to [10,28] for details). Then, the given optimization problem (1) subject to (4) can be
transformed into the following unconstrained optimization problem:

min
x∈Rn

L(x), L(x) :=

{
hmax(x), if hmax(x) ≥ 0;

fv(x), otherwise,
(8)

where hmax(x) is defined as hmax(x) := max (h1(x), h2(x), · · · , hm(x)). This modified objective
function forces the swarm to keep moving into and remaining within the bounds of feasible space F
during the initial iteration steps and then moving through the solution space to search for the optimum.
Therefore, this constraint handling strategy enables one to obtain feasible design variables that, at least,
satisfy the constraint conditions in a considerably more simple manner.

Next, to solve the unconstrained problem (8), the PSO scheme exploiting the constricted social
learning of each particle through cyclically neighboring subpopulations is extended to incorporate
the three-phase velocity behavior law (2) implemented by following the locally distributed diversity
measures categorized for each subpopulation. In the canonical PSO strategy, the offspring of each
particle is produced based on the information on its best previous position vector xpbest,i and the
information on the current swarm best position vector xgbest, as shown in (3). This means that
because xgbest := arg minx∈{xpbest,i |i=1,··· ,np} L(x), (i.e., xgbest is determined from all xpbest,i available
at each evolutionary stage), xpbest,i may be mainly responsible for premature convergence [29].
Considering this viewpoint, the swarm flexibility is boosted by constructing cyclically neighboring
multi-subpopulations, one for each particle (host particle), which results in the replacement of only
one xgbest by different social-best positions for each subpopulation. Such a social-best position vector
for the i-th particle xi at the k-th iteration, denoted by xk

sbest,i, is determined only from its individual
subpopulation, as follows:

xk
sbest,i := arg min

x∈{xk
` | `=i− ns

2 ,··· ,i+ ns
2 }
L(x) (9)

where an even number of ns(≤ np) denotes the total number of neighboring particles within the
subpopulation of xi, and xk

` := xk
(`−1 mod np)+1 for ` < 1 or np + 1 ≤ `. This formulation verifies

that the host particle xi interacts only with a limited number of particles belonging to the same
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subpopulation and those nearby neighbor particles transfer their positional information and fitness
values to the host particle. Furthermore, the host particle of a certain subpopulation can be a nearby
neighbor of some other subpopulation, which means that any information on the good fitness value
of one host particle is cyclically propagated to other neighboring host particles during the evolution
process. Therefore, this structure forces each particle to achieve social learning from its respective
neighborhoods, not directly from the best position of the entire swarm, resulting in the enhancement
of population diversity. It then follows that by replacing xgbest in (6) with xk

sbest,i in (9) that

vk+1
i = c0vk

i ± c1rk
1,i(xpbest,i − xk

i )± c2rk
2,i(xk

sbest,i − xk
i ) (10)

where the positive and negative signs are assigned according to the diversity measure DIV(k) at
each iteration. This formulation implies that vk

i enforces the accelerated movement of vk
i toward

xpbest,i and xk
sbest,i. Conversely, the existing PSO method proposed by [23,27] governs the swarm

behavior of all particles by following the sole diversity measure, DIV(k) in (7), derived from the
position data of the entire population. Therefore, such a diversity classifier mechanism should be
modified to be compatible with the swarm structure of cyclically neighboring multi-subpopulations.
This can be achieved by developing multiple distributed diversity measures categorized for each local
subpopulation as follows: for i = 1, 2, · · · , np,

DIVi(k) =
1

ns + 1

i+ ns
2

∑
`=i− ns

2

√√√√ n

∑
j=1

(
xk
`,j − x̂k

j

)2
, x̂k

j :=
1

ns + 1

 i+ ns
2

∑
l=i− ns

2

xk
l,j

 , (11)

where DIVi(k) refers to the diversity measure of xk
i updated in each iteration. For np = 9 and

ns = 4, the overall schematic diagram of our PSO with diversity classifiers applied respectively to
cyclically neighboring multi-subpopulations is illustrated in Figure 1. In this figure, the first particle
has DIV1(k) > Dhigh and thus moves toward both pbest and sbest. In contrast, since DIV2(k) < Dlow,
the second particle moves in the direction opposite to that of pbest and sbest. The ninth particle with
Dlow ≤ DIV9(k) ≤ Dhigh moves toward pbest but in the direction opposite to that of sbest.
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Figure 1. Schematic diagram of the proposed diversity-guided particle swarm optimizer (PSO) with a
cyclic network mechanism.

Finally, a straightforward and reliable method for handling the MIDC design variables in (5)
by applying the aforementioned PSO strategy in (2) and (10) with (11) is described. To achieve this
objective, we introduce the widely used rounding-off technique, as follows.

(I) Initialize the entire swarm. Then, the particles evolve in the D-dimensional search space,
regardless of the variable types in xi (:= (xI, xD, xC)T), of (5), via (2) and (10) with xk

sbest,i.
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As a result, all elements (i.e., all design variables) in xi take floating-point values during the
current stage.

(II) For j = 1, 2, · · · , nI, the variable xi,j, which is the jth entry of xi ∈ R, denotes the integer design
variable xI

i,j and thus must take an integer value. Let INT(xi,j) denote the nearest integer of

xi,j ∈ R. i.e., xi,j is rounded to its nearest integer. It then follows that xI
i,j ← INT(xi,j) is performed.

Similarly, the discrete design variable xD
i,nI+` for ` = 1, 2, · · · , nD takes the value of DIS(xi,nI+`) as

xD
i,nI+` ← DIS(xi,nI+`). Here, DIS(xi,nI+`) indicates the nearest discrete value that xi,nI+` takes in

the given data set of discrete design values.
(III) Fitness of individual particle with positional vector (xI

i , xD
i , xC

i ), is evaluated based on the objective
function L(x), as in (8) subject to no constraint functions. Finally, xpbest,i and xk

sbest,i in (9),
are calculated.

For finding an optimal design variable vector, the aforementioned procedure for a set of np

particles keeps running until a certain termination criterion is met. Then, after a significant number of
evolutions, optimal variables or approximate optimal variables are expected to be found. For handling
constrained optimization problems with the MIDC variables, the flowchart of the overall PSO with
a diversity classifier for cyclically neighboring subpopulations is illustrated in Figure 2, where the
optimal design variable vector x∗ is determined as

x∗ := arg min
x∈{xj

i | i=1,2,··· ,np ; j=1,2,··· ,k}
L(x). (12)

Conversely, the presented flowchart includes an optional mechanism such that, after a
predetermined number of evolutions, kDIV, the velocity-related behavior of the particle is governed by
the formula of (3), with xk

sbest,i instead of xgbest. This mechanism only emphasizes the fine-searching
ability via an attraction phase among particles belonging to the same subpopulation in the current
search space that is sufficiently narrowed via the movement of the particles over the previous evolutions
with the three-phase velocity update law.
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i p
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Set x  := (x   , x    , x     ) as follows: i
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i i i
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i, n + j
k
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x         = x             ,  j = 1, 2, ..., n  .i, n +n  + j
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I D
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are satisfied?

Optimal solution
x   as in (12)*

End
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sbest,i
k

gbest

Measure DIV(k) in (11)

Predifine the user parameters:

n  , n  , c  , c  , c  , D      , D p s 0 1 2 high low

Figure 2. Flowchart of the PSO scheme with a diversity classifier for cyclically neighboring
subpopulations for solving the constrained MIDC optimization problems.
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4. Numerical Experimentation

This section introduces a wide variety of benchmark design problems that involve different types
of MIDC variables and are subject to real-life design constraints for evaluating the performance of the
proposed optimization algorithm. The 30 independent runs of the optimization task for each design
problem were executed, where the user parameters were set as c0 = 0.7298 and c1 = c2 = 1.4962.
The maximum PSO iteration number was set as kmax = 1500, for the car side impact design problem,
and kmax = 500 for the others. The swarm size was np = 50 for the design problem of the reinforced
concrete beam and np = 100 for the others. To verify the practicality and reliability of the proposed
PSO-based design method, the statistical results were primarily compared with several existing
heuristic techniques [1–3,30], in which the authors extensively survey several evolutionary- and
nature-inspired algorithms. Conversely, the relation between the neighborhood size, ns, and the
robustness and preciseness of the PSO algorithm is studied in-depth, and one possible promising
indicator for determining ns is then discussed.

4.1. Optimal Design of Pressure Vessel

The design problem for a compressed air storage tank in Figure 3, where the cylindrical
pressure vessels are capped at both ends by two hemispherical heads, is examined. Its minimum
volume is 750 (ft3), and the working pressure is 3000 (psi). The design objective is to minimize
the total manufacturing cost, which comprises a combination of material, forming, and welding
costs. Four kinds of design variables are defined as (1) the inner radius of the shell, r; (2) the
length of the cylindrical section, l; (3) the thickness of the head, th; (4) the thickness of the shell,
ts. Let x := (x1, x2, x3, x4)

T be defined as x = (l, r, ts, th)
T . Here, l and r are continuous variables but

the available thicknesses for th and ts are integer multiples of 0.0625. Then, the optimal design problem
is formulated as

min
x

f (x) := 0.6224x3x2x1 + 1.7781x4x2
2 + 3.1661x2

3x1 + 19.84x2
3x2 (13)

subject to the constraint conditions, which are in accordance with the ASME design codes, such as

h1(x) := 0.0193x2 − x3 ≤ 0 (14)

h2(x) := 0.00954x2 − x4 ≤ 0 (15)

h3(x) := 750× 1728− πx2
2x1 − 4

3 πx3
2 ≤ 0, , (16)

h4(x) := x1 − 240 ≤ 0, (17)

where h3(x) denotes the constraint function concerning the minimum volume of 750 (ft3). The lower
bound of the design variable x1 is fixed at 20 (in) whereas its upper bound is set at 240 (in), accounting
for the constraint h4(x). Note that this differs from the limit of 200 (in), as described in some articles [1,2].
When the limit of x1 has been determined, the ranges of x2, x3, and x4 are automatically derived through
the constraint conditions as: x2 ∈ [37.7, 63], x3 ∈ [0.6875, 1.25], and x4 ∈ [0.3125, 0.625].

th ts

rr

l

Figure 3. Configuration of a pressure vessel.

The optimizing procedure presented in Figure 2 is executed to find the optimal decision variable
vector x∗ that achieves the minimum cost function f (x) and simultaneously satisfies the four
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constraints on hi(x). The modified unconstrained problem (8) is defined with fv(x) := arctan{ f (x)} −
π/2, and (Dlow, Dhigh, kDIV) = (10, 20, 150). The best solution and corresponding optimal objective
function value are compared with several evolutionary and nature-inspired algorithms in Table 1.
Among the compared approaches, a feasible best solution was obtained only by [1] and our PSO
scheme. However, the worst, mean, and standard deviation values of the statistical results demonstrate
that our scheme far surpassed the other reported optimization methods, including [1]. Despite this, the
result of [31] seems to outperformours in terms of optimal cost value. However, their optimal design
variables are not feasible as the constraint condition on h3(x) is violated; this is also the case in the
method of [32]. Finally, the statistical result of our PSO method was obtained when the total number
of fitness evaluations was 50,000 (=np × kmax), which is twice the number of those conducted in [1].
However, even in the case of 25,000 function evaluations, with np = 50 and kmax = 500, our approach,
which produced the best, worst, average, and standard deviation of 5850.3830603, 5850.4168780,
5850.3842066, and 0.0061715, respectively, outperformed the results given in [1].

Table 1. Optimization results for the pressure vessel design problem.

[32] [31] [33] [1] [2] Present StudyMethod PSO-GA HS SA-DS FA PSO PSO (ns = 16)

x1 (l) 221.365487 221.36553 207.22555 221.36547 221.365548 221.3654714
x2 (r) 38.860102 38.86010 39.80962 38.86010 38.860099 38.8601036
x3 (ts) 0.7500 0.75 0.7683 0.75 0.75000 0.7500000
x4 (th) 0.3750 0.375 0.3797 0.375 0.37500 0.3750000

h1(x∗) −0.0000 −0.0000 −0.0000 −0.0000 −0.000000 −0.0000000
h2(x∗) −0.0043 −0.0043 −0.0000 −0.0043 −0.004275 −0.0042746
h3(x∗) 0.0446 0.2713 −10.7065 −0.0134 −0.000190 −0.0255540
h4(x∗) −18.6345 −18.6345 −32.7744 −18.6345 −18.634452 −18.6345290

Best objective value 5850.383064 5849.76169 5868.76484 5850.38306 5850.38376 5850.38306
Objective deviation a 1.0 + 6.837× 10−10 1.0− 1.062× 10−4 1.0 + 3.142× 10−3 1.0 1.0 + 1.197× 10−7 1.0

Feasibility Infeasible Infeasible Feasible Feasible Feasible Feasible

Worst objective value N/A b N/A 6804.328100 6258.96825 5850.591797 5850.38308
Average objective value N/A N/A 6164. 585867 5937.33790 N/A 5850.38306

Standard deviation N/A N/A 257.473670 164.54747 N/A 3.7× 10−6

Function evaluations 100,000 200,000 N/A 25,000 31,436–124,968 50,000
a The ratio of the best objective value of each method to the lowest one among all methods. b N/A
denotes non-available.

4.2. Optimal Design of Reinforced Concrete Beam

The configuration of a reinforced concrete beam in Figure 4, which has a simply supported span of
30 (ft) subject to a live load of 2.0 (klbf) and a dead load of 1.0 (klbf). The yield stress of the reinforced
steel σy and the concrete compressive strength σc are 50 (ksi) and 5 (ksi), respectively. The unit cost of
steel and concrete are, respectively, 1.0 and 0.02 $/in2 per linear ft. The design objective is to achieve
the minimum manufacturing cost, where the three design variables are: (1) the width b of the concrete
beam, which is an integer variable; (2) the depth h of the concrete beam, which is a continuous variable;
and (3) the cross-sectional area As of the reinforcing bar. Here, As is a discrete type variable that is one
of the standardized dimensions listed in Table 2.

3klbf

30 ft

b

hAs

Figure 4. Configurationof a reinforced concrete beam.

Let the design variable vector x := (x1, x2, x3)
T be defined as x = (As, b, h)T . Then, the design

problem is formulated as:
min

x
f (x) := 29.4x1 + 0.6x2x3. (18)
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The constraint conditions are stated as follows. The first constraint is for the width-to-depth ratio of
the beam, which should be restricted to below 4, as

h1(x) :=
x2

x3
− 4 ≤ 0. (19)

The second constraint condition for guaranteeing the safety requirement defined in the ACC building
code 318–77 is given as

Mu = 0.9x1σy(0.8x2)

(
1.0− 0.59

x1σy

0.8x2x3σc

)
≥ 1.4Md + 1.7Ml , (20)

where Mu, Ml , and Md denote the flexural strength, live load, and dead load moments of the beam,
respectively. Let Md = 1350 (kip-in) and Ml = 2700 (kip-in). The above condition is then reformulated
as shown in [1]:

h2(x) := 180 + 7.375
x2

1
x3
− x1x2 ≤ 0. (21)

The bounds of the design variables are x2 ∈ {28, 29, · · · , 40} in, and 5 ≤ x3 ≤ 10 in. We set the user
parameters as (Dlow, Dhigh, kDIV) = (0.1, 0.3, 200).

Table 2. Discrete values of the reinforcing bars.

Bar Type As (in2) Bar Type As (in2) Bar As (in2) Bar Type As (in2)

1#4 0.2 6#5 1.86 9#6 3.96 12#7 7.2
1#5 0.31 10#4, 2#9 2 4#9 4 13#7 7.8
2#4 0.4 7#5 2.17 13#5 4.03 10#8 7.9
1#6 0.44 11#4, 5#6 2.2 7#7 4.2 8#9 8

3#4, 1#7 0.6 3#8 2.37 14#5 4.34 14#7 8.4
2#5 0.62 12#4, 4#7 2.4 10#6 4.4 11#8 8.69
1#8 0.79 8#5 2.48 15#5 4.65 15#7 9
4#4 0.8 13#4 2.6 6#8 4.74 12#8 9.48
2#6 0.88 6#6 2.64 8#7 4.8 13#8 10.27
3#5 0.93 9#5 2.79 11#6 4.84 11#9 11

5#4, 1#9 1 14#4 2.8 5#9 5 14#8 11.06
6#4, 2#7 1.2 15#4, 5#7, 3#9 3 12#6 5.28 15#8 11.85

4#5 1.24 7#6 3.08 9#7 5.4 12#9 12
3#6 1.32 10#5 3.10 7#8 5.53 13#9 13
7#4 1.4 4#8 3.16 13#8 5.72 14#9 14
5#5 1.55 11#5 3.41 10 7, 6#9 6 15#9 15
2#8 1.58 8#6 3.52 14#6 6.16
8#4 1.6 6#7 3.6 8#8 6.32
4#6 1.76 12#5 3.72 15#6, 11#7, 7#9 6.6

9#4, 3#7 1.8 5#8 3.95 9#8 7.11

Table 3 compares the best solution and the statistical results for the proposed and other reported
methods. This table shows that [1] also found the best solution but our PSO scheme offered the best
objective function value, with a smaller number of function evaluations. Furthermore, the given
statistical results show that the standard deviation on the optimized costs of 30 independent runs using
our PSO method equals zero, demonstrating the remarkable optimization accuracy and reliability.
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Table 3. Optimization results of the reinforced concrete beam design problem.

Reference [34] [35] [36] [37] [1] Present Study

Method SD-RC a GHN-ALM b GHN-EP c BFO GA GA-FL FA PSO (ns = 8)

x1 (As) 7.8 6.6 6.32 N/A 7.20 6.16 6.32 6.32
x2 (b) 31 33 34 N/A 32 35 34 34
x3 (h) 7.79 8.495227 8.637180 N/A 8.0451 8.7500 8.5000 8.5000

h1(x∗) −0.0205 −0.1155 −0.0635 N/A −0.0224 0 0 0
h2(x∗) −4.2012 0.0159 −0.7745 N/A −2.8779 −3.6173 −0.2241 −0.22409

Best objective value 374.2 362.2455 362.00648 376.2977 366.1459 364.8541 359.2080 359.2080
Objective deviation 1.0 + 4.174× 10−2 1.0 + 8.456× 10−3 1.0 + 7.791× 10−3 1.0 + 4.758× 10−2 1.0 + 1.931× 10−2 1.0 + 1.572× 10−2 1.0 1.0

Feasibility Feasible Infeasible Feasible N/A Feasible Feasible Feasible Feasible

Worst objective value N/A N/A N/A N/A N/A N/A 669.150 359.2080
Average objective value N/A N/A N/A N/A 371.5417 365.8046 460.706 359.2080

Standard deviation N/A N/A N/A N/A N/A N/A 80.73870 0.0000
Function evaluations 396 N/A N/A 100,000 100,000 30,000 25,000 20,000

a Hybrid discrete steepest descent and rotating coordinate directions methods. b Generalized Hopfield network-based augmented Lagrange multiplier approach. c GHN-based
extended penalty approach.
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4.3. Optimal Design of Helical Compression Spring

The helical compression spring of Figure 5 is designed to support an axially-guided constant
compressive load. This must be optimized to support a certain load without failure, with a minimum
wire volume (minimum weight). The integer-valued number of spring coils (N), real-valued outside
diameter of the spring (D), and spring wire diameter (d), which takes one of the allowable 42 discrete
values given in Table 4, are included as optimization variables and are set as x = (x1, x2, x3)

T :=
(D, N, d)T . Accordingly, the objective function related to the minimization of the spring volume is
formulated as

min
x

f (x) :=
1
4

π2x1x2
3(x2 + 2). (22)

d
D

FF

Figure 5. Configuration of a helical compression spring.

Table 4. Discrete allowable values of the spring wire diameter d.

Allowable Wire Diameter (in)

0.0090 0.0095 0.0104 0.0118 0.0128 0.0132 0.0140
0.0150 0.0162 0.0173 0.0180 0.0200 0.0230 0.0250
0.0280 0.0320 0.0350 0.0410 0.0470 0.0540 0.0630
0.0720 0.0800 0.0920 0.1050 0.1200 0.1350 0.1480
0.1620 0.1770 0.1920 0.2070 0.2250 0.2440 0.2630
0.2830 0.3070 0.3310 0.3620 0.3940 0.4375 0.5000

The following constraint conditions specify the design restrictions:

h1(x) := (8cKFmax)/(πx2
3)− S ≤ 0, K := (4c− 1)/(4c− 4) + 0.615/c, c := x1/x3 (23)

h2(x) := l − lmax ≤ 0 (24)

h3(x) := dmin − x3 ≤ 0 (25)

h4(x) := (x1 + x3)− Dmax ≤ 0 (26)

h5(x) := 3.0− c ≤ 0, (27)

h6(x) := δp − δpm ≤ 0, δp := Fp/k, k := (Gx4
3)/(8x2c3) (28)

h7(x) := δp + (Fmax − Fp)/k + 1.05(x2 + 2)x3 − l ≤ 0, l := Fmax/k + 1.05(x2 + 2)x3 (29)

h8(x) := δw − (Fmax − Fp)/k ≤ 0 (30)

The supplied numerical data included in the problem statement are listed in Table 5, and the
constraint details can be found in [1]. Combining the constraints h3(x)-h5(x), the boundaries of x1 and
x2 become [0.6, 3.0] and [1, 70], respectively, and the limits of x3 are set automatically as [0.0090, 0.5000]
from Table 4. We set the user parameters as (Dlow, Dhigh, kDIV) = (0.1, 0.4, 250).
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Table 5. Parameter values used in the formulation of the helical compression spring problem.

Notation Description Value

Fmax Maximum working load 1000.0 (lb)
S Maximum allowable shear stress 1.89× 105 (psi)

lmax Maximum free length 14.0 (in)
dmin Minimum wire diameter 0.2 (in)
Dmax Maximum outside spring diameter 3.0 (in)

Fp Preload compression force 300.0 (lb)
δpm Maximum allowable deflection 6.0 (in)

under preload
δw Deflection from preload position to 1.25 (in)

maximum load position
G Shear modulus of the material 1.15× 107 (psi)

This design problem was previously examined using various optimization algorithms including
FA [1], PSO [2,14], DE [21], GA [38] and HSIA (hybrid swarm intelligence approach) [39]. The reported
optimization performances, including statistical results, were compared in-depth with our PSO scheme,
as presented in Table 6. In this table, it can be seen that our PSO scheme detected the best solution,
satisfying all constraints; this was also reported in [2,14,21]. Among these, [14] found the best
solution with a smaller number of function evaluations. However, in terms of statistical results,
our PSO algorithm surpassed other conventional optimization methods with a reasonable number of
function evaluations.

4.4. Optimal Design of Belleville Spring

This benchmark example is to design a Belleville spring of minimum weight, as shown in Figure 6.
The four design variables are as follows: (1) thickness t (=: x1), (2) height h (=: x2), (3) internal
diameter Di (=: x3), and (4) external diameter De (=: x4). The cost function is given as:

min
x

f (x) := 0.07075π(x2
4 − x2

3)x1. (31)

P

Di

De

t

h

Figure 6. Configuration of a Belleville spring.
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Table 6. Optimization results of the helical compression spring design problem.

Reference [40] [38] [39] [21] [14] [1] [2] Present Study
Method NLPA a GA HSIA DE PSO FA PSO PSO (ns = 16)

x1 (D) 1.180701 1.227411 1.223 1.223041 1.223041 1.223049 1.223041 1.223041
x2 (N) 10 9 9 9 9 9 9 9
x3 (d) 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283
−h1(x∗) 5430.9 550.993 1008.81 1008.8114 1008.8114 1008.02 1008.8059 1008.811398
−h2(x∗) 8.8187 8.9264 8.946 8.94564 8.9456 8.946 8.945635 8.945636
−h3(x∗) 0.08298 0.0830 0.083 0.08300 0.083 0.083 0.083000 0.083000
−h4(x∗) 1.8193 1.7726 1.77696 1.77696 1.777 1.777 1.493959 1.493959
−h5(x∗) 1.1723 1.3371 1.32170 1.32170 1.3217 1.322 1.321700 1.321700
−h6(x∗) 5.4643 5.4585 5.4643 5.46429 5.4643 5.464 5.464286 5.464286
−h7(x∗) 0.0 0.0 0.0 0.0 0.0000 0 0.000000 0.000000
−h8(x∗) 0.0 0.0134 0.0 0.0 0.0000 0.0000 0.000010 0.000000

Best objective value 2.7995 2.6681 2.659 2.65856 2.65856 2.658576 2.658559 2.658559
Objective deviation 1.0 + 5.301× 10−2 1.0 + 3.589× 10−3 1.0 + 1.659× 10−4 1.0 + 3.761× 10−7 1.0 + 3.761× 10−7 1.0 + 6.394× 10−6 1.0 1.0

Worst objective value N/A N/A N/A N/A N/A 7.8162919 N/A 2.660784
Average objective value N/A N/A N/A N/A 2.738024 4.3835958 N/A 2.658890

Standard deviation N/A N/A N/A N/A N/A 4.6076313 N/A 0.000611
Function evaluations N/A N/A N/A 26,000 15,000 75,000 4784–98,992 50,000

a Nonlinear programming algorithm.
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The constraints related to compressive stress, deflection, height to deflection, height to maximum
height, outer diameter, inner diameter, and slope are formulated as

h1(x) := 1000S− 4Eδmax

(1− µ2)αx2
4

[
β

(
x2 −

δmax

2

)
+ γx1

]
≥ 0, (32)

h2(x) :=

(
4Eδmax

(1− µ2)αx2
4

[(
x2 −

δ

2

)
(x2 − δ) x1 + x3

1

])
δ=δmax

− Pmax ≥ 0, (33)

h3(x) := δl − δmax ≥ 0, (34)

h4(x) := H − x2 − x1 ≥ 0, (35)

h5(x) := Dmax − x4 ≥ 0, (36)

h6(x) := x4 − x3 ≥ 0, (37)

h7(x) := 0.3− x2

x4 − x3
≥ 0, (38)

where

α =
6

π ln K

(
K− 1

K

)2
, β =

6
π ln K

(
K− 1
ln K

− 1
)

, γ =
6

π ln K

(
K− 1

2

)
,

Pmax = 5400 lb, δmax = 0.2 in, µ = 0.3, S = 200 KPsi, H = 2 in, Dmax = 12.01 in,

K = x4/x3, δl = g(a)x2, a = x2/x1.

The variation in g(a) according to a(= x2/x1) can be determined as shown in Table 7. We set the
user parameters as (Dlow, Dhigh, kDIV)= (0.25, 0.35, 100).

Table 7. Variation of g(a) with a.

a ≤1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 ≥2.8
g(a) 0.58 1 0.85 0.77 0.71 0.66 0.63 0.6 0.56 0.55 0.53 0.52 0.51 0.51 0.5

A comparison of the best solution and statistical results for this design problem is presented
in Table 8. It can be verified from this table that although three conventional methods (MBA, ABC,
and TLBO) also found the optimal solution, the remarkable superiority of our PSO scheme to these
optimizers is demonstrated by the worst, mean, and standard deviation values. It should be noted that
the results of [41] seem to outperform ours in terms of optimal cost value; however, the solution was
not feasible because the second constraint (h2(x)) was violated.

4.5. Optimal Design of Speed Reducer

The design objective is to minimize the weight of the speed reducer of Figure 7, which is subject
to constraints, including restrictions concerning the bending and surface stresses of the gear teeth,
transverse deflection of the two shafts caused by the transmitted force, and stresses in the shafts.
The decision variables, x1 to x7, represent, respectively, b (face width), m (tooth module), n (number of
teeth on the pinion), l1 (length of shaft 1 between bearings), l2 (length of shaft 2 between bearings), d1

(shaft diameter 1), and d2 (diameter of shaft 2). Here, x3 should take an integer value, while all the
other variables are continuous.
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Table 8. Optimization results of the Belleville spring design problem.

Reference [42] [43] [41] [3] [30] Present Study

Method GA GeneAS-I GeneAS-II OPTIVAR MBA ABC TLBO PSO (ns = 16)

x1 (t) 0.208 0.205 0.210 0.204 0.204143 N/A 0.204143 0.204143
x2 (h) 0.2 0.201 0.204 0.200 0.2 N/A 0.2 0.200000

x3 (Di) 8.751 9.534 9.268 10.030 10.0304732 N/A 10.03047 10.030473
x4 (De) 11.067 11.627 11.499 12.010 12.01 N/A 12.01 12.010000
h1(x∗) 2145.4109 −10.3396 2127.2624 134.0816 4.58× 10−4 N/A 1.77× 10−6 6.93× 10−11

h2(x∗) 39.75018 2.8062 194.222554 −12.5328 3.04× 10−7 N/A 7.46× 10−8 8.85× 10−10

h3(x∗) 0.00000 0.0010 0.0040 0.0000 9.24× 10−10 N/A 5.8× 10−11 8.81× 10−13

h4(x∗) 1.592 1.5940 1.5860 1.5960 1.595856 N/A 1.595857 1.595857
h5(x∗) 0.943 0.3830 0.5110 0.0000 0 N/A 2.35× 10−9 1.58× 10−10

h6(x∗) 2.316 2.0930 2.2310 1.9800 1.979526 N/A 1.979527 1.979527
h7(x∗) 0.21364 0.20397 0.20856 0.19899 0.198965 N/A 0.198966 0.198966

Best objective value 2.121964 2.01807 2.16256 1.978715 1.979675 1.979675 1.979675 1.979675
Objective deviation 1.0 + 7.187× 10−2 1.0 + 1.939× 10−2 1.0 + 9.238× 10−2 1.0− 4.849× 10−4 1.0 1.0 1.0 1.0

Feasibility Feasible Infeasible Feasible Infeasible Feasible N/A Feasible Feasible
Worst objective value N/A N/A N/A N/A 2.005431 2.104297 1.979757 1.979675

Average objective value N/A N/A N/A N/A 1.984698 1.995475 1.979688 1.979675
Standard deviation N/A N/A N/A N/A 7.78 ×10−3 0.07 0.45 0.000000

Function evaluations N/A N/A N/A N/A 15,000 150,000 150,000 50,000
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The cost function then becomes

min
x

f (x) :=0.7854x1x2
2(3.3333x2

3+14.9334x3 − 43.0934)− 1.508x1(x2
6 + x2

7)

+ 7.4777(x3
6 + x3

7) + 0.7854(x4x2
6 + x5x2

7). (39)

Shaft 1 Shaft 2

l1

l2

d2

d1

Figure 7. Configuration of a speed reducer.

The following 11 constraint conditions result in the problem being highly complex:

h1(x) := 27x−1
1 x−2

2 x−1
3 − 1 ≤ 0, (40)

h2(x) := 397.5x−1
1 x−2

2 x−2
3 − 1 ≤ 0, (41)

h3(x) := 1.93x−1
2 x−1

3 x3
4x−4

6 − 1 ≤ 0, (42)

h4(x) := 1.93x−1
2 x−1

3 x3
5x−4

7 − 1 ≤ 0, (43)

h5(x) :=

√(
745x4

x2x3

)2
+ 16.9× 106

0.1x3
6

− 1100 ≤ 0, (44)

h6(x) :=

√(
745x5

x2x3

)2
+ 157.5× 106

0.1x3
7

− 850 ≤ 0, (45)

h7(x) := x2x3 − 40 ≤ 0, (46)

h8(x) := 5− x1/x2 ≤ 0, (47)

h9(x) := x1/x2 − 12 ≤ 0, (48)

h10(x) := (1.5x6 + 1.9)x−1
4 − 1 ≤ 0, (49)

h11(x) := (1.1x7 + 1.9)x−1
5 − 1 ≤ 0, (50)

where the limits of the variables are set as 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,
7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, and 5.0 ≤ x7 ≤ 5.5. For this minimization problem, the performance of
our PSO algorithm is compared with the extensive survey results presented in some articles [3,44,45]
of the following six optimization methods: (i) DEDS: differential evolution with dynamic stochastic
selection (ii) DELC: differential evolution with level comparison (iii) HEAA: hybrid evolutionary
algorithm and adaptive constraint handling technique (iv) MDE: modified differential evolution (v)
PSO-DE: PSO with differential evolution and (vi) MBA: mine blast algorithm (see [3] for details.).
The user parameters were set as (Dlow, Dhigh, kDIV) = (0.25, 0.35, 100).

The optimization results are presented in Table 9, which demonstrates that our PSO scheme
outperformed some other optimization techniques in terms of precision (i.e., the lowest cost function
value). For the detected best solution, the constraint values become h1(x∗) = −0.073915, h2(x∗) =
−0.197999, h3(x∗) = −0.107955, h4(x∗) = −0.904644, h5(x∗) = −534.994106, h6(x∗) = −0.000000,
h7(x∗) = −28.100000, h8(x∗) = −0.000000, h9(x∗) = −7.000000 h10(x∗) = −0.143836, and h11(x∗) =
−0.000000, which demonstrates that all the constraint conditions are satisfied. Furthermore, it is
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observed in Table 9 that the proposed optimizer yields better results than those reported in the
previous studies for the best, mean, and worst solutions, demonstrating the remarkable consistency of
our optimization method.

4.6. Optimal Design of Stepped Cantilever Beam

This example considers a stepped cantilever beam subject to the end load shown in Figure 8
where minimizing the volume of the beam is the design objective. The height and width of
the cross-sectional area in all five segments are taken as the design variables, which results in
{x1, x3, x5, x7, x9} := {b1, b2, b3, b4, b5} and {x2, x4, x6, x8, x10} := {h1, h2, h3, h4, h5}. Then, the objective
function is formulated as:

min
x

f (x) := 100(x1x2 + x3x4 + x5x6 + x7x8 + x9x10), (51)

where x1 ∈ {1, 2, 3, 4, 5}, x3, x5 ∈ {2.4, 2.6, 2.8, 3.1}, x2, x4 ∈ {45, 50, 55, 60}, x6 ∈ {30, 31, · · · , 65},
1 ≤ x7, x9 ≤ 5, and 30 ≤ x8, x10 ≤ 65. The constraint conditions are described as follows. First, the
bending stress in all segments must be less than the allowable limit of 14,000 (N/cm2):

h1(x) :=
600P
x9x2

10
− 14, 000 ≤ 0, (52)

h2(x) :=
1200P
x7x2

8
− 14, 000 ≤ 0, (53)

h3(x) :=
1800P
x5x2

6
− 14, 000 ≤ 0, (54)

h4(x) :=
2400P
x3x2

4
− 14, 000 ≤ 0, (55)

h5(x) :=
3000P
x1x2

2
− 14, 000 ≤ 0, , (56)

where the concentrated load P = 50,000 (N). Second, the tip deflection of the cantilever beam must be
smaller than the allowable limit of 2.7 (cm):

h6(x) :=
1003P

3E

(
1
I5

+
7
I4

+
19
I3

+
37
I2

+
61
I1

)
− 2.7 ≤ 0, (57)

where the elastic modulus of the material is E = 2× 107 (N/cm2). Finally, the aspect ratio between the
height and width of the cross section in each segment must be less than a value of 20:

h7(x) :=
x10

x9
− 20 ≤ 0, (58)

h8(x) :=
x8

x7
− 20 ≤ 0, (59)

h9(x) :=
x6

x5
− 20 ≤ 0, (60)

h10(x) :=
x4

x3
− 20 ≤ 0, (61)

h11(x) :=
x2

x1
− 20 ≤ 0, . (62)

The user parameters of our PSO method were set as (Dlow, Dhigh, kDIV) = (5, 10, 100).
The best design variables and statistical results obtained via eight optimization methods are

compared in Table 10. This demonstrates that the proposed PSO scheme surpasses all other reported
optimizers for finding the lowest cost function value. Furthermore, the mean and worst values
achieved via our optimizer are considerably better than those reported in other studies. It is noteworthy
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that the zero standard deviation demonstrates the remarkable search precision and reliability of our
optimization engine.

1 2 3 4 5

l1 l2 l3 l4 l5

L

P

bi

hi

Figure 8. Configuration of a stepped cantilever beam.

4.7. Optimal Design of Rolling Element Bearing

The design objective is to increase, as much as possible, the dynamic load-carrying capacity of
the rolling element bearing in Figure 9. Five design variables are defined as follows; ball diameter
(Db =: x1), pitch diameter (Dm =: x2), number of balls (Z =: x3), and inner and outer raceway
curvature coefficients ( fi =: x4 and fo =: x5). Note that other variables, such as KD min (=: x6), KD max

(=: x7), ε (=: x8), e (=: x9), and ζ (=: x10), appear only in the constraint conditions. Here, the number
of balls x3 should take an integer value whereas the remainders are taken as continuous values. The
optimization problem is stated as

max
x

f (x) :=

{
Cd = fcx2/3

5 x1.8
1 , if x1 ≤ 25.4 (mm),

Cd = 3.647 fcx2/3
5 x1.4

1 , if x1 > 25.4 (mm),
(63)

subject to the following constraints that are derived from kinematic and manufacturing considerations:

h1(x) :=
φ0

2 sin−1(x1/x2)
− x5 + 1 ≥ 0, (64)

h2(x) := 2x1 − x6(D− d) ≥ 0, (65)

h3(x) := x7(D− d)− 2x1 ≥ 0, (66)

h4(x) := x10Bw − x1 ≤ 0, (67)

h5(x) := x2 − 0.5(D + d) ≥ 0, (68)

h6(x) := (0.5 + x9)(D + d)− x2 ≥ 0, (69)

h7(x) := 0.5(D− x2 − x1)− x8x1 ≥ 0, (70)

h8(x) := x3 − 0.515 ≥ 0, (71)

h9(x) := x4 − 0.515 ≥ 0, (72)

where

fc = 37.91

1 +

{
1.04

(
1− γ

1 + γ

)1.72 ( x3(2x4 − 1)
x4(2x3 − 1)

)0.41
}10/3

−0.3

× γ0.3(1− γ)1.39

(1 + γ)1/3 ×
[

2x3

2x3 − 1

]0.41
,

φ0 = 2π − 2 cos−1
(
[{(D− d)/2− 3(T/4)}2 + {D/2− T/4− x1}2 − {d/2 + T/4}2]

2{(D− d)/2− 3(T/4)}{D/2− T/4− x1}

)
,

γ =
x1

x2
, x3 =

ri
x1

, x4 =
ro

x1
, T = D− d− 2x1, D = 160, d = 90, Bw = 30,

ri = ro = 11.033, 0.5(D + d) ≤ x2 ≤ 0.6(D + d), 0.15(D− d) ≤ x1 ≤ 0.45(D− d),

4 ≤ x5 ≤ 50, 0.515 ≤ x3, x4 ≤ 0.6, 0.4 ≤ x6 ≤ 0.5, 0.6 ≤ x7 ≤ 0.7, 0.3 ≤ x8 ≤ 0.4,

0.02 ≤ x9 ≤ 0.1, 0.6 ≤ x10 ≤ 0.85.
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Table 9. Optimization results of the speed reducer design problem.

Reference Method DEDS DELC HEAA MDE PSO-DE MBA Present Study
PSO (ns = 16)

x1 (b) 3.5 3.5 3.500022 3.500010 3.5000000 3.500000 3.500000
x2 (m) 0.7 0.7 0.70000039 0.70000 0.700000 0.700000 0.700000
x3 (n) 17 17 17.000012 17 17.000000 17.000000 17.000000
x4 (l1) 7.3 7.3 7.300427 7.300156 7.300000 7.300033 7.300000
x5 (l2) 7.715319 7.715319 7.715377 7.800027 7.800000 7.715772 7.800000
x6 (d1) 3.350214 3.350214 3.350230 3.350221 3.350214 3.350218 2.900000
x7 (d2) 5.286654 5.286654 5.286663 5.286685 5.2866832 5.286654 5.286683

Best objective value 2994.471066 2994.471066 2994.499107 2996.356689 2996.348167 2994.482453 2896.259285
Objective deviation 1.0 + 3.3910× 10−2 1.0 + 3.3910× 10−2 1.0 + 3.392× 10−2 1.0 + 3.4561× 10−2 1.0 + 3.4558× 10−2 1.0 + 3.3914× 10−2 1.0

Worst objective value 2994.471066 2994.471066 2994.752311 2996.390137 2996.348204 2999.652444 2896.259380
Average objective value 2994.471066 2994.471066 2994.613368 2996.367220 2996.348174 2996.769019 2896.259292

Standard deviation 3.6× 10−12 1.9× 10−12 7.0× 10−2 8.2× 10−3 6.4× 10−6 1.56 0.000017
Function evaluations 30,000 30,000 40,000 24,000 54,350 25,000 50,000

Table 10. Optimization results of the stepped cantilever beam design problem.

Method
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Objective Function Function

(b1) (h1) (b2) (h2) (b3) (h3) (b4) (h4) (b5) (h5) Best Deviation Worst Mean Std. Dev. Evaluations

[46] RNES 1 a 3 60 3.1 55 2.6 50 2.311 43.108 1.822 34.307 64269.594 1.0 + 5.887× 10−3 N/A 12,000
RNES 2 3 60 3.1 55 2.6 50 2.267 43.797 1.849 34.282 64322.433 1.0 + 6.714× 10−3 N/A 12,000
RNES 3 3 60 3.1 55 2.6 50 2.348 42.804 1.783 34.753 64299.108 1.0 + 6.349× 10−3 N/A 12,000
RNES 4 3 60 3.1 55 2.6 50 2.491 41.51 2.113 33.231 65416.896 1.0 + 2.384× 10−2 N/A 12,000

[47] DOT N/A 65391.59 1.0 + 2.345× 10−2 N/A N/A
SLP b N/A 65451.50 1.0 + 2.439× 10−2 N/A N/A

MLD c-SLP N/A 65352.20 1.0 + 2.283× 10−2 N/A N/A
[48] C/RU d 4 62 3.1 60 2.6 55 2.205 44.09 1.751 35.03 73555 1.0 + 1.512× 10−1 N/A N/A

PD e 3 60 3.1 55 2.6 50 2.276 45.528 1.75 34.995 64537 1.0 + 1.007× 10−2 N/A N/A
LAD f 3 60 3.1 55 2.6 50 2.262 45.233 1.75 34.995 64403 1.0 + 7.975× 10−3 N/A N/A
CAD g 3 60 3.1 55 2.6 50 2.279 45.553 1.75 35.004 64558 1.0 + 1.040× 10−2 N/A N/A

[49] GAOS Level 1 3 60 3.1 55 2.6 50 2.3 45.5 1.8 35 64815 1.0 + 1.442× 10−2 N/A 10,000
GAOS Level 2 3 60 3.1 55 2.6 50 2.27 45.25 1.75 35 64447 1.0 + 8.664× 10−3 N/A 10,000

[50] GA-APM h 3 60 3.1 55 2.6 50 2.2894 45.6256 1.7931 34.593 64698.56 1.0 + 1.260× 10−2 73931.359 68107.046 N/A 35,000
[51] AIS-GA 3 60 3.1 55 2.6 50 2.235 44.395 2.004 32.879 65559.60 1.0 + 2.608× 10−2 77272.78 70857.12 N/A 35,000

AIS-GA-C i 3 60 3.1 60 2.6 50 2.311 43.186 2.225 31.250 66533.47 1.0 + 4.132× 10−2 76852.86 71821.69 N/A 35,000
[1] FA 3 60 3.1 55 2.6 50 2.205 44.091 1.750 34.995 63893.52 1.0 + 1.409× 10−6 64262.99420 64144.75312 175.91879 50,000

Present study PSO (ns =16) 3 60 3.1 55 2.6 50 2.20456 44.09111 1.74976 34.99514 63893.43 1.0 63893.43080 63893.43080 0.00000 50,000
a Rank-niche evolution strategy. b Sequential linear programming. c Move limit definition. d Continuous/round up. e Precise discrete. f Linear approximate discrete.
g Conservative approximate discrete. h Adaptive penalty method. i Clearing.
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Figure 9. Configuration of a rolling element bearing.

The simulation results using our PSO scheme are presented and compared with the results
of other conventional methods in Table 11. The user parameters of the PSO method were set as
(Dlow, Dhigh, kDIV) = (0.3, 0.5, 100). Although the reported best objective function value of TLBO
in [30] is identical to ours, their solution does not satisfy the given constraint conditions. It should be
noted that the constraint function values given in [30] cannot be obtained from their optimal solution.
However, [3] reported the best cost function value of 85535.9611 but their optimal solution provides
f (x∗) = 81843.68625, which is a lower value than ours. Furthermore, the constraint function value
presented by [3] demonstrates that their method produced an infeasible solution. Among the compared
studies, a feasible solution was obtained by [52]; however, our optimization scheme surpassed their
method, having remarkable precision and an acceptable number of function evaluations.

Table 11. Optimization results of the rolling element bearing design problem.

Reference [52] [3] [30] Present Study

Method GA MBA ABC TLBO PSO (ns = 16)

x1 (Db) 125.7171 125.7153 N/A 125.7191 125.719056
x2 (Dm) 21.423 21.423300 N/A 21.42559 21.425590
x3 (Z) 11 11.000 N/A 11 11.000000
x4 ( fi) 0.515 0.515000 N/A 0.515 0.515000
x5 ( fo) 0.515 0.515000 N/A 0.515 0.515000

x6 (KD min) 0.4159 0.488805 N/A 0.424266 0.411776
x7 (KD max) 0.651 0.627829 N/A 0.633948 0.613510

x8 (ε) 0.300043 0.300149 N/A 0.3 0.300000
x9 (e) 0.0223 0.097305 N/A 0.068858 0.059359
x10 (ζ) 0.751 0.646095 N/A 0.799498 0.667473
h1(x∗) 0.000821 0 N/A 0 a 0.000000
h2(x∗) 13.732999 8.630183 N/A 13.15257 14.026828
h3(x∗) 2.724000 1.101429 N/A 1.5252 0.094509
h4(x∗) −1.107 2.040448 N/A 0.719056 −1.401405
h5(x∗) 0.717000 0.715366 N/A 16.49544 0.719056
h6(x∗) 4.857899 23.611002 N/A 0 14.120649
h7(x∗) 0.0021 0.000480 N/A 0 0.000000
h8(x∗) 0.000007 0 N/A 2.559363 0.000000
h9(x∗) 0.000007 0 N/A 0 0.000000

Best objective value 81,843.3 85,535.9611 b 81,859.7416 81,859.74 81,859.7416
Objective deviation 1.0− 2.009× 10−4 1.0 + 4.491× 10−2 1.0 1.0− 1.955× 10−8 1.0

Feasibility Feasible Infeasible N/A Infeasible Feasible
Worst objective value N/A 84,440.1948 78,897.81 80,807.8551 81,859.7401

Average objective value N/A 85,321.4030 81,496 81,438.987 81,859.7415
Standard deviation N/A 211.52 0.69 0.66 0.0003

Function evaluations 225,000 50,000 10,000 10,000 50,000
a Some constraint function values do not coincide with those calculated using the provided optimal solution.
Their solution provides h1(x∗) = 0.000004, h2(x∗) = 13.152560, h3(x∗) = 1.525180, h4(x∗) = 2.559350,
h5(x∗) = 0.719100, h6(x∗) = 16.495400, h7(x∗) = −0.000022, h8(x∗) = 0.0, and h9(x∗) = 0.0. b This best
value does not coincide with that calculated using the provided optimal solution. Their solution provides
f (x∗) = 81843.68625.
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4.8. Car Side Impact Design Problem

This problem addresses the case of an automobile side impact. Its objective is to improve the side
impact crash performance while reducing the total weight of the automobile. Figure 10 illustrates
the finite element model of the automobile, which is adopted from [1]. This problem contains eleven
variables, such as the thickness of the B-Pillar inner (x1), B-Pillar reinforcement (x2), floor side inner
(x3), cross members (x4), door beam (x5), door belt line reinforcement (x6), roof rail (x7), materials of
B-pillar inner and floor side inner (x8 and x9), and barrier height and hitting position (x10 and x11).
Nine design variables are continuous (x`, ` = 1, 2, · · · , 7, 10, 11), and x8 and x9 are discrete. This
optimal design problem is formulated as

min
x

f (x) := 1.98 + 4.90x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7, (73)

subject to

h1(x) = Fa (load in the abdomen) ≤ 1 (kN), (74)

h2(x) := VCu (dummy upper chest) ≤ 0.32 (m/s), (75)

h3(x) := VCm (dummy middle chest) ≤ 0.32 (m/s), (76)

h4(x) := VCl (dummy lower chest) ≤ 0.32 (m/s), (77)

h5(x) := ∆ur (upper rib deflection) ≤ 32 (mm), (78)

h6(x) := ∆mr (middle rib deflection) ≤ 32 (mm), (79)

h7(x) := ∆lr (lower rib deflection) ≤ 32 (mm), (80)

h8(x) := Fp (public force) ≤ 4 (kN), (81)

h9(x) := VMBP (velocity of V-Pillar at the middle point) ≤ 9.9 (mm/ms), (82)

h10(x) := VFD (velocity of front door at V-Pillar) ≤ 15.7 (mm/ms), (83)

where

Fa = 1.16− 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10 (84)

VCu = 0.261− 0.0159x1x2 − 0.188x1x8 − 0.019x2x7 + 0.0144x3x5 + 0.0008757x5x10

+ 0.08045x6x9 + 0.00139x8x11 + 0.00001575x10x11 (85)

VCm = 0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9 + 0.03099x2x6 − 0.018x2x7

+ 0.0208x3x8 + 0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10 − 0.0005354x6x10

+ 0.00121x8x11 + 0.00184x9x10 − 0.02x2
2 (86)

VCl = 0.74− 0.61x2 − 0.163x3x8 + 0.001232x3x10 − 0.166x7x9 + 0.227x2
2 (87)

∆ur = 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.7x7x8 + 0.32x9x10 (88)

∆mr = 33.86 + 2.95x3 + 0.1792x10 − 5.057x1x2 − 11.0x2x8 − 0.0215x5x10 − 9.98x7x8 + 22.0x8x9 (89)

∆lr = 46.36− 9.9x2 − 12.9x1x8 + 0.1107x3x10 (90)

Fp = 4.72− 0.5x4 − 0.19x2x3 − 0.0122x4x10 + 0.009325x6x10 + 0.000191x2
11 (91)

VMBP = 10.58− 0.674x1x2 − 1.95x2x8 + 0.02054x3x10 − 0.0198x4x10 + 0.028x6x10 (92)

VFD = 16.45− 0.489x3x7 − 0.843x5x6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x2
11. (93)

The simple bounds of the design variables are 0.5 ≤ x1, x2, x3, x4, x5, x6, x7 ≤ 1.5,−30 ≤ x10, x11 ≤
30, and two discrete type variables are x8, x9 ∈ {0.192, 0.345}.
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Barrier

Figure 10. Finite element model utilized in the car side impact problem [1].

Table 12 compares the best solution and the statistical results of the proposed method and
other reported methods. The user parameters of our PSO method were set as (Dlow, Dhigh, kDIV) =

(0.01, 0.03, 200). This table shows that our optimization scheme produced the lowest cost function
value together with a highly reliable performance, which is confirmed from the worst, mean, and
standard deviation values. In particular, the superiority of our optimizer to the recently developed FA
method in [1] is in the objective function values and constrained accuracy performance.

Table 12. Optimization results of the car side impact design problem.

Reference [1] Present Study

Method PSO DE GA FA PSO (ns = 16)

x1 0.50000 0.50000 0.50005 0.50000 0.500000
x2 1.11670 1.11670 1.28017 1.36000 1.116366
x3 0.50000 0.5000 0.50001 0.50000 0.500000
x4 1.30208 1.30208 1.03302 1.20200 1.302197
x5 0.50000 0.50000 0.50001 0.50000 0.500000
x6 1.50000 1.50000 0.50000 1.12000 1.500000
x7 0.50000 0.50000 0.50000 0.50000 0.500000
x8 0.34500 0.34500 0.34994 a 0.34500 0.345000
x9 0.19200 0.19200 0.19200 0.19200 0.192000
x10 −19.54935 −19.54935 10.3119 8.87307 −19.561544
x11 −0.00431 −0.00431 0.00167 −18.99808 −0.000190

Best objective value 22.84474 22.84298 b 22.85653 22.84298 c 22.842969
Objective deviation 1.0 + 7.753× 10−5 1.0 + 4.815× 10−7 1.0 + 5.937× 10−4 1.0 + 4.815× 10−7 1.0

Feasibility Feasible Feasible Infeasible Infeasible Feasible
Worst objective value 23.21354 24.12606 26.240578 24.06623 22.846465

Average objective value 22.89429 23.22828 23.51585 22.89376 22.843136
Standard deviation 0.15017 0.34451 0.66555 0.16667 0.000649

a x8 /∈ {0.192, 0.345}. b The optimal solution is identical to that of PSO but different objective function values
are provided in Gandomi et al. [1]. c This best value does not coincide with that calculated using the provided
optimal solution, f (x∗) = 24.06622. Furthermore, their optimal solution may not guarantee the satisfaction of
two constraint conditions, h8(x∗) = 4.02129 > 4 kN and h10(x) = 15.84839 > 15.7 mm/ms.

4.9. Discussions

The statistical results corresponding to the different percent ratio of ns to np for the numerical
examples in the previous sections are given in Figure 11. This figure verifies that a remarkable
optimization accuracy and reliability can be achieved when the ratio ns/np is approximately 10%.
However, the worst solution and standard deviation were most strongly dependent on the value of
ns (see the cases of ns/np ≤ 4% and ns/np ≥ 32%). The above findings can be explained as follows.
As illustrated in Figure 1, each particle evolves based only on the local information of the neighbors.
The amount of information becomes more limited as the ratio of ns to np decreases. Therefore, the
low ns/np results in the tardy propagation of the successful social-best search result by a certain
particle to particles belonging to other subpopulations. Such a case may lead to a slow convergence
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rate of the swarm toward an optimal solution while reducing the risk of the particles prematurely
converging. This fact implies that more iterations could be required to guarantee the convergence
of particles to a global optimum. In contrast, a high ratio of ns to np implies that a particle obtains a
large amount of information from several other neighboring particles. Therefore, a high convergence
rate may be achieved despite the high risk of a fatal premature convergence phenomenon occurring,
which usually causes the performance consistency of the optimizer to deteriorate. Figure 12 illustrates
the convergence characteristics of f k

min := min
{

f (xk
1), f (xk

2), · · · , f (xk
np)
}

for all 30 independent runs.
Here, “Modified ATRE-PSO" refers to the method in which the original ATRE-PSO of [23,27] and
our constraint handling scheme are combined, which is identical to the proposed PSO method with
ns/np = 100% (i.e., star topology). The figure shows that the proposed cyclic network-based PSO
method converged to the near-optimal solution in every run of the algorithm as compared with the star
topology-based method. This improved reliability was achieved in all the considered design problems
and thus can be considered a superiority of the optimization capability of the proposed method.

5. Conclusions

This study presented the realization of an easy-to-use diversity-guided PSO methodology
for engineering optimal design problems with MIDC variables and subject to various real-life
physical constraints. This scheme uses diversity classifiers for cyclically neighboring subpopulations
and is characterized by superior reliability and validity. This PSO strategy combined two kinds
of diversity-enhancing mechanisms. The first diversity-boosting tool was to construct cyclically
neighboring multisubpopulations, one for each particle (host particle), where the host particle interacts
only with a limited number of nearby neighbor particles during the search process. In this structure,
information on the good fitness value of one host particle is cyclically propagated to other neighboring
host particles during the evolution process. Therefore, this structure enforces each particle to achieve
social learning from its respective neighborhoods and not directly from the best position of the entire
swarm, which results in the enhancement of population diversity. The second diversity improvement
for each subpopulation was to extend the above PSO mechanism to be combined with the idea
of the three-phase velocity update law for governing the behavior of the host particle. In this
extended PSO algorithm, the velocity behavior of each host particle per iteration is governed by
either attraction, repulsion, or in-between phases, chosen according to the diversity classifier applied to
the subpopulation of the host particle. In summary, our PSO scheme not only exploits the constricted
social learning of each particle through cyclically neighboring subpopulations but also incorporates
the three-phase velocity behavior law implemented by following the locally distributed diversity
measures categorized for each subpopulation. This novel PSO scheme features high reliability,
as well as superior practicality for engineering optimization problems involving MIDC variables,
which are handled via the straightforward rounding-off technique that has been widely adopted in
swarm-inspired metaheuristic search technologies. Several benchmark MIDC design problems were
investigated in-depth, clearly verifying that the proposed PSO scheme is a highly useful tool, providing
remarkable reliability.
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(a) Pressure vessel design problem (b) Reinforced concrete beam design problem

(c) Helical compression spring beam design problem (d) Belleville spring design problem

(e) Speed reducer design problem (f) Stepped cantilever beam design problem

(g) Rolling element bearing design problem (h) Car side impact design problem
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Figure 11. Distributions of f (x∗) corresponding to ns/np for eight numerical examples.
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(a) Pressure vessel design problem
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(b) Reinforced concrete beam design problem
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(c) Helical compression spring beam design problem
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(d) Belleville spring design problem
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(e) Speed reducer design problem
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(f) Stepped cantilever beam design problem
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(g) Rolling element bearing design problem
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Figure 12. Convergence behaviors of f (x∗) for eight numerical examples.
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