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Abstract: For bounded unit interval, we propose a new Kumaraswamy generalized (G) family
of distributions through a new generator which could be an alternate to the Kumaraswamy-G
family proposed earlier by Cordeiro and de Castro in 2011. This new generator can also be used
to develop alternate G-classes such as beta-G, McDonald-G, Topp-Leone-G, Marshall-Olkin-G,
and Transmuted-G for bounded unit interval. Some mathematical properties of this new family
are obtained and maximum likelihood method is used for the estimation of G-family parameters.
We investigate the properties of one special model called the new Kumaraswamy-Weibull
(NKwW) distribution. Parameters of NKwW model are estimated by using maximum
likelihood method, and the performance of these estimators are assessed through simulation
study. Two real life data sets are analyzed to illustrate the importance and flexibility of
the proposed model. In fact, this model outperforms some generalized Weibull models such
as the Kumaraswamy–Weibull, McDonald–Weibull, beta-Weibull, exponentiated-generalized
Weibull, gamma-Weibull, odd log-logistic-Weibull, Marshall–Olkin–Weibull, transmuted-Weibull
and exponentiated-Weibull distributions when applied to these data sets. The bivariate extension of
the family is also proposed, and the estimation of parameters is dealt. The usefulness of the bivariate
NKwW model is illustrated empirically by means of a real-life data set.

Keywords: bivariate family; Kumaraswamy-G family; Marshall and Olkin shock model; maximum
likelihood method; parameter induction; T-X family; Weibull distribution

1. Introduction

The twenty-first century begun with establishing and extending new tools for modern statistics.
In terms of distribution theory, one of the important developments is to define new useful models
and then these are tested on real-life data sets available from simple to complex phenomenons.
The modern distribution theory has also motivated statisticians and practitioners to propose new
generalized (G) families and to investigate their special models, which can effectively be used
in different fields, in particular, medicine, reliability engineering, agriculture, survival analysis,
demography, actuarial study and others. The G-families proposed by Azzalini [1] (skew-Normal-G
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(SN-G)), Marshall and Olkin [2] (Marshall-Olkin-G (MO-G)), Gupta et al. [3] (exponentiated-G
(exp-G) [Lehmann alternative 1 (LA1) and Lehmann alternative 2 (LA2)]), Eugene et al. [4]
(beta-G), Gleaton and Lynch [5] (odd log-logistic-G (OLL-G)), Shaw and Buckley [6] (transmuted-G),
Zografos and Balakrishnan [7] (ZBgamma-G), Cordeiro and de-Castro [8](Kumaraswamy-G
(Kw-G)), Alexander et al. [9] (McDonald-G (Mc-G)), Ristić and Balakrishnan [10] (RBgamma-G),
Cordeiro et al. [11] (exponentiated-generalized-G (EG-G)), Bourguignon et al. [12] (odd Weibull-G
(OW-G)), Tahir et al. [13] (odd generalized-exponential (OGE-G)), Tahir et al. [14] (logistic-X) and
Rezaei et al. [15] (Topp-Leone-G (TL-G)) have received increased attention in recent statistical literature.
For more G-families, the reader is referred to Tahir and Nadarajah [16], and Tahir and Cordeiro [17].

Kumaraswamy [18] pioneered a two-parameter model for bounded unit interval (0, 1) which we
denote here by using random variable (rv) T ∼ Kw(a, b). The cumulative distribution function (cdf)
and probability density function (pdf) of T are

R(t) = 1− (1− ta)b, t ∈ (0, 1) (1)

and
r(t) = a b ta−1 (1− ta)b−1, (2)

respectively, where a > 0 and b > 0 are shape parameters.

Cordeiro and de-Castro [8] defined the cdf and pdf of the Kw-G family by

FKwG(x; a, b, ξ) = 1− [1− G(x; ξ)a]b , x ∈ (0, 1) (3)

and
fKwG(x; a, b, ξ) = a b g(x; ξ) G(x; ξ)a−1 [1− G(x; ξ)a]b−1 , (4)

where a > 0 and b > 0 are two additional shape parameters, and ξ is the vector of baseline parameters.
The Kw-G family has received wide-spread recognition and more than sixty special

models have been studied so far, namely: exponential, exponentiated-exponential, Weibull,
exponentiated-Weibull, modified Weibull (Lai et al. [19]), flexible-Weibull (Bebbington et al. [20]),
generalized power Weibull, log-logistic, half-logistic, Lomax, Burr, Kumaraswamy, generalized
gamma, exponentiated-gamma, generalized Rayleigh, Pareto, generalized Pareto, Pareto-IV, Gumbel,
exponentiated-Gumbel (type-II), Fréchet, Laplace, Gompertz, Gompertz-Makeham, normal, inverse
Gaussian, skew-normal, generalized half-normal, Birnbaum-Saunders, skew-t, Nadarajah-Haghighi,
linear failure rate, quadratic hazard rate, Lindley, quasi-Lindley, Lindley-Poisson, Sushila,
half-Cauchy, inverse exponential, inverse Rayleigh, inverse Weibull, inverse Weibull-Poisson,
inverse flexible-Weibull, modified inverse Weibull (using LA2), Fisher-Snedecor, compound-Rayleigh,
exponential-Rayleigh, exponential-Weibull (compounded), exponentiated-Chen, generalized Kappa,
generalized extreme-value, Weibull-geometric (WG), complementary WG, Marshall-Olkin exponential,
Marshall-Olkin Fréchet (MOFr), Marshall-Olkin Lindley, transmuted Weibull, transmuted Pareto,
transmuted modified-Weibull (Sarhan-Zaindin), transmuted exponentiated modified Weibull,
transmuted exponentiated additive Weibull and transmuted MOFr.

Some other special models of the Kw-G family were also reported in the literature but these suffer
non-identifiability issue (when two parameters appear, for example, in a product and it is impossible
to determine their individual effects). These special models are: power function, Burr III, generalized
linear failure rate, exponentiated-Pareto, exponentiated Burr and exponentiated-Lomax.

Note 1. The citations and the references of the authors of special models of the Kw-G family [8]
are avoided in this section and in references to save some space.

Alzaatreh et al. [21] proposed a general method for constructing G-families by using the
transformed-transformer (T-X) approach. Let r(t) be the pdf and R(t) be the cdf of a rv T ∈ [a, b]
for −∞ < a < b < ∞ and let W[G(x)] be a function of the cdf G(x) or survival function (sf)
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Ḡ(x) = 1 − G(x) of any baseline rv
(
W(·) is known as generator

)
such that W[G(x)] satisfies

three conditions:

(i) W[G(x)] ∈ [a, b],

(ii) W[G(x)] is differentiable and monotonically non-decreasing, and

(iii) lim
x→−∞

W[G(x)] = a and lim
x→∞

W[G(x)] = b.

The cdf of the T–X family is

FTX(x) =
∫ W[G(x)]

a
r(t) dt = R

(
W
[
G(x)

])
, (5)

where W[G(x)] satisfies the conditions (i)–(iii).

The pdf corresponding to Equation (5) is

fTX(x) = r
(

W
[
G(x)

]) d
dx

W
[
G(x)

]
. (6)

The main motivation for proposing new G-family are:

(i) Constructing new and novel G-families as a function of a cdf, W[G(x)], is a difficult task in
these days. A few pioneer G-families were developed in the literature considering W[G(x)] viz.
exponentiated-G with power parameter α > 0 (LA1 and LA2) (Gupta et al. [3]) [G(x)α and 1−
Ḡ(x)α], beta-G (Eugene et al. [4]) [G(x)], ZBgamma-G (Zografos and Balakrishnan [7])
[− log Ḡ(x)], odd log-logistic-G (Gleaton and Lynch [5]) [G(x)/Ḡ(x)], RBgamma-G (Ristic and
Balakrishnan [10]) [− log G(x)], log-odd logistic-G (Torabi and Montazeri [22]) [log{G(x)/Ḡ(x)}],
Gumbel-X (Al-Aqtash et al. [23]) [log{− log Ḡ(x)}], Weibull-X (T-X approach) and Weibull-X
(Ahmad et al. [24] ) [{− log Ḡ(x)}/Ḡ(x)] are the pioneer works. Other G-families either
non-composite (alone based on well-established parent model) or composite (mixture of two
G-families) and compounded G-families are the extensions or modifications of the above
described pioneer G-families. For example, the generator G(x), where T ∈ (0, 1) was
pioneered by (Eugene et al. [4]) for defining the beta-G family, and later this generator was
adopted by (Cordeiro and de-Castro [8]; Alexander et al. [9]; Rezaei et al. [15]) for defining
the Kw-G, Mc-G and TL-G families, respectively. Similarly, the odd generator G(x)/Ḡ(x)
(where T ∈ (0, ∞)) was suggested by (Gleaton and Lynch, [5]) for proposing the odd
log-logistic-G family, and it was adopted by (Bourguignon et al. [12]; Torabi and Montazeri [25];
Tahir et al. [13]; Silva et al. [26]; Cordeiro et al. [27]; Alizadeh et al. [28]; Cordeiro et al. [29];
Hassan et al. [30]; Hassan and Nassr [31]; Maiti and Pramanik [32]); El-Morshedy and
Eliwa [33], Alizadeh et al. [34]; El-Morshedy et al. [35]; Eliwa et al. [36] for defining the
odd Weibull-G, odd gamma-G, odd generalized-exponential-G, odd Lindley-G, odd Burr-G,
odd power-Cauchy-G, odd half-Cauchy, odd additive Weibull-G, odd power-Lindley-G,
odd Xgamma-G, odd flexible Weibull-H, odd log-logistic Lindley-G, odd Chen generator and
exponentiated odd Chen-G, respectively, among others.

(ii) The proposed extension of the Kumaraswamy-G model is based on a new generator W[G(x)] =
1− Ḡ(x)G(x) for T ∈ (0, 1) instead of the only existing generator G(x) for which the beta-G,
Kw-G, Mc-G and TL-G classes were developed so far.

(iii) The proposed generator 1 − Ḡ(x)G(x) seems little complicated in comparison to earlier
well-established generator for the unit interval but it has the ability to produce better estimates
and goodness-of-fit (GoF) tests results that can make it distinguishable and attractive for applied
researchers (as evident from the results in Sections 5 and 7).
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(iv) For most of the families and models, if the cdf is in closed form, then the quantile function (qf)
can be straightforward to obtain. In some families and models, where the qf is based on some
special functions such as beta, gamma, and others, then the qfs can only be determined by using
power series. In our case, the cdf of the family is in closed form but the qf can be obtained only
numerically.

Note 2. A complete and independent investigation of the properties and application of
our proposed generator F(x) = 1 − Ḡ(x)G(x) as a new family such as transmuted-G (Tr-G) and
exponentiated-generalized-G (EG-G) will appear in another outlet very soon. It is noted here that the
two G-families (Tr-G and EG-G) have not been developed from any existing parent model similar to
our proposed one.

The paper is unfolded as follows. In Section 2, we define the new Kumaraswamy generalized
(NKw-G) family. In Section 3, some of its mathematical properties are determined from a useful linear
representation of the family density. We investigate the asymptotics and shapes of the density and
hazard rate, ordinary and incomplete moments, generating function, mean deviations and estimation
of the model parameters. Several properties of a special model viz. new Kumaraswamy Weibull
(NKwW) distribution are discussed in Section 4. A simulation study is also conducted to assess
the performance of maximum likelihood estimators of the newly proposed model in this section.
In Section 5, the usefulness of new model is illustrated by means of two real-life data sets. In Section 6,
we define the Bivariate New Kumaraswamy G-family of distributions. In Section 7, the usefulness of
the new bivariate model is illustrated by means of a real-life data set. In fact, we prove empirically that
our proposed model outperforms some well-known univariate and bivariate distributions. Finally,
Section 8 offers some concluding remarks.

The important feature of our article is that the proposed model from this new generalized
family, NKwW, is better in performance as compared to some well-known (or well-established)
generalized Weibull models selected from the statistical literature. It can be noted from Section 5
that the Kolmogrov-Smirnov GoF statistic yields minimum GoF values along with high p-values of
this statistic. Furthermore, it can also been observed from Section 5 that the GoF values of some
other well-established statistics such as Akaike information Criterion, Bayesian Information Criterion,
Hannan-Quinn Information Criterion, Anderson-Darling and Cramér–von Mises for our propose
model are smallest as compared to some important generalized Weibull models. This fact reveals that
the performance and flexibility of our proposed model is better in comparison to all other competitive
models, when applied to these selected real-life data sets. The same fact is valid for our proposed
bivariate model (see, Section 7).

2. The NKw-G Family

For W
[
G(x)

]
= G(x) and T ∈ (0, 1) just only the beta-G, Kw-G, Mc-G and TL-G families were

reported so far. No other generators for T ∈ (0, 1) were published until now. Therefore, our main
objective is to introduce a new family of distributions for T ∈ (0, 1) called the NKw-G family and to
study its main structural properties.

Let r(t) be the Kumaraswamy density. By inserting Equation (2) in Equation (5) and letting
W[G(x)] = 1− Ḡ(x)G(x), the cdf of the NKw-G family is given by

F(x) = F(x; a, b, ξ) = a b
∫ 1−Ḡ(x;ξ)G(x;ξ)

0
ta−1 (1− ta)b−1 dt

= 1−
{

1−
[
1− Ḡ(x; ξ)G(x;ξ)

]a}b
, (7)

where a > 0 and b > 0 are two shape parameters of the Kw distribution and ξ is the vector of the
baseline parameters.
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The pdf corresponding to Equation (7) becomes

f (x) = f (x; a, b, ξ) = a b g(x; ξ) [Ḡ(x; ξ)]G(x)
[
1− Ḡ(x; ξ)G(x;ξ)

]a−1

×
{

1−
[
1− Ḡ(x; ξ)G(x;ξ)

]a}b−1
[

G(x; ξ)

Ḡ(x; ξ)
− log Ḡ(x; ξ)

]
. (8)

Henceforth, a rv X with the density (8) is denoted by X ∼ NKw-G(a, b, ξ). The survival function
(sf) S(x) and hazard rate function (hrf) h(x) of X are, respectively,

S(x) =
{

1−
[
1− Ḡ(x; ξ)G(x;ξ)

]a}b

and

h(x) =
a b g(x; ξ) [Ḡ(x; ξ)]G(x)

[
1− Ḡ(x; ξ)G(x;ξ)

]a−1 [G(x;ξ)
Ḡ(x;ξ) − log Ḡ(x; ξ)

]
1−

[
1− Ḡ(x; ξ)G(x;ξ)

]a . (9)

3. Properties of the NKw-G Family

In this section, we obtain some mathematical properties of the NKw-G family.

3.1. Quantile Function

The most common and simplest method for generating random variates is based on the inverse
cdf. For an arbitrary cdf, the quantile function (qf) is define as Q(u) = F−1(u) = min{x; F(x) ≥ u}.
The qf of the NKw-G family can be determined by inverting (7) and then solving the two non-linear
equations numerically. We can use the following procedure:

(i) Set z = z(u) = 1− [1− (1− u)1/b]1/a;
(ii) Find w = w(u) numerically in w log(1− w) = log(z) using any Newton-Raphson algorithm;
(iii) Solving numerically for x in G(x; ξ) = w yields the qf x = Q(u) of X.

3.2. Asymptotics

The following asymptotics for the density, distribution function and hrf of X hold.

Corollary 1. The asymptotics of Equations (7)–(9) when x→ 0 or (G(x)→ 0) are

F(x) ∼ −b [G(x; ξ)]−a,

f (x) ∼ a b g(x; ξ) [G(x; ξ)]−(a+1),

h(x) ∼ a b g(x; ξ) [G(x; ξ)]−(a+1).

Corollary 2. The asymptotics of Equations (7)–(9) when x→ ∞ or (G(x; ξ)→ 1) are

1− F(x) ∼ a [log Ḡ(x; ξ)]−b,

f (x) ∼ a b g(x; ξ)

Ḡ(x; ξ)
[log Ḡ(x; ξ)]−(b+1),

h(x) ∼ b g(x; ξ)

Ḡ(x; ξ) log Ḡ(x; ξ)
.
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3.3. Analytic Shapes of the Density and Hazard Rate Function

The shapes of the density and hrf of X can be described analytically. The critical points of the
density of X are the roots of the equation:

g′(x; ξ)

g(x; ξ)
− G(x; ξ)g(x; ξ)

Ḡ(x; ξ)
+

g(x; ξ)
{

G(x; ξ)− 2
}

{G(x; ξ)− 1}
[
G(x; ξ) + {G(x; ξ)− 1} log Ḡ(x; ξ)

]
+g(x; ξ) log Ḡ(x; ξ)−

(a− 1)g(x; ξ)M
[
G(x; ξ) + {G(x; ξ)− 1} log Ḡ(x; ξ)

]
(M− 1)Ḡ(x; ξ)

+
a(b− 1)g(x; ξ)M (1−M)a−1

[
1

G(x;ξ)−1 + log Ḡ(x; ξ) + 1
]

1− (1−M)a = 0,

where M = M(x; ξ) = [1− G(x; ξ)]G(x;ξ).

The critical points of the hrf of X are obtained from the equation:

g′(x; ξ)

g(x; ξ)
+

1

(M− 1)
[
G(x; ξ)− 1

] [
(1−M)a − 1

]{
G(x; ξ) +

[
G(x; ξ)− 1

]
log Ḡ(x; ξ)

}
×g(x; ξ)

[[
1− (1−M)a] [G(x; ξ)− 1

]{
− log2 Ḡ(x; ξ) + G(x; ξ)

[
log Ḡ(x; ξ) + 1

]2
+ 2
}

+M

{
2− 2(1−M)a − a log2 Ḡ(x; ξ)− a G(x; ξ)2 [log Ḡ(x; ξ) + 1]2

+G(x; ξ)
[
(1−M)a + 2a log Ḡ(x; ξ)

{
log Ḡ(x; ξ) + 1

}
− 1
]}]

= 0.

3.4. Linear Representation of the NKw-G Density

Here, we derive useful expansions for Equations (7) and (8) based on the concept of exponentiated
distributions. For an arbitrary baseline cdf G(x; ξ), a rv is said to have the exponentiated-G (exp-G)
distribution with power parameter a > 0 if its cdf and pdf are

Ha(x; ξ) = G(x; ξ)a, ha(x; ξ) = a g(x; ξ) G(x; ξ)a−1, (10)

respectively.

The properties of the exponentiated distributions were studied by many authors in recent years.
We consider the generalized binomial expansion

(1− z)b =
∞

∑
k=0

(−1)k
(

b
k

)
zk, (11)

which holds for any real non-integer b and |z| < 1. Using (11) twice in the following expression
T(x; ξ) =

{
1− [1− P(x; ξ)]a

}b in Equation (7), where P(x; ξ) = Ḡ(x; ξ)G(x;ξ), we can write T(x; ξ) =

∑∞
j=0 wj+1 P(x; ξ)j+1, where wj+1 = ∑∞

m=1(−1)j+m+1 ( b
m) (

m a
j+1). Then, we can expand Equation (7) as

F(x) = 1−
∞

∑
j=0

wj+1 [1− G(x; ξ)](j+1)G(x;ξ). (12)
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Furthermore, using Mathematica, the power series holds

[1− G(x; ξ)](j+1)G(x;ξ) = 1 +
∞

∑
i=2

qi(j + 1) G(x; ξ)i, (13)

where q2(j + 1) = −(j + 1), q3(j + 1) = −(j + 1)/2, q4(j + 1) = (j + 1)(3j + 1)/6, q5(j + 1) =

(j + 1)(2j + 1)/4, etc.

By inserting Equation (13) in Equation (12) and noting that ∑∞
j=0 wj+1 = 1, we obtain

F(x) =
∞

∑
i=2

ti G(x; ξ)i, (14)

where

ti = −
∞

∑
j=0

wj+1 qi(j + 1) fori ≥ 2. (15)

By differentiating F(x), the NKwG density has the form

f (x) =
∞

∑
i=1

ti+1 hi+1(x; ξ), (16)

where hi+1(x; ξ) is the exp-G density with power parameter (i + 1). Equation (16) reveals that the
NKw-G density function is a linear combination of exp-G densities. Then, some of its mathematical
properties can be determined directly from those of the exp-G distribution.

3.5. Mathematical Properties

The formulae derived throughout the paper can be easily handled in most symbolic computation
platforms such as Maple, Mathematica and Matlab which have the ability to deal with analytic
expressions of formidable size and complexity. Henceforth, let Yi+1 be a rv with the exp-G distribution
with power parameter (i + 1). We obtain some mathematical quantities of the NKw-G family from
(16) and those properties of the exp-G distribution. The exp-G properties are known for at least fifty
distributions; see those distributions listed in Tahir and Nadarajah [16].

First, the nth ordinary moment of X, say E(Xn), can be expressed from (16) as

E(Xn) =
∞

∑
i=1

ti+1 E(Yn
i+1) =

∞

∑
i=1

(i + 1) ti+1 τn,i, (17)

where τn,i =
∫ ∞
−∞ xn G(x; ξ)i g(x; ξ)dx =

∫ 1
0 QG(u; ξ)n uidu, and QG(u; ξ) is the qf of the baseline G.

The quantities E(Yn
i+1) are known for many G distributions as can been seen in those papers cited in

Tahir and Nadarajah (2015).
Moments are important in any statistical analysis. Some of the most important features of a

distribution can be studied through moments. For instance, the first four moments can be used to
describe some characteristics of a distribution. Clearly, the central moments and cumulants of X can
be determined from (17) using well-known relationships.

Second, the nth lower incomplete moment of X, say mn(y) =
∫ y
−∞ xn f (x)dx, is

mn(y) =
∞

∑
i=1

ti+1

∫ y

−∞
xn hi+1(x)dx =

∞

∑
i=1

(i + 1) ti+1

∫ G(y;ξ))

0
QG(u; ξ)n uidu. (18)

The last two integrals can be evaluated numerically for most G distributions.
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The first incomplete moment m1(y) is used to construct the Bonferroni and Lorenz curves (popular
measures in economics, reliability, demography, insurance, and medicine) and to determine the totality
of deviations from the mean and median of X (important statistics in statistical applications).

Third, for a given probability π, the Bonferroni and Lorenz curves (popular measures in economics,
reliability, demography, insurance and medicine) of X are given by B(π) = m1(q)/(π µ′1) and L(π) =

m1(q)/µ′1, respectively, where q = Q(π; ξ) can be found from the procedure described at the last
paragraph of Section 2.

Fourth, the total deviations from the mean and median are δ1 = 2µ′1 F(µ′1) − 2m1(µ
′
1) and

δ2 = µ′1 − 2m1(M), where F(µ′1) comes from (7).
Fifth, the moment generating function (mgf) M(t) = E(et X) of X follows from (16) as

M(t) =
∞

∑
i=1

ti+1 Mi+1(t) =
∞

∑
i=0

(i + 1) ti+1 ρi(t), (19)

where Mi+1(t) is the mgf of Yi+1 and ρi(t) =
∫ 1

0 exp[t QG(u; ξ)] uidu. Hence, we can obtain the mgfs
of many special NKw-G distributions directly from exp-G generating function and Equation (19).

3.6. Estimation

Here, we consider the estimation of the unknown parameters of the NKw-G family by the
maximum likelihood method. The MLEs enjoy desirable properties and deliver simple approximations
that work well in finite samples when constructing confidence intervals. The normal approximation
for the MLEs can be handled either analytically or numerically.

The log-likelihood function `(θ) for the vector of parameters θ = (a, b, ξ)> from n observations
x1, · · · , xn has the form

` = `(θ) = n log(a b) +
n

∑
i=1

log [g(xi; ξ)] +
n

∑
i=1

G(xi; ξ) log[1− G(xi; ξ)]

+(a− 1)
n

∑
i=1

log
{

1− [1− G(xi; ξ)]G(xi ;ξ)
}

+(b− 1)
n

∑
i=1

log
[
1−

{
1− [1− G(xi; ξ)]G(xi ;ξ)

}a]
+

n

∑
i=1

log
[

G(xi; ξ)

1− G(xi; ξ)
− log[1− G(xi; ξ)]

]
.

The MLE θ̂ of θ can be evaluated by maximizing `(θ). There are several routines for numerical
maximization of `(θ) in the R program (optim function), SAS (PROC NLMIXED), Ox (sub-routine MaxBFGS),
among others.

All distributions belonging to the NKw-G family can be fitted to real data using the AdequacyModel
package for the R statistical computing environment (https://www.r-project.org/). An important
advantage of this package is that it is not necessary to define the log-likelihood function and that it
computes the MLEs, their standard errors and some GoF statistics. We only need to provide the pdf
and cdf of the distribution to be fitted to a data set.

https://www.r-project.org/
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Alternatively, we can differentiate the log-likelihood and solving the resulting nonlinear likelihood
equations. Then, the score components with respect to a, b and ξ are

∂`

∂a
=

n
a
+

n

∑
i=1

log
{

1− [1− G(xi; ξ)]G(xi ;ξ)
}

−(b− 1)
n

∑
i=1

{
1− [1− G(xi; ξ)]G(xi ;ξ)

}a
log
{

1− [1− G(xi; ξ)]G(xi ;ξ)
}

1−
[
1− (1− G(xi; ξ))G(xi ;ξ)

]a ,

∂`

∂b
=

n
b
+

n

∑
i=1

log
[
1−

{
1− [1− G(xi; ξ)]G(xi ;ξ)

}a]
,

∂`

∂ξ
=

n

∑
i=1

gξ
i

g(xi; ξ)
−

n

∑
i=1

{
G(xi; ξ)

1− G(xi; ξ)
− log(1− G(xi; ξ))

}
Gξ

i

−
n

∑
i=1

Gξ
i [G(xi; ξ)− 2]

(1− G(xi; ξ)) [− log{1− G(xi; ξ)}+ G(xi; ξ) {1 + log(1− G(xi; ξ))}]

+(a− 1)
n

∑
i=1

(
1− G(xi; ξ)

)G(xi ;ξ)−1

[1− G(xi; ξ)]G(xi ;ξ)

[
− log{1− G(xi; ξ)}+ G(xi; ξ)

×{1 + log(1− G(xi; ξ))}
]

Gξ
i − (b− 1)

n

∑
i=1

a
{

1− (1− G(xi; ξ))G(xi ;ξ)
}a−1

1−
[
1− (1− G(xi; ξ))G(xi ;ξ)

]a

×
(
1− G(xi; ξ)

)G(xi ;ξ)−1
[− log{1− G(xi; ξ)}+ G(xi; ξ) {1 + log(1− G(xi; ξ))}] Gξ

i ,

where gξ
i = ∂g(xi ;ξ)

∂ξ and Gξ
i = ∂G(xi ;ξ)

∂ξ are column vectors of the same dimension of ξ.
Setting the score components to zero and solving them simultaneously yields the MLEs of the

model parameters. The resulting equations cannot be solved analytically, but some statistical softwares
can be used to solve them numerically through iterative Newton-Raphson type algorithms.

For interval estimation and hypothesis tests on the model parameters, we can obtain the (p +

2)× (p + 2) observed information matrix J(θ) numerically (p is the dimension of ξ) since the expected
information matrix K(θ) is very complicated and requires numerical integration.

Under standard regularity conditions, we have (θ̂ − θ)
a∼ Np+2(0, K(θ)−1), where a∼ means

approximately distributed and K(θ) is the expected information matrix. The asymptotic behavior
remains valid if K(θ) is replaced by the observed information matrix J(θ) evaluated at θ̂, i.e., J(θ̂).
The multivariate normalNp+2(0, J(θ̂)−1) distribution can be used to construct approximate confidence
intervals for the model parameters.

4. The NKwW Distribution

We now define the NKwW distribution by taking the Weibull baseline with cdf G(x) = 1−
exp(−α xβ) and pdf g(x) = α β xβ−1 exp(−α xβ). Then, the cdf and pdf of the NKwW distribution are,
respectively, given by

FNKwW(x) = 1−
{

1−
[
1− exp

{
− αxβ

(
1− exp(−α xβ)

)}]a
}b

(20)
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and

fNKwW(x) = a b α β xβ−1 exp
{
− α xβ

(
2− exp(−α xβ)

)}
×
[
1− exp

{
− α xβ

(
1− exp(−α xβ)

)}]a−1

×
{

1−
[
1− exp

{
− α xβ

(
1− exp(−α xβ)

)}]a
}b−1

×
[

1− exp(−α xβ)

exp(−α xβ)
+ α xβ

]
. (21)

Henceforth, a rv with density (21) is denoted by X ∼ NKwW(a, b, α, β). The hrf of X has the form

h(x) = a b α β xβ−1 exp
{
− α xβ

(
2− exp(−α xβ)

)}
×
[
1− exp

{
− α xβ

(
1− exp(−α xβ)

)}]a−1

×
{

1−
[
1− exp

{
− α xβ

(
1− exp(−α xβ)

)}]a
}−1

×
[

1− exp(−α xβ)

exp(−α xβ)
+ α xβ

]
.

Figures 1 and 2 display some plots of the pdf and hrf of X for selected parameter values.
Figure 1 reveals that the NKwW distribution is right-skewed and reversed-J shaped. Also,
Figure 2 shows that the NKwW hrf can produce increasing, decreasing, bathtub and upside-down
bathtub shapes.
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Figure 1. Plots of the NKwW densities for some parameter values.
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Figure 2. Plots of the NKwW hazard rate for some parameter values.

4.1. Linear Representation

The cdf of the NKwW distribution follows from Equation (14) is

FNKwW(x) =
∞

∑
i=2

ti

[
1− exp(−α xβ)

]i
. (22)

By expanding the binomial term in (22) and noting that ∑∞
i=2 ti = 1, we can write

FNKwW(x) = 1 +
∞

∑
i=2

ti

i

∑
p=1

(−1)p
(

i
p

)
exp(−p α xβ)

and then by changing the index p by (p + 1) we get

FNKwW(x) = 1 +
∞

∑
i=2

ti

i

∑
p=0

(−1)p+1
(

i
p + 1

)
exp[−(p + 1) α xβ].

Let δp = 2 for p = 0, 1, 2 and δp = p for p ≥ 3. We can interchange the sums conveniently
to obtain

FNKwW(x) = 1 +
∞

∑
p=0

(−vp) exp[−(p + 1) α xβ],

where vp = (−1)p ∑∞
i=δp

( i
p+1) ti.
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By differentiating the last expression, the NKwW density can be expressed as

fNKwW(x) =
∞

∑
p=0

vp π(x; (p + 1)α, β), (23)

where
π(x; (p + 1)α, β) = (p + 1) α β xβ−1 exp(−(p + 1) α xβ)

denotes the Weibull density with scale parameter (p + 1)α and shape parameter β.

Equation (23) shows that the NKwW density is a linear combination of Weibull densities.
Therefore, several NKwW mathematical properties can be derived from those of the Weibull
distribution.

4.2. Properties

Let Zp be a rv with density π(x; (p + 1)α, β). Then, several properties of X can follow from those
of Zp. First, the nth ordinary moment of X can be written as

µ′n = Γ
(

n
β
+ 1
) ∞

∑
p=0

vp

[(p + 1)α]n/β
. (24)

Second, the cumulants (κn) of X can be determined recursively from (24) as κs = µ′s −
∑s−1

k=1 (
s−1
k−1) κk µ′s−k, respectively, where κ1 = µ′1.

The skewness γ1 = κ3/κ3/2
2 and kurtosis γ2 = κ4/κ2

2 of X can be calculated from the third and
fourth standardized cumulants. The skewness and kurtosis plots of the NKwW distribution are
displayed in Figure 3. These plots reveal that the parameters a and b play a significant role in modeling
the skewness and kurtosis behaviors of X.
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Figure 3. Skewness and kurtosis plots of the NKwW model for some values of α=1.5, 0.5, 1.5 and
β=2.5, 3.5, 0.5.

Third, we derive an approximation for the density of the sample average X = ∑n
i=1 Xi/

√
n

of independent and identically (iid) rvs X1, · · · , Xn with density (21). Without loss of generality,
we can replace each Xi by (Xi − µ′1)/Var(Xi) in order to simplify the approximation. By doing this,
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the previous third and fourth standardized cumulants are γ1 = µ′3 and γ2 = µ′4 − 3. Furthermore,
we require the first six Hermite polynomials defined by (−1)n∂nφ(x)/∂xn = Hr(x) φ(x) for n ≥ 0,
where φ(x) is the standard normal pdf. They satisfy the recurrence equation Hr(x) = yHr−1(x)− (r−
1)Hr−2(x) (r ≥ 2) and follow as H0(x) = 1, H1(x) = x, H2(x) = x2− 1, H3(x) = x3− 3x, H4(x) =
x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x and H6(x) = x6 − 15x4 + 45x2 − 15.

The second-order Edgeworth expansion for the sample mean X of standardized NKwW rvs can
be expressed as

fX(x) = φ(x)

{
1 +

µ′3
6
√

n
H3(x) +

(µ′4 − 3)
24n

H4(x) +
µ′23
72n

H6(x)

}
+ O(n−3/2). (25)

It is much more frequent in statistical applications to compute distribution functions than density
functions. By integrating Equation (25), the cdf of X has the form

FX(x) = Φ(x)− φ(x)

{
µ′3

6
√

n
H2(x) +

(µ′4 − 3)
24n

H3(x) +
µ′23
72n

H5(x)

}
+ O(n−3/2), (26)

where Φ(x) is the standard normal cdf. Equation (26) provides highly accurate results for the
probabilities associated with Y.

Fourth, the nth incomplete moment of X, denoted by mn(y) = E(Xn | X ≤ y) =∫ y
0 xn fNKwW(x)dx, can easily be obtained by changing variables from the lower incomplete gamma

function γ(s, x) =
∫ ∞

0 xs−1 e−xdx when calculating the corresponding moment of Zp. Then, we obtain

mn(z) =
∞

∑
p=0

vp

[(p + 1)α]n/β
γ

(
n
β
+ 1, (p + 1)αzβ

)
. (27)

Fifth, the first incomplete moment m1(z) is used to to determine the totality of deviations from
the mean and median of a distribution and construct the Bonferroni and Lorenz curves. The total
deviations from the mean and median M of X can be expressed as δ1 = 2µ′1 FNKwW(µ′1)− 2m1(µ

′
1)

and δ2 = µ′1 − 2m1(M), where M can be determined from FNKwW(M) = 0.5. The Bonferroni and
Lorenz curves of X for a given probability π are given by B(π) = m1(q)/(π mu′1) and L(π) = π B(π),
respectively, where q = Q(π) is the qf of X discussed in Section 4.1.

4.3. Quantile Function and Simulation Study

The qf of the NKwW distribution cannot be obtained explicitly. However, we can use
Newton-Raphosn algorithm to generate NKwW variates as follows:

1. Set n, α, β, a, b and initial value x0.
2. Generate U ∼Uniform(0, 1).
3. Update x0 by using the Newton’s formula

x∗ = x0 − R(x0; α, β, a, b),

where R(x0; α, β, a, b) = FNKwW (x0;α,β,a,b)
fNKwW (x0;α,β,a,b) , and FNKwW and fNKwW are obtained from Equation (20)

and Equation (21), respectively.
4. If |x0 − x∗| ≤ ε, (ε > 0, very small tolerance limit), then store x0 = x∗ as a variate from the

NKwW(α, β, a, b) distribution.
5. If |x0 − x∗| > ε, then, set x0 = x∗ and go to step 3.
6. Repeat steps (2)–(5) n times to generate x1, · · · xn.

The R script to generate observations from the NKwW distribution is given in the Appendix A.
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Here we study the performance and accuracy of maximum likelihood estimates of the NKwW
parameters using Monte Carlo simulations. The simulation study is carried out for sample sizes
n = 25, 50, 75, 100, 200 and parameter scenarios: I: α = 0.5, β = 0.5, a = 2.5, and b = 1.5, II: α = 1.5,
β = 1.5, a = 1.5, and b = 1.5 and III: α = 1.1, β = 5.5, a = 0.5, and b = 0.5. We used the above
algorithm for sample generation whose R-codes ae given in Appendix A. The simulation study is
repeated for N = 1000 times each with given sample size and computed the average estimates (AE)
along with their average biases (Bias)of the MLEs and mean squared errors (MSE).

Bias(θ̂) =
N

∑
i=1

θ̂i
N
− θ and MSE(θ̂) =

N

∑
i=1

(θ̂i − θ)2

N
.

We display Bias and MSE for the parameters α, β, a and b in Figures 4 and 5, respectively, which
indicate that as sample size increases the bias and MSE decreases. Thus, MLEs perform well in
estimating the parameters of the NKwW distribution.
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Figure 4. Plots of estimated MSEs for selected parameter values.
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Figure 5. Plots of estimated biases for selected parameter values.

4.4. Estimation

Let x1, · · · , xn be a sample of size n from the NKwW distribution given in Equation (21).
The log-likelihood function ` = `(θ) for the vector of parameters θ = ( α, β, a, b)> is

` = n log(a b α β)− 2α
n

∑
i=1

xβ
i + α

n

∑
i=1

xβ
i exp(−α xβ

i )

+
n

∑
i=1

log
[
α xβ

i + exp(−αxβ
i )
(

1− exp(−α xβ
i )
)]

+(β− 1)
n

∑
i=1

log xi + (a− 1)
n

∑
i=1

log
[
1− exp(−α xβ

i )
(

1− exp(−αxβ
i )
)]

+(b− 1)
n

∑
i=1

log
[

1−
{

1− exp(−α xβ
i )
(

1− exp(−α xβ
i )
)}a

]
.
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The function ` can be easily maximized using the AdequacyModel package. The components of
the score vector U(θ) are

Uα =
n
α
+

n

∑
i=1

 xβ
i

[
1 + exp(α xβ

i )
]

α xβ
i + exp(α xβ

i )− 1

− n

∑
i=1

xβ
i exp(−α xβ

i )
[
α xβ

i + 2 exp(α xβ
i )− 1

]

+(a− 1)
n

∑
i=1

(
zi,α

zi

)
− (b− 1)

n

∑
i=1

(
a za−1

i zi,α

1− za
i

)
,

Uβ =
n
β
+

n

∑
i=1

log xi +
n

∑
i=1

α xβ
i log(x)

[
1 + exp(α xβ

i )
]

α xβ
i + exp(α xβ

i )− 1

− n

∑
i=1

[
α xβ

i log(x) exp(−α xβ
i )
]

×
[
α xβ

i + 2 exp(α xβ
i )− 1

]
+ (a− 1)

n

∑
i=1

( zi,β

zi

)
− (b− 1)

n

∑
i=1

(
a za−1

i zi,β

1− za
i

)
,

Ua =
n
a
+

n

∑
i=1

log zi − (b− 1)
n

∑
i=1

(
za

i log zi

1− za
i

)
,

Ub =
n
b
+

n

∑
i=1

log (1− za
i ) ,

where zi = 1− exp
{
−αxβ

i

[
1− exp(−αxβ

i )
]}

,

ziα = xβ
i

[
αxβ

i + exp(αxβ
i )− 1

]
exp

{
−αxβ

i

[
2− exp(−αxβ

i )
]}

,

ziβ = αxβ
i log xi

[
αxβ

i + exp(αxβ
i )− 1

]
exp

{
−αxβ

i

[
2− exp(−αxβ

i )
]}

.

The MLE θ̂ of θ can be obtained by solving the nonlinear equations Uα = 0, Uβ = 0, Ua = 0 and
Ub = 0. These equations cannot be solved analytically and statistical software can be used to obtain
the estimates numerically. We can use iterative techniques such as a Newton-Raphson type algorithm
to obtain θ̂ using a wide range of initial values. The initial values for the parameters are important
but are not hard to obtain from the fit of the Weibull distribution. This process often results or leads
to more than one maximum. However, in these cases, we consider the MLEs corresponding to the
largest value of the maximum. In a few cases, no maximum is identified for the selected initial values.
In these cases, a new initial value is tried in order to obtain a maximum.

5. Empirical Illustrations of NKwW Model

In this section, we compare the NKwW distribution with some well-known extended (or
generalized) Weibull distributions. To check the potentiality of the new distribution, we use two real
data sets representing different hydrological events such as precipitation and flood. We compare
the NKwW model with the Kumaraswamy-Weibull (KwW) (Cordeiro et al. [37]), beta-Weibull (BW)
(Lee et al. [38]), exponentiated-generalized Weibull (EGW) (Oguntunde et al. [39]), McDonald-Weibull
(McW) (Cordeiro et al. [40]), gamma-Weibull (GaW) (Cordeiro et al. [41]), odd log-logistc Weibull
(OLLW) (da-Cruz et al. [42]), Marshall-Olkin Weibull (MOW) (Ghitany et al. [43]), transmuted-Weibull
(TrW) (Khan et al. [44]) and Weibull (W) models by means of two real-life data sets which are described
below:

Data Set 1. Precipitation data. The data were taken from Katz et al. [45] which represent the annual
maximum precipitation (inches) for one rain gauge in Fort Collins, Colorado from 1900 through 1999.
The data are: 239, 232, 434, 85, 302, 174, 170, 121, 193, 168, 148, 116, 132, 132, 144, 183, 223, 96, 298, 97,
116, 146, 84, 230, 138, 170, 117, 115, 132, 125, 156, 124, 189, 193, 71, 176, 105, 93, 354, 60, 151, 160, 219,
142, 117, 87, 223, 215, 108, 354, 213, 306, 169, 184, 71, 98, 96, 218, 176, 121, 161, 321, 102, 269, 98, 271, 95,
212, 151, 136, 240, 162, 71, 110, 285, 215, 103, 443, 185, 199, 115, 134, 297, 187, 203, 146, 94, 129, 162, 112,
348, 95, 249, 103, 181, 152, 135, 463, 183, 241.
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Data set 2. Flood data. The data were taken from Asgharzadeh et al. [46] which represent the maximum
annual flood discharges (in units of 1000 cubic feet per second) of the North Saskachevan River at
Edmonton, over a period of 48 years. The data are: 19.885, 20.940, 21.820, 23.700, 24.888, 25.460, 25.760,
26.720, 27.500, 28.100, 28.600, 30.200, 30.380, 31.500, 32.600, 32.680, 34.400, 35.347, 35.700, 38.100, 39.020,
39.200, 40.000, 40.400, 40.400, 42.250, 44.020, 44.730, 44.900, 46.300, 50.330, 51.442, 57.220, 58.700, 58.800,
61.200, 61.740, 65.440, 65.597, 66.000, 74.100, 75.800, 84.100, 106.600, 109.700, 121.970, 121.970, 185.560.

All the calculations in these two applications are performed using the AdequacyModel package
in R. The unknown parameters of the models are estimated by the maximum likelihood method.
The log-likelihood function is evaluated at the MLEs (ˆ̀). The well-known GoFS such as the
Akaike information criterion (AIC), Bayesian Information Criterion (BIC), Hannan-Quinn Information
Criterion ( HQIC), Anderson-Darling (A∗), Cramér–von Mises (W∗) and Kolmogrov-Smirnov (K-S)
are adopted for model comparisons. The lower values of GoFS and higher p-values of the K-S statistic
indicate good fits.

Table 1 and Table 2 list the MLEs and their standard errors (SEs) for the NKwW distribution and
other competitive models (KwW, BW, EGW, McW, GaW, OLLW, MOW, TrW and W) fitted to the two
hydrological data sets. The values of the GoFS in Table 3 and Tabl 4 indicate that the NKwW model
shows small values of these statistics and hence it provides the best fit as compared to the other models.
The plots in Figures 6 and 7 also support our claim.
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Figure 6. Estimated (a) density (b) K-M (c) hazard rate, and (d) Box-plots for the data set 1.
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Figure 7. Estimated (a) density (b) K-M (c) hazard rate, and (d) Box-plots for the data set 2.
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Table 1. MLEs and their SEs (in parentheses) for data set 1.

Distribution α β a b θ

NKwW 0.0089 1.1514 5.0192 0.5054 –
(0.0023) (0.0730) (1.6716) (0.1807) –

KwW 0.0160 1.3962 5.7590 0.3381 –
(0.0027) (0.2113) (1.9264) (0.1554) –

BW 0.0219 0.7969 13.2183 1.2340 –
(0.0076) (0.1903) (5.1706) (0.9787) –

EGW 0.0086 0.9045 2.0898 10.5512 –
(0.0022) (0.1288) (0.6257) (4.4416) –

McW 0.0132 1.2859 1.7925 0.5887 2.5824
(0.0032) (0.2544) (0.6126) (0.3831) (0.9474)

GaW 1.1306 0.5469 17.6158 – –
(0.0496) (0.0154) (1.4970) – –

OLLW 0.0045 1.0313 2.4836 – –
(0.0003) (0.1759) (0.4532) – –

MOW 0.0032 3.4739 – – 0.1039
(0.0002) (0.3436) – – (0.0489)

TrW 0.0043 2.4549 – – 0.6144
(0.0003) (0.1755) – – (0.2078)

W 0.0050 2.2745 – – –
(0.0002) (0.1629) – – –

Table 2. MLEs and their standard errors (in parentheses) for data set 2.

Distribution α β a b θ

NKwW 0.1742 0.9887 59.0160 0.2183 –
(0.0316) (0.0619) (0.4024) (0.0585) –

KwW 0.1609 1.0252 54.7825 0.2041 –
(0.0153) (0.0276) (0.1358) (0.0382) –

BW 0.1320 1.1080 23.0602 0.1940 –
(0.0073) (0.0068) (8.7941) (0.0324) –

EGW 0.0090 0.7774 5.5966 10.5493 –
(0.0041) (0.1370) (2.0458) (5.6821) –

McW 0.1608 1.0049 14.5078 0.2210 2.5180
(0.0340) (0.0466) (9.8227) (0.0757) (0.0895)

GaW 4.6144 0.4983 14.7225 – –
(0.1518) (0.0217) (1.7239) – –

OLLW 0.0154 0.9508 2.3925 – –
(0.0021) (0.3378) (0.9487) – –

MOW 0.0065 3.3556 – – 0.0145
(0.0014) (0.4292) – – (0.0146)

TrW 0.0137 1.9476 – – 0.7003
(0.0016) (0.1941) – – (0.2483)

W 0.0171 1.7719 – – –
(0.0015) (0.1776) – – –
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Table 3. The statistics AIC, BIC, HQIC, A∗, W∗, K-S and p-value for data set 1.

K-S
Distribution ˆ̀ AIC BIC HQIC A∗ W∗ K-S P-Value

NKwW 565.2337 1138.4670 1148.8880 1142.6850 0.1722 0.0207 0.0454 0.9863
KwW 566.6253 1141.2510 1151.6710 1145.4680 0.3678 0.0477 0.0572 0.8987
BW 566.2292 1140.4580 1150.8790 1144.6760 0.3149 0.0411 0.0489 0.9707

EGW 566.2248 1140.4500 1150.8700 1144.6670 0.3266 0.0427 0.0487 0.9718
McW 567.4362 1144.8720 1157.8980 1150.1440 0.4868 0.0655 0.0596 0.8695
GaW 567.2618 1140.5240 1148.3390 1143.6870 0.5071 0.0689 0.0547 0.9257

OLLW 569.6909 1145.3820 1153.1970 1148.5450 0.6649 0.0932 0.0807 0.5335
MOW 568.4818 1142.9640 1150.7790 1146.1270 0.6431 0.0866 0.0595 0.8713
TrW 573.7855 1153.5710 1161.3870 1156.7340 1.4659 0.2183 0.0872 0.4321
W 576.1180 1156.2360 1161.4460 1158.3450 1.8275 0.2767 0.0936 0.3450

Table 4. The statistics AIC, BIC, HQIC, A∗, W∗, K-S and p-value for data set 2.

K-S
Distribution ˆ̀ AIC BIC HQIC A∗ W∗ K-S P-Value

NKwW 215.1742 438.3485 445.8333 441.1770 0.2003 0.0277 0.0776 0.9346
KwW 215.5195 439.0389 446.5238 441.8675 0.2495 0.0347 0.0834 0.8924
BW 216.1573 440.3147 447.7995 443.1432 0.3387 0.0477 0.0973 0.7538

EGW 218.1801 444.3601 451.8449 447.1887 0.6147 0.0913 0.0973 0.7543
McW 215.7566 441.5132 450.8692 445.0489 0.2699 0.0374 0.0837 0.8895
GaW 219.4700 444.9401 450.5537 447.0615 0.8278 0.1250 0.1176 0.5203

OLLW 220.4104 446.8208 452.4344 448.9422 0.9051 0.1388 0.0934 0.7966
MOW 218.2594 442.5187 448.1323 444.6401 0.5773 0.0868 0.0791 0.9247
TrW 224.0997 454.1994 459.8130 456.3208 1.5006 0.2372 0.1291 0.4001
W 225.7065 455.4131 459.1555 456.8273 1.7286 0.2765 0.1399 0.3048

6. Bivariate New Kumaraswamy G-Family

In this Section, we introduce a bivariate extension of the NKw-G family according to Marshall
and Olkin shock model (see, Marshall and Olkin, [47]). Several authors used the Marshall and
Olkin approach as a method to generate bivariate distributions, see for example Sarhan and
Balakrishnan, [48], Kundu and Dey [49], El-Gohary et al. [50], Muhammed [51], El-Bassiouny et al. [52],
Ghosh and Hamedani [53], El-Morshedy et al. [54,55], Eliwa et al. [56], Hussain et al. [57], among others.
The bivariate new Kumaraswamy (BvNKw) G-family is constructed from three independent NKw-G
families by using a minimization process. Assume three independent rvs Yk ∼ NKw-G(a, bk, ξ);
k = 1, 2, 3 and defining Xj = min{Yj, Y3}; j = 1, 2, the bivaraite random vector X is said to have
the BvNKw-G family with parameters vector Υ =(a, b1, b2, b3, ξ) if its joint reliability function (jrf) is
given by

SX1,X2(x1, x2; Υ) =

{
SNKw-G (x1; a, b1, ξ)SNKw-G (x2; a, b2 + b3, ξ) if x1 < x2,
SNKw-G (x1; a, b1 + b3, ξ)SNKw-G (x2; a, b2, ξ) if x1 ≥ x2.

(28)

The marginal reliability functions (rfs) corresponding to (28) can be written as

SXi (xi) = SNKw-G (xi; a, bi + b3, ξ); i = 1, 2. (29)

The corresponding joint pdf (jpdf) to (28) can be formulated as

fX1,X2(x1, x2; Υ) =


fNKw-G (x1; a, b1, ξ) fNKw-G (x2; a, b2 + b3, ξ) if x1 < x2,
fNKw-G (x1; a, b1 + b3, ξ) fNKw-G (x2; a, b2, ξ) if x1 > x2,

b3
b1+b2+b3

fNKw-G (x; a, b1 + b2 + b3, ξ) if x1 = x2 = x,
(30)
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where the jpdf in Equation (30) can be derived from a well-known formula (see Eliwa and
El-Morshedy, [58]). The marginal pdfs corresponding to Equation (29) can be proposed as

fXi (xi) = fNKw-G (xi; a, bi + b3, ξ); i = 1, 2. (31)

If X have the BvNKw-G family, then the distributions of max{X1, X2} and min{X1, X2} are

Fmax{X1,X2}(w) =
3

∏
i=1

FNKw−G(w; a, bi, ξ) and Fmin{X1,X2}(w) = 1−
3

∏
i=1

SNKw-G (w; a, bi, ξ),

respectively. If Xj ∼ NKw-G(a, bj + b3, ξ); j = 1, 2, then the coefficient of correlation between X1 and
X2 is

Q(u)X1,X2 =

{
4FNKw-G

(
Q(u)X1 ; a, b1, ξ

)
FNKw-G

(
Q(u)X2 ; a, b2 + b3, ξ

)
− 1 if x1 < x2,

4FNKw-G
(
Q(u)X1 ; a, b1 + b3, ξ

)
FNKw-G

(
Q(u)X2 ; a, b2, ξ

)
− 1 if x1 > x2.

(32)

The BvNKw-G family has a singular part along the line x1 = x2 with weight b3(b1 + b2 + b3)
−1,

whereas on x1 6= x2 with weight (b1 + b2)(b1 + b2 + b3)
−1, the BvNKw-G family has an absolute

continuous part. Assume δi = SXi (xi) where Xj ∼ NKw-G(a, bj + b3, ξ); j = 1, 2, the jrf of the
proposed family can be derived by using copula of the Marshall-Olkin model as

SX1,X2(x1, x2; Υ) = δ1−τ1
1 δ1−τ2

2 max
(
δτ1

1 , δτ2
2
)

, for 0 < τ1, τ2 < 1,

where τj = b3
bj+b3

. For more details on copula property, see Gijbels et al. [59] and Hus̃ková and
Maciak [60].

Using Equations (28) and (30), the joint hrf (jhrf) can easily be reported by using hX1,X2(x1, x2; Υ) =
fX1,X2 (x1,x2;Υ)
SX1,X2 (x1,x2;Υ) . Figures 8–10 show the jpdf, jhrf, and jrf for different values of the BvNKw-Weibull

(BvNKwW) parameters.

Figure 8. The surface plots of the jpdf, jhrf and jrf of the BvNKwW model for a = 0.6, b1 = 4, b2 = 4,
b3 = 4, α = 0.6 and β = 2.9.
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Figure 9. The surface plots of the jpdf, jhrf and jrf of the BvNKwW model for a = 1.6, b1 = 2, b2 = 2,
b3 = 2, α = 1.6 and β = 2.9.

Figure 10. The surface plots of the jpdf, jhrf and jrf of the BvNKwW model for a = 0.8, b1 = 1.5, b2 = 1.5,
b3 = 1.5, α = 0.9 and β = 1.9.

6.1. The MLE for the BvNKw-G Family

In this section, the unknown parameters of the BvNKw-G family are estimated by using the
maximum likelihood approach. Assuming that (x11, x21), (x12, x22), ..., (x1p, x2p) is a sample of size
p from the BvNKw-G family where Λ1 = {x1i < x2i}, Λ2 = {x1i > x2i}, Λ3 = {x1i = x2i = xi},
ps = |Λs| ; s = 1, 2, 3 and |Λ| = p = p1 + p2 + p3. Using Equation (30), the likelihood function l(Υ)
can be expressed as

l(Υ) =
p1

∏
i=1

fNKw-G (x1i; a, b1, ξ) fNKw-G (x2i; a, b2 + b3, ξ)
p2

∏
i=1

fNKw-G (x1i; a, b1 + b3, ξ)

× fNKw-G (x2i; a, b2, ξ)

(
b3

b1 + b2 + b3

)p3 p3

∏
i=1

fNKw-G (xi; a, b1 + b2 + b3, ξ). (33)

Through differentiation of the term L (Υ) = log l(Υ) with respect to a, b1, b2, b3 and ξ, and then
equating the resulting equations to zeros, we get the non-linear normal equations. An iterative
procedure such as Newton–Raphson technique is required to solve them numerically.

7. Empirical Illustrations of BvNKwW Model Through Motors Data

In this Section, the flexibility of the BvNKwW model is shown through a real-life data application.
This data is reported in Relia and Staff [61] which represents the failure times of a parallel system
constituted by two identical motors in days. The fitted bivariate models are compared using some
statistical criteria, namely AIC, CAIC, BIC and HQIC. To fit the marginals of the BvNKwW model,
the K-S with its p-value are used. The BvNKwW model is compared with other bivariate distributions
such as: bivariate generalized power Weibull (BvGPW), bivariate exponentiated Weibull (BvEW),
bivariate Weibull (BvW), bivariate generalized exponential (BvGEx), bivariate exponential (BvEx),
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and bivariate generalized linear failure rate (BvGLFR) distributions when applied to this data set.
At first, the marginals X1, X2 and max(X1, X2) are fitted separately to this data set. The MLEs of
the parameters (a, b, α, β) of the corresponding NKwW distribution for X1, X2 and max(X1, X2) are
(60.5030, 732.6059, 0.9694, 0.17440), (1.8182, 84.4223, 0.0019, 0.9434) and (27.8306, 263.4773, 0.4649,
0.2626), respectively. The −L, K-S, p-value for the marginals are reported in Table 5.

Table 5. The -L, K-S and p-values for X1, X2 and max(X1, X2).

X1 X2 max(X1, X2)

Model −L K-S P-Value −L K-S P-Value −L K-S P-Value

NKwW 100.2890 0.2376 0.2614 102.9142 0.0902 0.9956 101.1965 0.1372 0.8871

Table 5 lists that the NKwW model fits to the real data for the marginals. Figures 11–13 show the
fitted pdf, cdf and probability-probability (pp) plots, which support our empirical results in Table 5.
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Figure 11. The fitted pdfs plots for X1, X2 and max(X1, X2).
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Figure 12. The estimated cdfs for X1, X2 and max(X1, X2).
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Figure 13. The pp-plots for X1, X2 and max(X1, X2).

Figure 14 show the box and TTT plots for the X1, X2 and max(X1, X2), and the scatter plot for the
motors data.
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Figure 14. The box, TTT and scatter plots of the marginal models.

It is noted that the BvNKwW model can be used to analyze and the real data on motors. The MLEs,
−L, AIC, CAIC, BIC and HQIC values for the BvNKwW model and some competitive models are
listed in Table 6.

Table 6. The MLEs with its (SE) and goodness of fit measures for Motors data.

Model

Statistic BvNKwW BvGPW BvEW BvW BvGEx BvEx BvGLFR

â 1.6395 0.0291 0.5203 0.0389 0.0137 − 6.99× 10−5

(0.0651) (0.0557) (0.0511) (0.0158) (0.0023) −
(
1.09× 10−5)

b̂1 3.1333 1.5591 30.1381 0.2004 2.4541 0.0023 0.4171
(0.2364) (3.0428) (9.6756) (0.0511) (1.0189) (0.0005)

(
9.71× 10−7)

b̂2 3.3989 1.8581 24.1351 0.2383 2.8803 0.0021 0.4864
(0.1896) (3.6787) (7.6763) (0.0513) (1.1158) (0.0005)

(
1.05× 10−6)

b̂3 4.2869 3.7191 61.8051 0.3381 6.0641 0.0051 1.0188
(0.0985) (7.2630) (6.3779) (0.0622) (1.8113) (0.0009)

(
1.33× 10−6)
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Table 6. Cont.

Model

Statistic BvNKwW BvGPW BvEW BvW BvGEx BvEx BvGLFR

α̂ 0.0008 0.0291 0.5203 0.0389 0.0137 − 6.99× 10−5

(0.0001) (0.0557) (0.0511) (0.0158) (0.0023) −
(
1.09× 10−5)

β̂ 1.2532 − − − − − −
(0.3421) − − − − − −

−L 211.1711 431.7909 339.2656 422.9532 335.2312 355.7323 331.7681
AIC 434.3422 871.5818 688.5312 853.9064 678.4624 717.4646 673.5362

CAIC 441.9786 874.6587 693.5312 856.9833 681.5393 719.1789 678.5362
BIC 439.6844 875.14328 692.9831 857.4679 682.0239 720.1357 677.9881

HQIC 435.0788 872.0729 689.1451 854.3975 678.9535 717.8329 674.1501

From Table 6, it is observed that the BvNKwW model provides a better fit as compared to
competitive models.

8. Concluding Remarks

Proposing new and flexible models through G-classes is an active research area in distribution
theory. The new era has proved that flexible models can prove very helpful to researchers and
practitioners in investigating data genertated from different phenomenons. G-classes are one of the
basic source which provides a paradigm to data related science and its investigation.

The purpose of our article is to contribute a new G-family and hence a new Kumaraswamy-G
family of distributions is introduced from a new generator 1− Ḡ(x)G(x) for support (0,1), that has
ability to serve as an alternative to well-known Kumaraswamy-G family (pioneered in 2011) and
other classes of distributions for T ∈ (0, 1). The proposed generator adopted here involves a
different function of the cumulative function instead of existing generator which is only based on
G(x). In the literature, beta-G, Kw-G, Mc-G and TL-G families were introduced from the existing
generator G(x) for bounded unit interval. Therefore, similar G-families can be developed from our
proposed generator 1− Ḡ(x)G(x). We obtain some structural properties of this new Kumaraswamy-G
family, and also study some properties of the special model called the new Kumaraswamy-Weibull
(NKwW) distribution. We compare this distribution with the well-known generalized Weibull
models (Kumaraswamy-Weibull, McDonald-Weibull, beta-Weibull, exponentiated-generalized Weibull,
gamma-Weibul, odd log-logistic-Weibull, Marshall-Olkin-Weibull, transmuted-Weibull and Weibull)
using six popular GoF test-statistics. We found that the new distribution provides better estimates
and minimum GoF-tests values. Thus, the NKwW distribution outperforms the well-established
competitive models on the basis of numerical and graphical analysis. Similarly, the BvNKwW
distribution is introduced, and is compared with other well-known bivariate models such as bivariate
generalized power Weibull, bivariate exponentiated Weibull, bivariate Weibull, bivariate generalized
exponential, bivariate exponential, and bivariate generalized linear failure rate distributions.
The results of popular goodness-of-fit statistics showed that our proposed bivariate model is better as
compared to other well-known bivariate models. We expect that this new family will be able to attract
readers and applied statisticians.
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Appendix A

The R script to generate NKwW variates is given below:

n=20; alpha=1; beta=1.5; a=2.5;b=2.5;
f=function(x,alpha,beta,a,b)
{
g=alpha*beta*x^(beta-1))*exp(-alpha*x^{beta})
G=1-exp(-alpha*x^{beta})
F=1-(1-(1-(1-G)^G)^a)^b
D =a*b*g*(1-G)^G*(1-(1-G)^G)^(a-1))
*((G)/(1-G)-log(1-G))*(1-(1-(1-G)^G)^a)^(b-1)
return(D)
};

F=function(x,alpha,beta,a,b)
{
g=alpha*beta*x^(beta-1))*exp(-alpha* x^{beta})
G=1-exp(-alpha*x^{beta})
F=1-(1-(1-(1-G)^G)^a)^b
D =a*b*g*(1-G)^G*(1-(1-G)^G)^(a-1))*((G)/(1-G)-log(1-G))
*(1-(1-(1-G)^G)^a)^(b-1)
return(d)
};
u=runif(n,0,1);
x=rep(0,n);
for(i in 1:n)
{
x0=1
xnew=x0-((F(x0,alpha,beta,a,b)-u[i])/f(x0,alpha,beta,a,b))
while(abs(xnew-x0) > 0.0001)
{
x0=xnew
xnew=x0-((F(x0,alpha,beta,a,b)-u[i])/f(x0,alpha,beta,a,b))
}
x[i]=xnew
}
print(x)
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