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Abstract: While semantic parsing has been an important problem in natural language processing for
decades, recent years have seen a wide interest in automatic generation of code from text. We propose an
alternative problem to code generation: labelling the algorithmic solution for programming challenges.
While this may seem an easier task, we highlight that current deep learning techniques are still far
from offering a reliable solution. The contributions of the paper are twofold. First, we propose a large
multi-modal dataset of text and code pairs consisting of algorithmic challenges and their solutions,
called AlgoLabel. Second, we show that vanilla deep learning solutions need to be greatly improved to
solve this task and we propose a dual text-code neural model for detecting the algorithmic solution type
for a programming challenge. While the proposed text-code model increases the performance of using
the text or code alone, the improvement is rather small highlighting that we require better methods to
combine text and code features.
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1. Introduction

Recent years have seen an increased interest in semantic parsing, especially due to the advances of
data-driven methods using large corpora and deep learning architectures [1,2]. However, in addition
to semantic parsing which has been an important Natural Language Processing (NLP) task for decades,
several new studies aim to generate complex snippets of code, such as Python or C++, directly from natural
language [3,4]. While semantic parsing and code generation are similar, we consider that there are several
important differences mainly related to the complexity of the artificial language that needs to be generated.
Semantic parsing is aimed to generate queries or logical forms that have a simpler representation or
artificial language. At the same time, code generation requires a more complex representation using a
programming language that has not only a more complex syntax, but also a larger number of tokens and
very difficult semantics and high level programming constructs.

We consider that in order to be able to efficiently generate code from natural language, it is first
important to solve some intermediate tasks related to high level programming constructs, such as
algorithmic thinking, data structures, and algorithm design techniques. To this extent, a first step is to be
able to understand the algorithmic solution required to solve a programming challenge. Thus, we define a
multi-label classification task using a large set of challenges gathered from several relevant online resources
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for competitive programming. We introduce AlgoLabel, a multi-modal text-code dataset that contains
both problem statements and C++ code snippets with solutions for the problems. This dataset can be
employed for tagging programming statements with the correct algorithmic solution using the text and
code, but also for more complex semantic parsing using real-world problem statements and code snippets.

Our main contributions are twofold. First, AlgoLabel is larger than existing datasets for this task [5]
and it has been carefully curated to a small number of classes that are balanced and with data splits
employing iterative stratification [6]. Second, it is a multi-modal text-code dataset and we show that a
dual text-code classifier achieves better results than text or code alone. We hope that the AlgoLabel dataset
and the proposed multi-modal solution will open up new research directions in multi-modal text-code
research.

The paper continues as follows. Section 2 contains an overview of the most promising directions
in code generation from text and other related tasks using text-code datasets. In Section 3 we define the
proposed multi-label classification task using both problem statements and code snippets, continuing
with a detailed description of the AlgoLabel dataset in Section 4. The proposed text-code multi-modal
architecture, called AlgoLabelNet, for predicting the solution of an algorithmic challenge is presented
in Section 5. Section 6 presents the performance of AlgoLabelNet compared with several other strong
baselines, while Section 7 provides a discussion on the current limitations and possible improvements.

2. Related Work

Code Generation

The domain of code generation refers to converting natural language descriptions to executable logical
forms. We may differentiate between existing challenges in the field based on the complexity and generality
of the logical forms and the level of abstraction reached in the natural language descriptions.

We would like to identify two datasets that are directly related to our task: AlgoLISP [2] and
NAPS [7]. AlgoLISP leverages algorithmic challenges, automatically synthesized from a small set of
computer science homework assignments. The aim of AlgoLISP is to test the ability of learning to
compose basic programming routines from simple instructions. Since they are automatically generated,
the descriptions exhibit a limited vocabulary and variability. NAPS features problem solutions from
programming competitions. The associated natural language statements, obtained via crowd-sourcing,
directly specify the precise order in which code instructions have to be called.

Other manually annotated datasets, such as Django [4] and CoNaLa [3], tackle more general
programming tasks (e.g., I/O operations, graph plotting, interactions with the OS). Notably, the annotations
follow a similar imperative structure, describing the methods that need to be called and their associated
arguments. Alternatively, large collections of code-descriptions pairs can be obtained automatically,
by scraping open source code repositories [8,9]. However, while the code snippets obtained with this
approach can be arbitrarily complex, the descriptions tend to be vague or incomplete.

On the other hand, statements from programming competitions, focus on comprehensively presenting
the tasks themselves instead of the steps needed to solve them. Consequently, while this makes them
significantly more challenging to understand, even for experienced human programmers, it also provides
a more realistic reflection of real-world use cases.

Semantic Code Representations

Several methods have been published for computing code embeddings—continuous vectors which
encapsulate the semantics of a code snippet. Research in this area has been driven by the possibility of
improving downstream tasks such as automatic code review, API discovery [10] or detecting encryption
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functions in malware [11]. Code2Vec [10] extracts paths from the abstract syntax tree (AST) of the source
code. These paths are then merged into a single distributed representation by using an attention mechanism.
SAFE [11] learns Word2Vec [12] representations for assembly (byte-code) instructions. The instructions
corresponding to a function are then reduced to a vector representation via a self-attentive network [13].
Recently, methods which leverage transformers for obtaining contextualized embeddings for code have
also been explored [14,15]. Remarkably, transformer-based architectures that have shown very good
performance on translation tasks between natural languages [16] can substantially outperform rule-based
systems when trained to convert a code snippet from one programming language to another [17].

Multi-modal approaches have also been explored, but to a lesser extent. They have an important
advantage as they can provide a method to encode both code snippets and text descriptions to enable
applications such as source code retrieval and source code captioning [18,19]. These multi-modal models
may be jointly trained to generate natural language summaries of code and code snippets from natural
language queries, improving performance on both tasks tackled separately [20].

Algorithm Label Prediction

Investigations into the landscape of competitive programming have revealed that the difficulty of
the proposed algorithmic challenges has been consistently increasing [21,22]. The challenge of predicting
algorithm labels from natural language descriptions has been introduced recently [5,23]. The task is treated
as a multi-label classification problem because algorithmic challenges may have multiple relevant labels as
detailed in Section 3. AlgoLabel improves on prior work by also tackling two related tasks: providing
algorithmic labels for solution implementations and pairs comprising both the problem statement and
corresponding solutions.

The problem of classifying text with multiple labels has received significant attention
from researchers [24]. Modern solutions tackle this problem by building complex, deep neural
networks [25–27]. One of the latest developments in the NLP community has been to leverage pre-trained
Bidirectional Encoder Representations from Transformers (BERT) [28] for downstream tasks, including
multi-label document classification [29].

3. Task Definition

We ground our exploration with three classification experiments. The first experiment is to assign one
or more labels to a programming word problem, given the standard elements received in most competitive
programming competitions: natural language description of the statement, the description of the input
and output formats and of the time and memory constraints [5]. The second experiment is to classify in
the same manner the source code corresponding to a problem solution given as a code snippet. In this
formulation we use as inputs data from three different life stages of a solution: the tokens from the original
source code, the abstract syntax tree (AST), and its byte-code representation. Finally, we aim to merge
the two research threads in a multi-modal setting, by providing annotations for dual pairs consisting of
problem statements and their associated code solutions. An example is depicted in Figure 1.

For all experiments, we chose four representative target labels: math, graphs, implementation,
and dynamic programming (dp) & greedy. The first two tags pertain to the general knowledge required to
solve the problem. In particular, we have grouped under the math label problems which require specific
mathematical insight, such as those already annotated as requiring knowledge of probabilities, number theory,
game theory, geometry, etc. The graphs label describes problems which require modeling the data using
a graph structure. Note that the graph is generally not referenced explicitly within the text description.
The following tag, implementation refers to problems for which the main difficulty relies in converting the
abstract solution to actual code. This is a subjective tag which covers a broad selection of problem types:
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from simple problems which require the solver to follow a set of instructions (e.g., “simulation”-type
problems) to problems covering well-known topics that nevertheless require correct implementation of
complex data structures or algorithms. Finally, dp & greedy depicts tasks which can be tackled using either
dynamic programming or a greedy choice.

The task is inherently a multi-label classification problem as problem statements might have a tag
related to the required general knowledge to solve it (e.g., math, graphs), but also to the method necessary
to devise an efficient algorithmic solution (e.g., implementation, dp & greedy). Nevertheless, there might be
statements with only one tag and others with more than two depending on the nature of the problem and
on the quality of the tagging process.

Figure 1. An example of a classic algorithmic challenge. The large upper bound value for N,
which represents the maximum input size, suggests that an efficient solution needs to employ a dynamic
programming technique.

4. Dataset

4.1. Data Collection

The main difficulty we encountered when building the AlgoLabel corpus was finding open resources
which provide a wide range of problem statements from programming competitions, paired with high
quality labels and correct solution implementations. One platform which meets all these criteria is
Codeforces (https://www.codeforces.com (accessed on 24 June 2020)), a popular online judge which hosts
weekly programming contests. These contests range in difficulty, from educational challenges aimed for
beginners to particularly difficult tasks designed for skilled coders preparing for competitions.

The data extracted from Codeforces represents the core part of our dataset, with 6374 problems.
We filtered problems which required interactions with the online judge and those with an unconventional
format (e.g., without a problem statement) or theme (e.g., quantum programming).

Each problem is tagged with labels provided either by the problem writer or by high-rated contestants
- all of them can be considered experts or at least highly knowledgeable in algorithms and problem solving.
There is however an inherent level of noise in the available labels, which can be explained by the subjective
nature of some tags and the possibility of approaching a problem from multiple angles.

We extended the dataset by leveraging Competitive Programming [30], a book which provides a list
of high quality label annotations for tasks from various national and international contests. These tasks are
hosted on two other popular programming e-judge platforms, Kattis (https://open.kattis.com/ (accessed

https://www.codeforces.com
https://open.kattis.com/
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on 24 June 2020)) and OnlineJudge (https://onlinejudge.org/ (accessed on 24 June 2020)), and feature a
similar format to the ones on Codeforces.

Additionally, for each problem statement from Codeforces we extracted on average 2.48 correct solutions
written in C++. Notably, Codeforces competitions test not only the efficiency of the algorithmic approach
but also the ability of the contestants to quickly write code. Therefore, submissions often feature macros or
other instructions which reduce the size of the code and the time spent on programming. They may also
feature unused, pre-written classic algorithms. These approaches tend to affect code readability, adding to
the difficulty of applying automated methods to derive meaning from code.

We also collected 22, 655 solutions from another online judge, infoarena (https://infoarena.ro
(accessed on 24 June 2020)). The majority of submissions extracted from infoarena were not coded
within the time constraints of a contest, leading to more readable solutions, with fewer irrelevant snippets.
While most problems on infoarena are not labeled, the collected solutions can still be used to improve data
driven models on classification tasks through semi-supervised techniques.

Finally, the code corpus also contains 3860 solutions, implemented by university students as
programming assignments for the Algorithm Design course at University Politehnica of Bucharest.
The students were specifically evaluated on the quality of their coding style, which provided an incentive
to write clean, consistent, and well-documented code. We did not include the original problem statements
associated to these problems since they were not written in English. All extracted code submissions are
written in various dialects of C++.

4.2. Text Dataset

In Table 1 we report the number of extracted problems that have associated labels in the AlgoLabel
dataset, the average number of labels for each labeled problem, and the number of samples without
relevant labels. The latter are provided without a label in order to be leveraged by semi-supervised
techniques or to build better language models or representations [12] for this task.

Table 1. Statistics for problems from Codeforces (CF), Kattis, and OnlineJudge (OJ).

Dataset CF Kattis OJ Total

Labeled 5785 771 1965 8521
Unlabeled 584 1495 2935 5019

Avg. Num. Labels 3.19 1.72 1.78

We compare AlgoLabel with previously published datasets, CFML10 and CFML20 [5] in Table 2.
The problems in CFML10 represent a subset of the problems encountered in CFML20, which was extracted
from a single source, Codeforces. While in our classification experiments we only leverage 6279 of the total
13,508 samples in AlgoLabel, we believe the remaining examples, both labeled and unlabeled, can drive
future exploration in the field.

Table 2. Size comparison with previous multi-label datasets for problem tagging prediction.

Dataset Size Num. Labels

CFML10 [5] 3737 10
CFML20 [5] 3960 20
AlgoLabel 13,508 107

Problems from the Codeforces platform have an associated tag which is designed to estimate their
difficulty based on the average performance of the participants in contest (For more details, visit codeforces.

https://onlinejudge.org/
https://infoarena.ro
codeforces.com/blog/entry/62865
codeforces.com/blog/entry/62865
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com/blog/entry/62865 (accessed on 24 June 2020)). The difficulty tag is a numeric value, ranging from
800 (easiest) to 3500 (hardest). We have considered the problems with a rating less than 1200 to be “easy”,
between 1200 and 1500 to be “medium”, and the remaining problems “hard”.

Notably, problems with the implementation label appear most frequently among the challenges rated
as “easy”, while graphs are more often encountered among “hard” tasks. We have accounted both for the
problem difficulty rating and the overall distribution of labels in the dataset when we have split the data
into subsets for training, development, and testing. In order to obtain balanced sets we have applied the
iterative stratification technique [6,31]. We included the remaining problems, extracted from other sources
than Codeforces, in the training set.

In Table 3, we present general statistics pertaining to the data split for text classification. Each problem
sample is separated in three distinct sections: the problem statement and two additional sections depicting
in natural language the expected format of the problem input and output. The length and structure of
the three sections is consistent across the splits, however the vocabulary encountered during training is
remarkably more expansive, accounting for the larger size of the train set.

Table 3. Text dataset split statistics.

Dataset Train Dev Test

dp & greedy 1866 338 338
implementation 1607 261 261

graphs 1311 208 165
math 1457 266 266

Unrated Difficulty 1375 0 0
Easy Difficulty 1321 243 265

Medium Difficulty 1465 358 320
Hard Difficulty 645 132 155

Size 4806 733 740
Avg. Statement Length 187.3 179.2 184.2

Avg. Input Length 75.1 63.5 66.1
Avg. Output Length 41.4 37.6 37.3

Vocabulary Size 69k 17k 17k

As can be observed from Table 4, graphs and math problems tend to feature a more specialized
vocabulary, with terms that depict relevant concepts appearing more often. Conversely, implementation
type problems are more general.

Table 4. Top 10 words per label, sorted by their TF-IDF value.

dp & Greedy Implementation Graphs Math

maximum cards graph coordinates
a_i letter edges modulo

ways word roads point
modulo lowercase vertex permutation
polycarp name edge answer
strings team tree . . .

105 letters connected considered
total characters u points
array quotes road a_1

choose table vertices f

codeforces.com/blog/entry/62865
codeforces.com/blog/entry/62865
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4.3. Code Dataset

In Table 5 we present general statistics for the extracted code solutions. The code samples from
Codeforces feature the most number of solutions, annotated with a difficulty rating and several labels.
On Infoarena there are fewer available tags and therefore most submissions, although relevant for this
task, are unlabeled. The subset with university assignments has the highest degree of redundancy,
with 3860 solutions associated to merely 31 problems.

Table 5. Statistics for solutions from Codeforces (CF), Infoarena (IA), and university assignments (Uni).

Dataset CF IA Uni

Labeled 15651 6912 3860
Unlabeled 171 15743 0

Avg. Num. Labels 2.51 1.37 1.74
Num. Problems 6374 2321 31

Avg. Num. Solutions 2.48 9.76 124.51

When separating the data for the code classification task, in order to allow for a fair comparison
between the two research threads, we accounted for the way we performed the split for the natural
language classification dataset. Therefore, the subsets used for development and testing contain solutions
associated to the same problems from the original text data split. We also added to the training set all the
solutions which lacked a difficulty rating.

Although the quality of the coding style varies across the three platforms, the input features we used
are designed to mitigate this issue. Thus, we process each source on three different levels of abstraction.
The first approach was to extract and anonymize the code tokens. While this is the simplest technique,
it is also the most vulnerable to obfuscation and natural variations in implementations, such as the order
of instructions. Secondly, we selected paths from the abstract syntax tree, according to the Code2Vec
approach for computing semantic representations for code [10]. Finally, we leverage a pre-trained model
to derive SAFE embeddings from the source byte-code [11]. With this method we obtain a sequence of
distributed representations, one for each compiled function. In Table 6 we capture the average number for
these features, as they appear across the data splits.

Table 6. Source code dataset split statistics.

Dataset Train Dev Test

dp & greedy 7224 676 654
implementation 2564 528 550

graphs 2873 348 342
math 3303 576 593

Avg. Tokens 643.5 659.4 670.8
Avg. Num. AST Paths 369.4 345.5 358.0
Avg. AST Path Height 10.28 10.29 10.28

Avg. Functions 3.9 3.1 3.2
Num. Problems 3562 633 633

Size 14,314 1513 1513
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5. Methodology

5.1. Text Preprocessing

We split each problem statement into sentences and individual words using NLTK [32] and we
remove stopwords. Notably, we do not apply lemmatization or stemming as we have observed this hurts
the performance of the models.

A particular feature we had to account for was the presence of mathematical formulas used to specify
problem input constraints or other relations relevant for the problem statement. First of all, we noticed that
mathematical symbols appeared inconsistently (e.g., symbol ‘<’ could appear as ‘\le’ or ‘&lt;’), due to the
fact that we have extracted text from different types of sources (html and pdf files). Therefore, we replaced
analogous symbols with a unique token.

Numeric constants can provide a useful hint on the expected complexity of the solution and,
by extension, the algorithmic technique that needs to be employed. However, there is no meaningful
distinction between constants of the same order of magnitude when computing the asymptotic complexity
of code. We normalized numeric constants by replacing them with fixed placeholders according to their
number of digits.

Moreover, as exemplified in Table 7, we simplify the surface form for three types of formulas that
appeared most frequently in the dataset, by grouping together common expressions that shared the same
meaning. Thus, we denote the fact that a variable x is defined to have an upper bound limit of n using the
expression range(x, n). Likewise, if a sequence x is described textually as having n elements, we replace
the snippet with the expression sequence(x, n). We believe that being able to automatically extract this
type of information about individual variables can enable more complex reasoning models.

Table 7. Examples of formulas with normalized surface form.

Original Sequence Normalized Surface Form

1 ≤ i, j ≤ n range(i, n),range(j, n)
0 < n < 200,000 range(n, 105)

a_0, a_1, a_2, ..., a_n sequence(a, n)
p_2, \ldots, p_{n} sequence(p, n)

x_1, x_2, ..., x_{n - 1} sequence(x, n − 1)
(xi, yi) pair(xi, yi)

5.2. Code Preprocessing

We used clang-format [33] to normalize the surface form of each code sample. Then we applied
cppcheck [34] to statically determine unused functions, which we remove from the representation.
Additionally, we eliminate comments and headers. We split the source code into distinct tokens with an
open-source code tokenizer [35]. We apply astminer [36] with default parameters to extract AST paths in a
format compatible with Code2Vec [10]. We extract at most 400 AST paths for each solution. Afterwards,
we compile the solution to byte-code to derive SAFE function embeddings using a pretrained model [11].

5.3. Models

Non-Neural Models

Several classifiers that do not leverage neural networks, but that provide good results on textual
classification tasks were used: Random Forest [37], SVM [38], and Xgboost [39]. Their input consisted
of TF-IDF features computed using scikit-learn [40] and we employed grid search to tune their
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hyperparameters. The Random Forest model comprised 200 decision trees with a maximum depth
of 150. while the XGBoost solution consisted of 200 trees with a maximum height of 20.

Neural Models

We first trained Word2Vec embeddings [12] on the AlgoLabel training set and on the remaining
samples that are not provided with a label. The parameters were initialized using the Xavier method [41]
and we used an Adam optimizer [42]. We trained for 10 epochs, with an early stopping mechanism, using
mini-batches of 128 samples and cross-entropy loss. We apply L2 regularization and a dropout mechanism
to avoid overfitting.

AlgoLabelNet

For the text classification experiments we truncate the size of the problem statement, input, and output
sections to 250 tokens. We encode each section separately, using the same bidirectional LSTM [43]. We have
augmented the output representation of the encoder using a soft-attention mechanism over the entire input
sequence [44]. Next, we concatenate the three inputs and pass the result successively through two fully
connected layers. The last layer has a sigmoid activation function for label prediction.

In order to replicate the model for text classification proposed by Athavale et al. [5] we have applied
a convolutional neural network on the concatenated input sections. The output is passed through a ReLU
activation function, followed by a max pooling layer.

For the code classification experiments we only adapt the encoder to the type of available input
features for code. The code tokens are encoded using the same procedure as we did for text, using a
bidirectional LSTM, however we set the maximum size to 745. Likewise, we pass the SAFE function
embeddings to a distinct bidirectional LSTM, truncated to size 20. The AST paths are aggregated using an
attention mechanism, following the methodology proposed in Code2Vec [10].

For all biLSTM models, including AlgoLabelNet, we fix the size of all embeddings, hidden, and
fully-connected layers to 100. These hyperparameters were chosen by using the validation set. As an
additional neural baseline, we used the BERT base [28] uncased implementation available in the
Huggingface library [45].

5.4. Metrics

For evaluation, we apply two metrics that are standard for multi-label classification: Hamming
loss and the F1 (micro) score. Hamming loss [46] computes the proportion of misclassified examples.
Micro-averaged F1 is computed based on the individual true positives, false positives, and false negative
values across labels.

6. Experimental Results

6.1. Text Classification

We capture the performance of the baseline methods in Table 8. Non-neural models leverage
bag-of-words features, which cannot fully capture the task complexity. In this experiment, the proposed
AlgoLabelNet model achieves the best F1 score of 0.62. However, this still leaves significant room available
for improvement. On another hand, the performance of a pre-trained BERT base model fine-tuned on our
dataset was poor, with a F1 score of 0.40. We believe this score can be improved with additional parameter
tuning on computer science and algorithm books or other similar texts. We also replicated the model
proposed by Athavale et al. [5] which uses a CNN encoder and obtained an F1 score of 0.55.
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Table 8. Performance on the text classification task, measured using Hamming loss (lower is better) and F1
score (higher is better).

Model Hamming F1

Random Forest 0.25 0.54
SVM 0.27 0.55

XGBoost 0.25 0.60
BERT 0.29 0.40

CNN [5] 0.28 0.56
AlgoLabelNet (Ours) 0.27 0.62

Ablation study
- statement 0.34 0.57

- input/output 0.37 0.51
- shared encoder 0.36 0.52

- pretrained embeddings 0.33 0.55

Ablation study

We also report the impact of removing either the statement or the input/output sections from the
model input. Remarkably, the model performs better with only the input/output format description than
when it only receives the actual content of the problem statement. This suggests the model is prone to
exploiting language cues (e.g., input size constraints or types of input and output) rather then the text of
the problem statement. We explore this issue in more depth in the error analysis section.

In another experiment, we have concatenated the three sections (statement, input, and output) and
passed the resulting sequence to a single biLSTM encoder instead of processing them separately. However,
this approach proved detrimental to performance for all target labels, yielding an average F1 of 0.52.

Additionally, we measure the impact of improving the word embeddings with data derived from
unlabeled problem statements. In this scenario, both metrics degrade significantly. This suggests that
learning contextual word embeddings is crucial to getting closer to solving this task.

Label Analysis

In Table 9 we present the precision, recall, and F1 values achieved by XGBoost and AlgoLabelNet
for each class. The fact that we obtain better scores for the graphs labels is in line with our observation
regarding the specialized nature of the vocabulary for these types of problems.

Table 9. Text classification performance per class.

XGBoost AlgoLabelNet

Label Precision Recall F1 Precision Recall F1

dp & greedy 0.61 0.61 0.61 0.58 0.74 0.65
implementation 0.62 0.36 0.46 0.47 0.67 0.55

graphs 0.84 0.64 0.71 0.86 0.60 0.71
math 0.72 0.53 0.61 0.59 0.62 0.61

Notably, two models with worse overall F1 scores (Random Forest and XGBoost) achieved a lower
Hamming loss than AlgoLabelNet. This can be explained by the fact that the formula for the Hamming
loss penalizes equally the situation where a label is wrongly predicted and the case where a correct label is
missing from the result. In other words, true positives and true negatives impact the score equally. On the
other hand, the F1 metric does not directly account for the number of true negatives encountered.
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The samples from the test set feature only 1.39 labels on average from the four chosen target labels.
Consequently, a model may trade off recall and F1 score for a better Hamming loss by being biased to
assign lower probabilities to all labels. Compared to AlgoLabelNet, XGBoost achieved significantly lower
recall for all labels except for the “graphs” category.

6.2. Code Classification

For the code classification task we evaluate several baselines and report the results in Table 10.
The simplest solution uses a bidirectional LSTM to encode the source code tokens. Despite achieving
competitive results in our benchmark, this approach overestimates the importance of variable names.
Thus, when changing the original variable names to anonymised placeholders, we notice a significant
performance degradation. On our test set, both Code2Vec and SAFE obtain similar scores for the two
chosen metrics. Our best neural model, called AlgoCode, merges the two approaches by concatenating
the outputs of the two encoders and reaches an F1 score of 0.56. Notably, this score is lower than the one
achieved by AlgoLabelNet that uses the textual description of the problems.

Ablation study

We improved the representation of the SAFE embedding encoder by adding an attention mechanism.
With this change, the model achieved 0.50 F1 score, from the initial 0.46. We noticed a similar performance
gain by varying the maximum number of AST paths for Code2Vec (from 300 to 500, see Table 10).

Table 10. Performance on the code classification task, highlighting the different input features: byte-code
(BC), AST paths, source code tokens, and anonymised code tokens.

Model Input Features Hamming F1

SAFE BC 0.31 0.46
SAFE BC (attention) 0.35 0.50

Code2Vec AST (300 Paths) 0.35 0.51
Code2Vec AST (500 Paths) 0.27 0.55
BiLSTM Code Tok. 0.33 0.55
BiLSTM Anon. Code Tok. 0.39 0.48

AlgoCode BC+AST (300)+Tok. 0.31 0.55
AlgoCode BC+AST (500) 0.30 0.56

In Table 11 we present the aggregated code classification performance of the best AlgoCode model
for each label. Similar to the natural language challenge, the graphs category is the easiest to recognize,
while implementation lags behind according to our metrics.

Table 11. Code classification performance per class for the AlgoCode model.

Labels Precision Recall F1

dp & greedy 0.52 0.61 0.57
implementation 0.53 0.53 0.53

graphs 0.68 0.60 0.64
math 0.60 0.53 0.56

6.3. Dual Text-Code Classification

For this final experiment, we combined our two best models in a single unitary framework. Thus, we
have a neural model which takes both the natural language description of a problem and its corresponding
coded solution and classifies the problem accordingly into one or more algorithmic labels. As natural
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language inputs we use the statement, input and output sections. From the source code, we leverage the
SAFE embeddings and the Code2Vec distributed representation. All these inputs are encoded as previously
presented, then concatenated and passed to a fully connected feedforward layer.

We restricted the training dataset to only Codeforces problems, since this is the only section of our
dataset that features both problems and their solutions. The size of the test and development set remains
unchanged, since we keep the same problem distribution from the text classification experiment. For each
problem we randomly selected a corresponding solution.

As depicted in Table 12, despite the reduction in the size of the training set, the dual text-code model
achieves better aggregated results than the two models evaluated separately. For every label, except for
implementation, the F1 score improves compared to the results obtained on a single type of input. However,
the improvement achieved by the dual model is small compared to AlgoLabelNet, suggesting the code
brings little information in addition to the text, at least given the current code features.

Table 12. Dual text-code classification performance.

Model Input Features Hamming F1

AlgoLabelNet Text+Code 0.26 0.65

Labels Precision Recall F1

dp & greedy 0.55 0.81 0.65
implementation 0.58 0.56 0.57

graphs 0.72 0.75 0.74
math 0.55 0.81 0.65

7. Discussion

7.1. Text Classification

The thought process behind understanding a problem statement often resembles solving a riddle:
in a competition setting, in many cases, the author of the statement tries to hide the problem requirements
behind a story. The chosen story may sometimes reference a relevant real-life application.

Thus, the statement often begins with a prologue, which provides the setting of the story. Typically, since
it does not reference any constraints, the prologue can be safely ignored, without affecting the ability to
understand the problem. This section is followed by sentences that depict the actual requirements. Among
these, we may distinguish the ones that surmise the problem objective (e.g., “Find the minimum value for X”).
Additionally, the statement may also contain hints regarding the automatic evaluation platform where the
problem is hosted on. For example, a problem may include tips related to how to implement a solution in a
specific programming language: particular functions that should be called, the fact that the output requires a
64 bit representation, etc. As in the case of the prologue, these sentences provide no insight regarding the
solution for the problem to a human reader, however they may confuse a data driven neural model.

Unravelling the relevant facts from the narrative is a non-trivial but essential challenge, particularly
for real-world applications. In our experiments, we have observed that the input and output sections,
which are typically written in a more formal language, have a larger impact on the classification score than
the statement. This finding was also reported in a previous study [5].

Case study: Graph problems

Problems which can be modeled using a graph data structure are typically easier to identify due to the
specialized vocabulary used (e.g., explicit references to vertexes or graph edges). However, in situations
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where the graph modelling is not obvious from the problem statement, the proposed models struggle to
recognize the type of the problem.

In the majority of misclassified graph problems from the test set, the graph is not explicitly provided
as input. For example, the statement may describe an initial state (e.g., a string), how to transition from
one state to another (e.g., permute the letters in the given string) and enquire about the path that leads to
a desired final state. If the problem introduces a novel concept as a state, such as an image, a symbolic
expression or a number sequence, the models fail to recognize the abstract nature of the task.

Specialized graph data structures may constitute only an auxiliary component of the solution, used to
optimize certain operations. We investigate this scenario in Figure 2, where we encounter the statement of
a problem (For more details, visit https://codeforces.com/problemset/problem/566/A (accessed on 24
June 2020)) annotated with the graph label by the author. The neural baseline assigns a low probability
for the graph label (0.19) and a high probability for dp&greedy (0.75). The low graph probability can be
explained by the fact that there is no explicit graph provided as input. Nevertheless, the solution requires
the construction of a trie data structure to efficiently store and process the collection of input strings.
Instead, guided by the presence of expressions such as “largest common” or “maximum”, the model makes
the assumption that this is a combinatorial optimization problem. Although the label is missing from the
dataset, the assumption is actually correct in this case: the official solution does indeed apply a greedy
algorithm on the trie in order to derive the correct answer.

Figure 2. Attention scores for the statement of a graph problem that was misclassified as dp & greedy.
Stopwords ‘the’, ‘of’, ‘to’ are filtered and every word is converted to lowercase prior to training the model.
Remaining words without an associated embedding are marked with brackets.

7.2. Code Classification

It may seem easier, given its unambiguous nature, to extract semantic knowledge from code than it is
from natural language. However, in practice, approaches that work well for natural languages need to be
carefully tailored to account for the specific structure of programming languages. In our code classification
experiments, we have encoded the solution as it was represented during three different compilation stages:
as a text sequence, as a collection of AST paths, and as byte-code.

As described in Section 5.2, processing the original snippet as a text sequence is laborious, requiring
several steps to eliminate uninformative segments from the input. Code styling conventions mandate the
need for self-explanatory names for variables, however, in a competition environment, solution authors
frequently rely on short, generic names that can be typed faster (e.g., i, var, res). The model needs to account
for the type as the multiple contexts in which a variable is referenced, in order to understand its role in
the solution. Notably, in a programming language that allows access to arbitrary locations in memory, a
variable may be referenced indirectly.

https://codeforces.com/problemset/problem/566/A
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The second approach we considered were context paths derived from the abstract syntax tree. These
paths are more generic and may be better at capturing the high level structure of the solution. However,
a weakness of the current method [10] is that novel AST paths, not available in the training set, can not be
represented during test time. Moreover, this approach is sensible to the number of AST paths considered
and the maximum height allowed for a path.

Finally, we have encoded byte-code representations of each function using SAFE embeddings. These
embeddings were pre-trained on a related but different semantic classification task. We believe we can
improve results on our task by pre-training SAFE or a similar model on a specialized labeled dataset
comprising algorithmic solutions. At the same time, learning unsupervised contextual code embeddings,
as presented in recent literature, by training different transformer models on collections of very large code
repositories [14,15,17], may hold the key to improving semantic understanding of code.

An interesting extension to our work would be to encode program execution traces, as suggested
by Wang and Su [47]. Exploiting runtime information provides the opportunity to capture more complex
program semantics, and thus outperform syntax-based methods. However, this approach requires both a
runtime to execute the code as well as access to test input data, which may not always be available and
that is not part of the AlgoLabel dataset at this time.

Leveraging the solution, in addition to the problem statement, increases the performance of the
classification compared to using the problem statement alone. However, this improvement is small,
especially due to the fact that the code classification task has significantly poorer results than the text
classification and due to the smaller training dataset for the multi-model text-code dataset than for the
unimodal (text or code) datasets.

7.3. Computational Efficiency

The memory space used by the neural architectures that we have experimented with is independent
of the input size, being determined by a small set of hyper-parameters: the size of hidden state for the
LSTM encoder, the number of filters and their size for the CNN module and the size of the fully connected
layer used to transform each AST path for the Code2Vec attention method. Regarding the time complexity,
we can identify precise asymptotic upper-bounds for training the non-neural baselines. On the other hand,
for the solutions employing neural networks it is difficult to predict the number of training steps required
to achieve good performance.

From a practical perspective, the main resource consumption difference between the specified
encoders is the potential for parallelization: the LSTM module has to scan the input sequentially, while the
other encoders apply independent computations that may be performed efficiently in parallel.

7.4. Study Limitations

Annotation issues

The labeling of problem statements were provided by their authors and field experts. However, there
are several issues that may be identified with the annotation process. First of all, given the number of
people involved and the subjective nature of some labels, such as implementation, it is possible for labeling
inconsistencies to occur in the dataset. Thus, different annotators may select different labels as relevant
for a given problem, even while considering the same solution. Moreover, problems may also accept
multiple, fundamentally different solutions. Finally, we have also identified few erroneously added labels
in our dataset.
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Explainability

The proposed neural models are only able to highlight the key words or phrases that have determined
a particular prediction. We cannot use them to automatically infer why a particular phrase is relevant.
Moreover, solving hard problems requires several reasoning steps. Identifying these steps goes beyond
analysing the surface description of the problem statement.

Data variation

Another issue with the present experiment is the small number of labels considered. A more
fine-grained study, covering rare labels, could provide valuable insights. Finally, the proposed dataset
is still relatively small, which may prevent more data-hungry models, such as BERT, from leveraging
it successfully.

8. Conclusions

In this paper we have introduced AlgoLabel, a new multi-modal dataset comprising problem
statements for algorithmic challenges and their associated code solutions. We believe this new resource
will encourage further research in extracting algorithmic knowledge from text, a necessary stepping stone
towards general semantic parsing. A tool that can recognize the problem requirements from an informal
story, and thus help design a solution, may prove of significant value, even to an experienced programmer.
Moreover, we have showed that efforts towards deriving semantic understanding from either text and
code can benefit from jointly modeling data from the two domains.

Furthermore, we have investigated several baselines for the task of multi-label classification
of problem statements (AlgoLabelNet) and their corresponding source code (AlgoCode).
AlgoLabelNet leverages a biLSTM encoder model to separately encode the three sections of a problem
statement, with word embeddings pre-trained on a larger collection of unlabeled algorithmic challenges,
provided in our dataset. For the code experiments, we have captured the solution representation from
three different compilation stages and explored the advantages and disadvantages of each representation.
Additionally, we have experimented with a dual text-code neural model, which achieves improved
performance over considering the code or the text alone.
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