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Abstract: In this work, we introduce a class of generalized multistep collocation methods for solving
oscillatory Volterra integral equations, and study two kinds of convergence analysis. The error
estimate with respect to the stepsize is given based on the interpolation remainder, and the
nonclassical convergence analysis with respect to oscillation is developed by investigating the
asymptotic property of highly oscillatory integrals. Besides, the linear stability is analyzed with the
help of generalized Schur polynomials. Several numerical tests are given to show that the numerical
results coincide with our theoretical estimates.
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1. Introduction

In many practical problems, such as epidemic diffusion, population dynamics and reaction
processes, one may usually come across a class of Volterra integral equations (VIEs) (see [1] and
references therein). Noting that most VIEs cannot be solved in closed forms, many researchers have
made contributions to the numerical approaches to VIEs.

Particularly, the study of numerical solutions to VIEs with highly oscillatory Fourier or Bessel
kernels has attracted much attention during the past decade. In [2], Xiang and Brunner first investigated
Filon collocation approximations to highly oscillatory VIEs by employing the asymptotic property of
oscillatory integrals. They found that errors of Filon collocation solutions decayed fast as the frequency
increased. The third author presented an optimal convergence order for the direct Filon collocation
solution to the first kind of oscillatory VIE arising in acoustic scattering in [3]. The convergence
behavior of such kinds of numerical approaches was able to be revealed with the help of the detailed
study of the remainder for the error function. Besides, it is noted that numerical analysis with
respect to the frequency, which is usually done by solving error equations and extending van der
Corput lemma (see [4] p. 333), is able to detect the ability of the numerical method to solve highly
oscillatory VIEs. With these techniques in mind, several authors made great contributions to numerical
solutions to highly oscillatory VIEs. For example, Galerkin and collocation solutions for VIEs with
highly oscillatory trigonometric kernels were investigated in [5,6], highly oscillatory VIEs with weakly
singular kernels were studied in [7], the Hermite-type Filon collocation method was presented in [8],
and Clenshaw–Curtis–Filon qudrature for Cauchy singular integral equations was investigated in [9].

In this work, we consider the numerical computation of the following second-kind oscillatory VIE:

u(t) = f (t) +
∫ t

0
K(t, s)eiωg(t,s)u(s)ds, t ∈ [0, T], (1)

where K(t, s), g(t, s) and f (t) are sufficiently smooth, u(t) is unknown, and ω denotes the oscillation
parameter. When ω = 0, Equation (1) reduces to the classical VIEs. In the case of ω � 1, the kernel
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in Equation (1) is highly oscillatory, and special quadrature rules should be employed in practical
computation.

In the remaining part, we are restricted to the following problems. In the forthcoming section,
we first develop a class of generalized multistep collocation methods (GMCk1,k2 M) for Equation (1)
with non-oscillatory kernels, that is, ω = 0. Then, classical convergence analysis and linear stability
analysis are implemented. In the third section, we study the numerical solution to VIE (1) when
the kernel changes rapidly, that is, ω � 1, and present the frequency-explicit convergence analysis.
Some concluding remarks are given in Section 4.

2. GMCk1 ,k2 M in the Case of ω = 0

Frequently-used approaches for VIEs include collocation methods [10], the spectral collocation
method [11,12], the spectral Galerkin method [13,14], the Nyström method [15,16], and so on. Among
these numerical formulae, the collocation-based approach is one of the most important tools. In general,
the collocation solution is obtained by making the polynomial or piecewise polynomial satisfy
the collocation equation. For one-step collocation methods, one can find detailed analysis in [10].
To increase the convergence rate without adding collocation points, Conte and Paternoster studied
multistep collocation solutions with the help of employing approximations to numerical solutions
in computed steps in [17]. However, multistep methods usually tend to be unstable. Fazeli et al.
further investigated the stability of multistep collocation methods in [18], and found some super
implicit collocation solutions with wide stability regions. On the other hand, inspired by the study
of boundary value methodology for solving ODE (see [19]), several authors made contributions to
boundary value solutions to Volterra functional equations [20–22]. Based on interpolation outside
the current subinterval and approximated end values, the third author and Xiang devised CBVM
for second-kind VIEs in [22]. Furthermore, the third author extended said kind of methodology to
VIEs with weakly singular kernels by employing the fractional polynomial interplant in [23], and the
block CBVM for the first-kind VIE was investigated in [24]. In this section we first investigate the
construction of GMCk1,k2 M with the help of local polynomial interpolation. Then, the convergence
and linear stability analysis of GMCk1,k2 M are considered.

2.1. Discretization of VIE

Let the interval [0, T] be divided uniformly, that is,

Xh =
{

tj : tj = jh, j = 0, 1, · · · , N = T/h
}

.

Then define local basic functions

φk1,k2
j (s) =

k2+1

∏
i=−k1,i 6=j

s− i
j− i

, j = −k1, · · · , k2 + 1, (2)

For the first k1 subintervals, that is, for any t ∈ [t0, tk1 ], the collocation polynomial is represented by

uh(tk1 + sh) =
k2+1

∑
i=−k1

yk1+iφ
k1,k2
i (s), s ∈ (−k1, 0], (3)

For k1 ≤ n ≤ N − k2 − 1, uh(t) over the interval [tn, tn+1] is rewritten as

uh(tn + sh) =
k2+1

∑
i=−k1

yn+iφ
k1,k2
i (s), s ∈ (0, 1], (4)
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In the last subinterval [tN−k2 , tN], we rewrite uh(t) as

uh(tN−k2−1 + sh) =
k2+1

∑
i=−k1

yN−k2−1+iφ
k1,k2
i (s), s ∈ (1, k2 + 1]. (5)

Finally, the collocation equation follows:

uh(tn) = f (tn) +
∫ tn

0
K(tn, s)uh(s)ds, tn ∈ Xh. (6)

A direct calculation leads to

yn − f (tn) =



h
∫ n−k1

−k1

K(tn, tk1 + sh)

(
k2+1

∑
i=−k1

yk1+iφ
k1 ,k2
i (s)

)
ds, n = 1, · · · , k1,

h
∫ 0

−k1

K(tn, tk1 + sh)

(
k2+1

∑
i=−k1

yk1+iφ
k1 ,k2
i (s)

)
ds

+h
n

∑
j=k1+1

∫ 1

0
K(tn, tj−1 + sh)

(
k2+1

∑
i=−k1

yj−1+iφ
k1 ,k2
i (s)

)
ds, n = k1 + 1, · · · , N − k2,

h
∫ 0

−k1

K(tn, tk1 + shsh)

(
k2+1

∑
i=−k1

yk1+iφ
k1 ,k2
i (s)

)
ds

+h
N−k2

∑
j=k1+1

∫ 1

0
K(tn, tj−1 + sh)

(
k2+1

∑
i=−k1

yj+i−1φk1 ,k2
i (s)

)
ds

+h
∫ n−N+k2+1

1
K(tn, tN−k2−1 + sh)

k2+1

∑
i=−k1

yN−k2−1+iφ
k1 ,k2
i (s)ds, n = N − k2 + 1, · · · , N.

(7)

Denoting

MOMb,d
a,c,i =

∫ b

a
K(tc, td + sh)φk1,k2

i (s)ds, (8)

we have for k = −k1, · · · , k2 + 1,

Ainitial
k = (a(k)i,j ) =

{
MOM

0,k1
−k1,n,j−k1−1, i ≤ N, j = k + k1 + 1,

0, others,

Amain
k = (b(k)i,j ) =

{
MOM

1,j−1
0,n,k , k1 < i ≤ N, i + k ≤ j ≤ i + k + min{0, n− N + k2 + 1},

0, others,

Aend
k = (c(k)i,j ) =

{
MOM

n−N+k2+1,N−k2−1
i,n,j−N+k2

, i > N − k2, j = N − k2 + k,
0, others.

Now we are able to rewrite Equation (6) in the closed form:

(I− hA(1 : N, 2 : N + 1))Y = F + hy0A(1 : N, 1), (9)

where I denotes the identity matrix, A =
k2+1

∑
k=−k1

Ainitial
k +

k2+1

∑
k=−k1

Amain
k +

k2+1

∑
k=−k1

Aend
k , Y =

[y1, y2, · · · , yN ]
T , and F = [ f (t1), f (t2), · · · , f (tN)]

T . By employing proper numerical integration
approaches such as Clenshaw–Curtis quadrature and applying iterative solvers to Equation (9), we are
able to obtain the collocation solution at the grid.
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2.2. Convergence Analysis with Respect to Stepsize

Now we turn to studying the convergence behavior of the piecewise collocation polynomial
computed by Equation (9). Firstly, we revisit some helpful results from approximation theory.

Lemma 1 ([10] p. 43). Consider the following assumption.

• Defining abscissa a ≤ ξ1 < ... < ξm ≤ b, we obtain the error between f (x) and the Lagrange
interpolation polynomial of degree m− 1 with respect to the given points {ξ j}.

εm( f ; x) = f (x)−
m

∑
j=1

Lj(x) f (ξ j), x ∈ [a, b],

where Lj(x) denotes Lagrange basis.
• Letting 1 ≤ d ≤ m, we suppose f (x) belongs to the space Cd[a, b].

Then we can represent the error function εm( f ; x) as follows.

εm( f ; x) =
∫ b

a
κd(x, t) f (d)(t)dt, x ∈ [a, b]. (10)

Here the kernel function κd(x, t) can be obtained by

κd(x, t) :=
1

(d− 1)!

{
(x− t)d−1

+ −
m

∑
j=1

Lj(x)(ξ j − t)d−1
+

}
,

and

(x− t)p
+ :=

{
0, x < t,

(x− t)p, x ≥ t.

Lemma 2 ([10] p. 81). Suppose that there a sequence {ki} with ki ≥ 0 and another sequence {εi} with ε0 ≤ ρ0.
Moreover, {ki} and {εi} satisfy

εn ≤ ρ0 +
n−1

∑
i=0

qi +
n−1

∑
i=0

kiεi, n ≥ 1,

with ρ0 ≥ 0, qi ≥ 0, i ≥ 0. Then

εn ≤
(

ρ0 +
n−1

∑
i=0

qi

)
e∑n−1

i=0 ki , n ≥ 1.

Existing studies show that we cannot compute collocation boundary value solutions by
recurrences. All numerical values should be computed simultaneously through solving linear systems.
Note that the element of hA(1 : N, 2 : N + 1) is bounded by

h(k1 + k2 + 1)K̄

∥∥∥∥∥ k2+1

∑
i=−k1

φk1,k2
i (t)

∥∥∥∥∥
∞

≤ hK̄2k1+k2+4,

where K̄ denotes the maximum of the kernel function K(t, s), and the above inequality is derived from
the Lesbegue constant of the polynomial interpolant (see [25]). We obtain hA(1 : N, 2 : N + 1) < 1
whenever h < (K̄2k1+k2+4)−1, which enables us to compute det(I − hA(1 : N, 2 : N + 1)) 6= 0 by
Gaussian elimination, as is done in [22]. Therefore, the well-posedess of the solution computed by
GMCk1,k2 M is guaranteed. It is noted that when we encounter stiff problems, the maximum K̄ may be
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large, which implies we have to apply a particularly small stepsize h and restricts the application of the
collocation method. However, due to the compactness of Volterra integral operator, the spectrum of
hA(1 : N, 2 : N + 1) will be found in the neighborhood of 0 with a tolerance stepsize, and the multistep
collocation method is feasible in practical uses. In Figure 1, we show the discretized spectrum of
hA(1 : N, 2 : N + 1) by considering the kernel function K(t, s) = 50eiω(t−s) with the maximum 50.
It can be seen that eigenvalues are bounded by the unit circle when the stepsize decreases to 1/64,
which guarantees the solvability of the linear system.
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Figure 1. The spectrum of hA(1 : N, 2 : N + 1) for various stepsizes h.

Furthermore, we arrive at the following theorem by employing Lemmas 1 and 2.

Theorem 3. Suppose that K(t, s), f (t) in VIE (1) are sufficiently smooth, that is, K ∈ Ck1+k2+2(D) and
f ∈ Ck1+k2+2(I). Furthermore, let uh(t) denote the collocation polynomial computed by GMCk1,k2 M with a
stepsize h. Then the collocation error eh(t) = u(t)− uh(t) in the collocation grid is bounded by

max
t∈Xh
|e(t)| ≤ Chk1+k2+2, (11)

where the constant C is independent of the stepsize h but depends on T.

Proof. Note that by

u(t) = f (t) +
∫ t

0
K(t, s)u(s)ds, t ∈ [0, T],

and

uh(t) = f (t) +
∫ t

0
K(t, s)uh(s)ds, t ∈ Xh,

we obtain the collocation error function eh(t) satisfying

eh(t) =
∫ t

0
K(t, s)eh(s)ds, t ∈ Xh. (12)

Let

Rk1,k2
n (v) :=

∫ k1+k2+1

0
κk2

k1
(v, z)u(k1+k2+2)(tn + zh)dz,
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where

κk2
k1
(v, z) :=

1
(k1 + k2 + 1)!

(
(v− z)k1+k2+1

+ −
k2+1

∑
j=−k1

φk1,k2
j (v)(j− z)+

)
.

For t ∈ [0, tk1 ], we have

eh(t) = eh(tk1 + sh) =
k2+1

∑
i=−k1

vk1+iφ
k1,k2
i (s) + hk1+k2+2Rk1,k2

0 (s), s ∈ [−k1, 0],

where vn := eh(tn). For t ∈ [tj, tj+1], j = k1, · · · , N − k2 − 1, we have

eh(t) = eh(tj + sh) =
k2+1

∑
i=−k1

vj+iφ
k1,k2
i (s) + hk1+k2+2Rk1,k2

j (s), s ∈ [0, 1].

For t ∈ [tN−k2 , tN ], we have

eh(t) = eh(tN−k2−1 + sh) =
k2+1

∑
i=−k1

vN−k2+iφ
k1,k2
i (s) + hk1+k2+2Rk1,k2

N−k2
(s), s ∈ [1, k2 + 1].

Furthermore, by letting

RESb,d
a,c,i =

∫ b

a
K(tc, td + sh)Rk1,k2

i (s)ds, (13)

we obtain

vn :=



h
k2+1

∑
i=−k1

vi+k1 MOM
n−k1,k1
k1,n,0 + hk1+k2+3RES

n−k1,k1
k1,n,0 , n = 1, · · · , k1,

h
k2+1

∑
i=−k1

vi+k1 MOM
0,k1
−k1,n,i + hk1+k2+3RES

0,k1
−k1,n,0

+h
n−1

∑
l=k1

k2+1

∑
i=−k1

vl+iMOM1,l
0,n,i + hk1+k2+3

n−1

∑
l=k1

RES1,l
0,n,n−1 n = k1 + 1, · · · , N − k2,

h
k2+1

∑
i=−k1

vi+k1 MOM
0,k1
−k1,n,i + hk1+k2+3RES

k1,0
0,0,0

+h
N−k2−1

∑
l=k1

k2+1

∑
i=−k1

vl+iMOM1,l
0,n,i + hk1+k2+3

N−k2−1

∑
l=k1

RES1,l
0,n,l

+h
k2+1

∑
i=−k1

vi+N−k2 MOM
n−N+k2+1,n−k2−1
1,n,i

+hk1+k2+3RES
n−N+k2+1,N−k2−1
1,n,N−k2−1 n = N − k2 + 1, · · · , N.
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Suppose that MOMb,d
a,c,i and RESb,d

a,c,i are bounded by the constant B. It is easily noted from
Equations (8) and (13) that B does not depend on the stepsize. A direct calculation leads to

|vn| ≤



hB
k2+1

∑
i=−k1,i 6=n−k1

|vi+k1 |+ h|vn|+ hk1+k2+3B, n = 1, · · · , k1,

hB
k2+1

∑
i=−k1,i 6=n−k1

|vi+k1 |+ hk1+k2+3B + h(k1 + k2 + 2)|vn|

+hB
n−1

∑
l=k1

(
k2+1

∑
i=−k1,i 6=n−l

|vl+i|+ hk1+k2+3B

)
, n = k1 + 1, · · · , N − k2,

hB
k2+1

∑
i=−k1,i 6=n−k1

|vi+k1 |+ hk1+k2+3B + h(k1 + k2 + 2)|vn|

+hB
N−k2−1

∑
l=k1

(
k2+1

∑
i=−k1,i 6=n−l

|vl+i|+ hk1+k2+3B

)

+hB
k2+1

∑
i=−k1,i 6=n−N+k2+1

|vi+N−k2 |+ h|vn|+ hk1+k2+3B, n = N − k2 + 1, · · · , N.

Hence, we have

(1− h(k1 + k2 + 2))|vn| ≤ hk1+k2+2B + h(k1 + k2 + 2)B
n+k2

∑
i=n+1

|vi|+ h(k1 + k2 + 2)B
n−1

∑
i=1
|vi|.

Since 1− h(k1 + k2 + 2) ≈ 1 for sufficiently small stepsize h, we obtain

|vn| ≤ hk1+k2+2B̃ + hk2(k1 + k2 + 2)B̃‖eh‖∞ + h(k1 + k2 + 2)B̃
n−1

∑
i=1
|vi|.

According to Lemma 2, we have

‖eh‖∞ ≤ e(k1+k2+2)B̃ B̃hk1+k2+2 + he(k1+k2+2)B̃(k1 + k2 + 2)k2B̃‖eh‖∞,

or equivalently,

‖eh‖∞ ≤
e(k1+k2+2)B̃ B̃

1− he(k1+k2+2)B̃(k1 + k2 + 2)k2B̃
hk1+k2+2

for sufficiently small stepsize h.

Example 1. Let us solve VIE with GMCk1,k2 M

u(t) = et +
∫ t

0
2 cos(t− s)u(s)ds, t ∈ [0, 2] (14)

with the exact solution u(t) = (1 + t)2et.

In this example, we test the performance of GMCk1,k2 M. We mainly focus on two terms of data,
the maximum of error functions (INAE), and the convergence order. Computed results are shown in
Tables 1–3.
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Table 1. Collocation error and convergence order of GMCk1,k2 M for Example 1.

GMC1,2M GMC1,3M
Error Order Error Order

N = 8 4.10× 10−3 – 1.20× 10−3 –
N = 16 4.13× 10−4 3.31 2.72× 10−5 5.46
N = 32 1.59× 10−5 4.70 6.76× 10−7 5.33
N = 64 5.34× 10−7 4.90 1.22× 10−8 5.79
N = 128 1.72× 10−8 4.96 2.03× 10−10 5.91
N = 256 5.45× 10−10 4.98 3.27× 10−12 5.96
Referenced Order 5.00 6.00

Table 2. Collocation error and convergence order of GMCk1,k2 M for Example 1.

GMC2,1M GMC2,3M
Error Order Error Order

N = 8 1.57× 10−2 – 9.39× 10−4 –
N = 16 4.77× 10−4 5.04 3.91× 10−6 7.91
N = 32 1.61× 10−5 4.89 2.62× 10−8 7.22
N = 64 5.32× 10−7 4.92 1.97× 10−10 7.05
N = 128 1.71× 10−8 4.96 1.51× 10−12 7.03
Referenced Order 5.00 7.00

Table 3. Collocation error and convergence order of GMCk1,k2 M for Example 1.

GMC3,1M GMC3,2M
Error Order Error Order

N = 16 1.58× 10−5 – 4.57× 10−7 –
N = 32 5.54× 10−7 4.83 1.51× 10−8 4.92
N = 64 1.12× 10−8 5.63 1.60× 10−10 6.57
N = 128 1.95× 10−10 5.85 1.38× 10−12 6.86
Referenced Order 6.00 7.00

It can be seen from these tables that as the quantity of nodes increases, absolute errors decay fast,
and as k1 and k2 get bigger, the convergence order enlarges. Besides, numerical results illustrate that
GMCk1,k2 M achieves the expected order of the estimate given in Theorem 3.

Remark 1. When numerical solutions of evolution equations are considered, Courant proposes that the
combination of a consistent and stable numerical approach led to its convergence, which contributes to the
foundation of classical numerical analysis theory of numerical studies on differential equations. On the other
hand, the above convergence analysis is based on a fixed integration interval [0, T], which differs from the
convergence analysis for evolution problems where we usually consider the case of T → ∞. In addition, it should
be noted that the convergence result in Theorem 3 does not guarantee a feasible approximation in practical
computation for long-time integration, especially when we are met with stiff problems. Therefore, we give linear
stability analysis of the presented collocation method in the forthcoming subsection.

2.3. Linear Stability Analysis

For a long-time integration problem, round-off errors may dramatically affect the numerical
solution. In this subsection, we analyze the collocation solution’s linear stability originating from
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the study of numerical solutions of ordinary differential equations, where one usually considers the
test equation

y′(t) = λy(t), Re(λ) < 0.

Particularly, Brugnano and Trigiante investigated multistep methods for solving differential
problems with the above scalar equation in [19]. For the general linear multistep formula

k

∑
j=0

αjyn+j − hλ
k

∑
j=0

β jyn+j = 0,

we can introduce two polynomials

ρ(z) =
k

∑
j=0

αjzj, σ(z) =
k

∑
j=0

β jzj,

and define the associated characteristic polynomial π(z, q) = ρ(z)− qσ(z) with q = hλ. When π(z, q)
is a Schur polynomial for fixed q, the method is absolutely stable at q. For the moment the definition of
the region of absolute stability is

D := {q ∈ C : π(z, q) is a Schur polynomial}

If C− ⊆ D, the method is said to be A−stable.
Since both of discretization of ODE and VIE result in difference equations, we can investigate

the generalized multistep collocation method with the help of stability studies of ODE. Consider the
following test equation:

u(t) = 1 + λ
∫ t

0
u(s)ds, t ∈ [0, T], Re(λ) < 0. (15)

We turn to study the linear stability of the collocation solution by investigating Equation (15).
By applying GMCk1,k2 M we have

yj = 1 + λ
∫ jh

0
uh(s)ds, j = k1 + 1, ..., N − k2. (16)

Next, noting the difference between yj and yj−1 in Equation (15) leads to

yj − yj−1 = hλ
k2+1

∑
i=−k1

yj−1+i

∫ 1

0
φk

i (s)ds, j = k1 + 1, ..., N − k2. (17)

Then the characteristic polynomial is defined by

πk1,k2(z, q) = zk1+1 − zk1 − q
k1+k2+1

∑
i=0

zi
∫ 1

0
φk1,k2

i−k1
(s)ds = ρ(z)− qσ(z). (18)

Before investigating the linear stability region, we introduce some helpful definitions and theorems
in the version of GMCk1,k2 M.

Definition 4 ([19]). For any complex number q := hλ, if the collocation solution uh to Equation (15) computed
by GMCk1,k2 M goes to 0 as T goes ∞ for fixed stepsize, then GMCk1,k2 M is said to be absolutely stable at q.

Definition 5 ([19]). For any z ∈ S, if GMCk1,k2 M is absolutely stable at z, then the set S is said to be the
linear stability region of GMCk1,k2 M. Particularly, if the left part of the complex plane is contained in S,
then GMCk1,k2 M is said to be A−stable.
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Theorem 6 ([19]). For any complex number q, if roots of Equation (18) satisfy

|zk
1| ≤ · · · ≤ |zk

k1
| < 1 < |zk

k1+1| ≤ ... ≤ |zk
k1+k2+1|, (19)

then GMCk1,k2 M is stable at q.

By a direct calculation, we find that roots of πk1,k2(z, q) do not satisfy the condition given in
Theorem 6 in the case of k1 = k2. Hence, the region of stability cannot be shown. In Figures 2 and
3, we list the boundary locus corresponding to various multistep collocation methods with k1 6= k2,
where the boundary Γ is defined by

Γ := {z ∈ C, z =
ρ(eiθ)

σ(eiθ)
, 0 ≤ θ < 2π}.

It can be seen that these trajectories are Jordan curves, which implies Γ is the boundary of
corresponding absolute stability region. The stability region in Figure 2 is the part outside the
boundary curves, while that in Figure 3 is the inside part. Therefore, we can conclude that GMCk1,k2 M
has wide stability region in the case of k2 > k1. In addition, the boundary trajectories of GMCk1,k2M
and GMCk2,k1M are symmetric with respect to virtual axis.
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Figure 2. Linear stability region for GMC1,2 M, GMC1,3 M, GMC2,3 M.
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Figure 3. Linear stability region for GMC2,1 M, GMC3,1 M, GMC3,2 M.
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3. GMCk1 ,k2 M in the Case of ω � 1

When the oscillation parameter ω � 1 in Equation (1), classical quadrature usually results in
time-consuming algorithms. Hence, we first give an efficient numerical approach for moments in
Equation (6) in this section. Then the frequency-explicit convergence analysis is presented.

3.1. Fast Calculation of Moments

Numerical studies of highly oscillatory integrals (HOIs) have been intensively focused on in the
past few decades. High-order algorithms, such as Filon-type quadrature [26], Levin quadrature [27],
and the numerical steepest decent method [28], have been proposed. In this subsection, we consider
a composite quadrature rule based on Xiang’s modified Filon-type quadrature developed in [29].

Consider the computation of

Ma,b
ω,n :=

∫ b

a
K(tn, s)eiωg(tn ,s)φ(s)ds, n = 1, 2, · · · , N. (20)

When the phase has no stationary points, that is, g′(tn, s) 6= 0 for any s ∈ [a, b], let {ck}v
k=0 be

the equispaced nodes on the interval [a, b], that is, ck = a +
k
v
(b− a) for k = 0, · · · , v. In addition,

let {mk}v
k=0 denote a set of positive integers associated with nodes {ck}v

k=0, which helps represent
Hermite interplant later. Furthermore, define the function

σk(s) =


K(tn, s)φ(s)

g′(tn, s)
, k = 1,

σ′k−1(s)
g′(tn, s)

, k ≥ 2.

Then we can find a polynomial p(s) =
N̂

∑
q=0

aqsq with N̂ =
v

∑
k=0

mk − 1 satisfying



p(g(c0)) = σ1(c0)

· · ·
p(m0−1)(g(c0)) = σm0−1(c0)

p(g(c1)) = σ1(c1)

· · ·
p(m1−1)(g(c1)) = σm1−1(c1)

· · ·
p(g(cv)) = σ1(cv)

· · ·
p(mv−1)(g(cv)) = σmv−1(cv)

With the coefficients aq by solving the above linear system, we can approximate Ma,b
ω,n by

∫ g(tn ,b)

g(tn ,a)
p(s)eiωsds =

N̂

∑
q=0

aq

∫ g(tn ,b)

g(tn ,a)
sqeiωsds,

where
∫ g(tn ,b)

g(tn ,a)
sqeiωsds can be calculated by incomplete Gamma function.

In the case of g′(tn, s) = 0 for some s ∈ [a, b], suppose s = a without loss of generality. Then we
insert the grid points

a, a +
20

ω
, a +

2
ω

, a +
22

ω
, · · · , a +

2m

ω
, b,
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where m is the maximum integer less than log2 ω(b− a). Integration with Xiang’s Filon quadrature in
each subintervals results in the composite Filon quadrature. It is noted that the integral over the first
interval is non-oscillatory and we can employ classical quadrature such as Gauss or Clenshaw–Curtis
instead to avoid the stationary problem.

3.2. Convergence Analysis with Respect to the Frequency

Collocation methods with high-order quadrature usually lead to a class of fascinating algorithms,
which are able to provide high-precision collocation solutions in the case of high frequency. In this
subsection, we consider the general oscillator and investigate the convergence analysis for multistep
collocation solutions, where the convergence order is represented by the frequency parameter ω.

Firstly, let us restrict ourselves to considering the following set of functions.

Definition 7. Given any bivariate function g(t, s) defined on [0, T]× [0, T], suppose that g(t, s) has several
stationary points ξ1, · · · , ξnt over [0, T] for any fixed t, and

g′(t, ξ1) = · · · = g(r1)(t, ξ1) = 0, g(r1+1)(t, ξ1) 6= 0
g′(t, ξ2) = · · · = g(r2)(t, ξ2) = 0, g(r2+1)(t, ξ2) 6= 0,
· · ·
g′(t, ξnt) = · · · = g(rN)(t, ξnt) = 0, g(rnt+1)(t, ξnt) 6= 0.

Let ρ(t) = max
i=1,··· ,nt

{ri} and r = sup
t∈[0,T]

{ρ(t)}. Then g(t, s) is said to be in A(r).

Secondly, we give a slight extension of the classical van der Corput Lemma (see [4] p. 333).

Lemma 8. Suppose that g(t, s) ∈ A(r). Moreover, suppose φ(s) ∈ C1(a, b) and φ′(s) is integrable. We can
conclude that ∣∣∣∣∫ b

a
φ(s)eiωg(tn ,s)ds

∣∣∣∣ ≤ Cω−1/(r+1). n = 1, 2, · · · , N.

Here the constant C is independent of ω.

Finally, we are able to develop the convergence behavior of collocation polynomials computed by
GMCk1,k2 M in the highly oscillatory case.

Theorem 9. Assume both of g(t, s) ∈ A(r) and f are sufficiently smooth. Then the numerical solutions derived
from GMCk1,k2 M for VIE (1) satisfy

max
t∈Ih
{|u(t)− uh(t)|} = O(ω−1/(r+1)), ω → ∞. (21)

Proof. To begin with, we explore the boundedness of the solution u(t) to Equation (1) and its derivative.
By applying Picard iteration, we can rewrite u(t) as

u = f +
∞

∑
j=1

(Kj f ). (22)

Here K denotes the integral operator

(Kφ)(t) :=
∫ t

0
K(t, s)eiωg(t,s)φ(s)ds
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According to Lemma 8, we get that u(t) is bounded as ω → ∞. On the other hand, the derivative
can be rewritten by a direct calculation

u′(t) = f ′(t) +
∞

∑
j=1

(
K(t, t) f (t)eiωg(t,t)(Kj−1 f )(t) + iω

∫ t

0
K(t, s) f (s)g′(t, s)eiωg(t,s)(Kj−1 f )(s)ds

)

= f ′(t) +
∞

∑
j=1

(
Ij + II j

)
,

where

Ij := K(t, t) f (t)eiωg(t,t)(Kj−1 f )(t), II j := iω
∫ t

0
K(t, s) f (s)g′(t, s)eiωg(t,s)(Kj−1 f )(s)ds.

By letting ω → ∞, Ij is bounded due to Lemma 8, and II j is bounded by noting that g′(t, s)
vanishes at s = 0.

When noting that the collocation error function eh(t) defined in the previous section satisfies

eh(t) =
∫ t

0
K(t, s)eiωg(t,s)eh(s)ds, t ∈ Xh, (23)

we obtain

(I− hA(1 : N, 2 : N + 1))eh = R, (24)

where

eh =


eh(t1)

eh(t2)

· · ·
eh(tN)

 , R =


hk1+k2+3RES1,0

0,0,0
hk1+k2+3RES2,0

0,0,0
· · ·

hk1+k2+3RES
k1,0
0,0,0 + hk1+k+2+3

N−k2−1

∑
l=k1

RES1,l
0,N,N + hk1+k2+3RES

k2+1,N−k2−1
0,n,N−k2−1


Since both of u(t) and uh(t) are bounded as ω → ∞, employing Lemma 8 implies

|MOMb,d
a,c,i| ≤ Cω−1/(r+1), |RESb,d

a,c,i| ≤ Cω−1/(r+1).

Hence for fixed stepsize h, I− hA(1 : N, 2 : N + 1) is invertible for sufficiently large ω, and we
can represent eh by

eh = (I− hA(1 : N, 2 : N + 1))−1R.

By noting that maximum of R goes to 0 with a speed of O(ω−1/(r+1)) as ω goes to ∞, we obtain
the estimate (21).

In the following example, we test the convergence rate of GCM1,2M in the case of high frequency.

Example 2. In this example, we solve the following VIE with GCM1,2M,

u(t) +
∫ t

0
eiω(t−s)u(s)ds = et, t ∈ [0, 1]. (25)

The exact solution is u(t) =
(∫ t

0
(−ces)e−csds + 1

)
ect, c = iω− 1.

In Figure 4, we plot the scaled infinite norm of absolute error according to the corresponding
order by letting N = 32, and ω varies from 50 to 1000. The left part shows the infinite norm of the
error and the right part shows the absolute error scaled by corresponding rates. It can be seen that the
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increase of the frequency parameter ω makes the absolute error get smaller. This indicates as the kernel
becomes more highly oscillatory, computed approximation becomes more accurate. Considering the
right part of Figure 4, we find that when the frequency parameter ω reaches 150, the curve turns to a
horizontal straight line, which is in agreement with the estimate given in Theorem 9.

0 200 400 600 800 1000

ω varies form 50 to 1000 by 50

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

IN
AE

s

×10-3 GMC
1,2

M,f(t)=e t

0 200 400 600 800 1000

ω varies form 50 to 1000 by 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

IN
AE

s 
sc

al
ed

 b
y 
ω

GMC
1,2

M,f(t)=e t

Figure 4. GMCk1,k2 M for the highly oscillatory problem.

4. Final Remark

For VIEs with oscillatory and non-oscillatory kernels, we have investigated the generalized
multistep collocation solution to VIE (1). Detailed convergence properties with respect to the stepsize
and oscillation are presented. Noting that the new approach coupled with mild composite oscillatory
quadrature rules is able to produce high-order approximation as the frequency goes to infinity, we could
expect it is valuable to conduct further studies in related highly oscillatory problems, such as oscillatory
Riemann–Hilbert problems, spectral calculation of oscillatory Fredholm operators, and so on.
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