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Abstract: We review the immersed boundary (IB) method in order to investigate the fluid-structure
interaction problems governed by the Navier–Stokes equation. The configuration is described by the
Lagrangian variables, and the velocity and pressure of the fluid are defined in Cartesian coordinates. The
interaction between two different coordinates is involved in a discrete Dirac-delta function. We describe
the IB method and its numerical implementation. Standard numerical simulations are performed in
order to show the effect of the parameters and discrete Dirac-delta functions. Simulations of flow around
a cylinder and movement of Caenorhabditis elegans are introduced as rigid and flexible boundary
problems, respectively. Furthermore, we provide the MATLAB codes for our simulation.

Keywords: immersed boundary; interfacial problem; fluid-structure interaction; discrete Dirac-delta
function

1. Introduction

Fluid–structure interaction is widely observed in various fields [1–5]. However, simulating
fluid-structure interaction is a challenge problem in mathematics, because of its boundary layer transition.
The immersed boundary (IB) method was originally proposed by Peskin in 1977 in order to model flow
patterns around heart valves [6,7]. It is widely used for simulating fluid-structure interactions, such as
turbulent flow [8,9], biomembrane [10,11], glioma invasion [12], and swimming eel [13]. In the IB method,
the Eulerian variables are defined based on a fixed Cartesian coordinate system, and the Lagrangian
variables move freely through the fixed Cartesian coordinates. Their interaction is expressed by a discrete
Dirac-delta function. The advantages of the IB method are its simplicity and efficiency in handling
complicated geometries without mesh regeneration.

In the original IB method, the massless boundary moves with the velocity of the ambient flow by
the fluid force, and the density of the structure is spread out to the ambient flow in order to consider the
inertia of the elastic structure [6]. The movement of the elastic boundary with mass can be easily simulated
by the extension of the original IB method by Kim and Peskin, which is called the penalty IB method [14].
The penalty IB method has recently been extended to simulate the elastic boundary with mass [14] and
the interaction between a rigid body and a surrounding fluid [15]. The numerical simulation with high
Reynolds numbers is strictly limited when using the conventional IB method, because it is needed to
capture the flow transition in a thin boundary layer at high Reynolds numbers. It can be resolved by
refining the mesh grid locally [16,17] or imposing a velocity profile based on a wall model [18,19] at the
cutting egde.
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This paper briefly reviews the IB method and its numerical implementation. The derivation of
the equation of motion for the IB method is quite intuitive; however, some issues remain regarding its
implementation for beginners, such as the choice of delta functions and the effect of parameters. To resolve
this, the actual program code is provided with the corresponding numerical simulations. Moreover,
a practical example is introduced in order to explain the modeling of biological phenomena using the
IB method.

The remainder of this paper is organized, as follows. We describe the mathematical formulations for
the IB method in Section 2. Section 3 presents the discretization of the IB method. The numerical results
are presented to show the effect of the Reynolds number and discrete Dirac-delta function in Section 4.
Finally, Section 5 presents the conclusion. Furthermore, we provide the MATLAB code for the numerical
implementation from the corresponding author’s webpage and its structure can be found in Appendix A.

2. Mathematical Formulations

Let X(s, t) = (X(s, t), Y(s, y)) be the position of the Lagrangian points with label s, describing the
configuration in a two-dimensional space at particular time t. If we assume that the evolution of the
configuration is determined by the (elastic) energy according to the functional E[X], the functional is
expressed in the following form:

℘E[X(·, t)] =
∫
(−F(s, t)) · ℘X(s, t)ds, (1)

where ℘ is a variation symbol that distinguishes the symbol from the Dirac-delta function δ. Taking the
Fréchet derivative of E at X(s, t), we can define the force density that is generated by the material F(s, t)
as follows:

F(s, t) = −℘E[X(·, t)]
℘X(s, t)

. (2)

The elastic energy functional is given by

E[X(·, t)] =
σ

2

∫ (∣∣∣∣∂X
∂s

∣∣∣∣− 1
)2

ds, (3)

where σ is the stiffness coefficient and | · | is the L2-norm. Subsequently, we obtain

℘E[X(·, t)] = −σ
∫

∂

∂s

[(∣∣∣∣∂X
∂s

∣∣∣∣− 1
)

∂X/∂s
|∂X/∂s|

]
· ℘Xds. (4)

Thus, the elastic force density can be rewritten as

F(s, t) =
∂

∂s
[T(s, t)τ(s, t)], (5)

where

T(s, t) = σ

(∣∣∣∣∂X
∂s

∣∣∣∣− 1
)

, (6)

is the tension of the configuration and

τ(s, t) =
∂X/∂s
|∂X/∂s| , (7)

is the unit tangent vector to the configuration. This is the only formulation for the elastic force, and it can
be modified by adding other energy functional to Equation (3) in order to consider the corresponding force.
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Let u = (u(x, t), v(x, t)) be the velocity at the position x and time t. Subsequently, we can define the
velocity of the configuration U(s, t), as follows:

U(s, t) =
∂X(s, t)

∂t
= u(X(s, t), t) =

∫
u(x, t)δ(x− X(s, t)) dx , (8)

where δ(x) denotes the two-dimensional Dirac-delta function δ(x)δ(y). Note that the material derivative
of u is defined as

Du
Dt

=
∂u
∂t

+ u · ∇u, (9)

and it implies that
Du
Dt

(X(s, t), t) =
∂2X(s, t)

∂t2 . (10)

Conversely, the system would naturally evolve to minimize the time integration of the difference between
the kinetic and potential energy functionals:

0 = ℘

[∫ (1
2

∫
M(s)|U(s, t)|2ds− E(X(·, t)

)
dt
]

=
∫ ∫ (

M(s)
∂2X(s, t)

∂t2 − F(s)
)
· ℘X(s)dsdt

=
∫ ∫ (

M(s)
∫ Du

Dt
(x, t)δ(x− X(s, t)) dx− F(s)

)
· ℘X(s)dsdt

=
∫ ∫ ∫ (

M(s)
Du
Dt

(x, t)− F(s)
)
· v(x, t)δ(x− X(s, t)) dx dsdt, (11)

where v(x, t) is the variational derivative of the configuration at position x and time t, which implies
v(X(s), t) = ℘X(s, t). Because the expression contains both Lagrangian and Eulerian variables, we should
eliminate the Lagrangian variables by defining the fluid mass density ρ(x, t) and fluid force density f(x, t),
as follows:

ρ(x, t) =
∫

M(s)δ(x− X(s, t))ds, (12)

f(x, t) =
∫

F(s, t)δ(x− X(s, t))ds. (13)

For simplicity, we assume a constant mass density, which is, M(s) ≡ M and ρ(x, t) ≡ ρ.
The equations of fluid motion are governed by the Navier–Stokes (NS) equation, as follows:

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p + µ∆u + f in Ω× (0, ∞), (14)

∇ · u = 0, (15)

where p(x, t) is the pressure, µ is the viscosity, and Ω = (0, L)2 is the square domain. Let Re = ρU∗L∗/µ

and We = ρ(U∗)2L∗/σ be the Reynolds and Weber numbers with the characteristic velocity U∗ and
length L∗, respectively. Subsequently, the non-dimensionalized version of Equations (14) and (15) can be
expressed, as follows:

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∆u +

1
We

f, (16)

∇ · u = 0. (17)
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3. Discretization

Various numerical schemes have been developed to solve the NS equation. In this study, we employ
the implicit scheme, as follows [20]:

un+1 − un

∆t
+ un · ∇dun = −∇h pn+1 +

1
Re

∆hun+1 +
1

We
fn, (18)

∇h · un+1 = 0. (19)

Here, ∇h is the discrete gradient operator using the central difference and ∆h is the discrete Laplacian
operator defined as

∇hφ(x) := (Dxφ(x), Dyφ(y)) =
(

φ(x + h, y)− φ(x− h, y)
2h

,
φ(x, y + h)− φ(x, y− h)

2h

)
, (20)

∆hφ(x) =
φ(x + h, y) + φ(x, y + h)− 4φ(x, y) + φ(x− h, y) + φ(x, y− h)

h2 . (21)

For the convection term un · ∇dun = (uD±x u + vD±y u, uD±x v + vD±y v), we use the skew symmetry,
as follows:

(uD±x )(u(x)) =
(u(x + h, y) + u(x, y))u(x + h, y)− (u(x− h, y) + u(x, y))u(x− h, y)

4h
. (22)

Other terms are computed in a similar manner.
Applying the projection method [21], we split Equation (18) into two equations with the temporal

velocity ũ, as follows:

ũ− un

∆t
= −un · ∇dun +

1
We

fn, (23)

un+1 − ũ
∆t

= −∇h pn+1 +
1

Re
∆hun+1. (24)

Taking the divergence operator into Equation (24), the Poisson equation for the pressure is derived by
Equation (19), as follows:

∆h pn+1 =
1

∆t
∇d · ũ. (25)

Equation (23) can be solved directly, because it has an explicit formulation, and the fast Fourier
transformation is used to solve Equations (24) and (25). The details can be found in [20]. Here, the
fluid forcing term fn is given by

fn(x) = ∑
s∈Gh

Fn(s)δh(x− Xn(s))∆s, (26)

where Gh is the set of indices for the Lagrangian points, δh is the discrete Dirac-delta function, which was
discussed in the later section, and ∆s is the step size of the label of the configuration. Here, the discrete
force density for the structure Fn(s) is defined by

Fn(s) = Ds (Tn(s)τ(s)) , (27)

Tn(s) = σ (|DsXn(s)| − 1) , (28)

τn(s) =
DsXn(s)
|DsXn(s)| , (29)
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DsXn(s) =
(Xn(s + 0.5∆s)− Xn(s− 0.5∆s), Yn(s + 0.5∆s)−Yn(s− 0.5∆s))

∆s
, (30)

where Ds is the discrete differential operator with respect to s. Finally, the discretization of the transport
equation for IB is given, as follows:

Un(s) =
Xn+1(s)− Xn(s)

∆t
= ∑

x∈gh

un(x)δh(x− Xn(s))h2, (31)

where gh is the set of Eulerian points.

4. Numerical Results

4.1. Code and Simulation

In this section, we discuss the MATLAB code of the IB method for solving a moving boundary
problem with a simple and basic example. The code updates the fluid velocity un+1 and boundary position
Xn+1 from the given values un and Xn.

To explain how to obtain the updated boundary position, we first set a domain of fixed Cartesian
coordinates for a fluid and let the IB structure on the fixed domain. Here, the following ellipse is chosen
for the initial condition of the boundary:(

x− 0.5L
0.25L

)2
+

(
y− 0.5L
0.125L

)2
= 1,

where L is the length of the domain.

1 % initial boundary configuration

2 ip=[(2:N),1]; im=[N,(1:(N-1))];

3 for k=0:10000

4 theta=k∗2∗pi/10000;
5 Temp(k+1,1)=(L/2)+L/4∗cos(theta);
6 Temp(k+1,2)=(L/2)+L/8∗sin(theta);
7 end

8 length(1)=0; Nb=1; Leng=0;

9 X(1,1)=Temp(1,1); X(1,2)=Temp(1,2);

10 for k=1:10000

11 length(k+1)=length(k)+sqrt((Temp(k+1,1)-Temp(k,1))^2+(Temp(k+1,2)-Temp(k,2))^2);

12 if ((length(k+1)>(Nb∗ds))&&(length(k)<(Nb∗ds)))
13 Nb=Nb+1;

14 X(Nb,1)=Temp(k,1); X(Nb,2)=Temp(k,2);

15 Leng=Leng+sqrt((X(Nb,1)-X(Nb-1,1))^2+(X(Nb,2)-X(Nb-1,2))^2);

16 end

17 end

18 kp=[(2:Nb),1]; km=[Nb,(1:(Nb-1))];

19

20 % fluid setting

21 u=zeros(N,N,2); p=zeros(N,N); xgrid=zeros(N,N); ygrid=zeros(N,N);

22 for j=0:(N-1)

23 xgrid(j+1,:)=j∗h; ygrid(:,j+1)=j∗h;
24 end

Next, the elastic boundary force density is evaluated from the IB structure. It can be obtained from
a minus gradient of the elastic energy functional with respect to X. An elastic energy function can be
classified based on three types of contributions: stretching, bending, and tether energies. In the example,
the force is only generated from the stretching energy with a zero rest length.
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1 %% generate the boundary force dencity

2 F=(X(kp,:)+X(km,:)-2∗X)/(ds∗ds);

Using the evaluated boundary force density in the previous step, we spread out the boundary force
density to a fluid force density while using the Dirac-delta function. This is one of the key steps for the
fluid-structure interaction in the IB method. There are some choices of the Dirac-delta function, and its
details will be discussed in the next section.

1 function f=spread(F,X)

2 global h N ds Nb

3 c=ds/(h∗h);
4 f=zeros(N,N,2);

5 for k=1:Nb

6 s=X(k,:)/h; i=floor(s); r=s-i;

7 i1=mod((i(1)-1):(i(1)+2),N)+1;

8 i2=mod((i(2)-1):(i(2)+2),N)+1;

9 w=phi1(r(1)).∗phi2(r(2));
10 f(i1,i2,1)=f(i1,i2,1)+(c∗F(k,1))∗w;
11 f(i1,i2,2)=f(i1,i2,2)+(c∗F(k,2))∗w;
12 end

The next step is to update the fluid velocity by solving the NS equation while using the spread fluid
force density on the fluid (fixed) domain. Subsequently, the Dirac-delta function is used again to obtain
the velocity on the elastic IB boundary.

1 function U=interp(u,X)

2 global Nb h N;

3 U=zeros(Nb,2);

4 for k=1:Nb

5 s=X(k,:)/h; i=floor(s); r=s-i;

6 i1=mod((i(1)-1):(i(1)+2),N)+1;

7 i2=mod((i(2)-1):(i(2)+2),N)+1;

8 w=phi1(r(1)).∗phi2(r(2));
9 U(k,1)=sum(sum(w.∗u(i1,i2,1)));

10 U(k,2)=sum(sum(w.∗u(i1,i2,2)));
11 end

Finally, we can obtain the updated boundary position by solving the transport equation. See the
Appendix for a detailed code of the elastic membrane relaxation in viscous fluids.

1 %% move the boundary at the local fluid velocity

2 X=X+dt∗interp(u,X);

Figure 1 shows the vorticity and pressure contours around the damped vibration elastic body after
code execution. Note that the vorticity is a physical quantity that represents a local circulation in the
fluid and it is defined as a flow rate rotation, and the pressure difference is derived from the boundary
force density. If the reader uses the code to simulate other problems, then it is important to modify the
initial boundary and force density generation. We will introduce the simulation of the rigid and flexible
boundary problems in Sections 4.3 and 4.4, respectively.
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Figure 1. Vorticity (left) and pressure (right) contours around the damped vibration elastic body.

4.2. Discrete Delta Function

The Dirac-delta function, δ(x), plays an important role in the interaction of fluids and boundaries in
the IB method. In Equations (8), (12), and (13) δ(x) are used for interpolation or spread out of the values
between fluids and boundaries. The function δ(x) assumes the form δ(x) = 1

h φ( x
h ), where φ(r) satisfies

the following properties [22]:

1. φ(r) is continuous,
2. φ(r) = 0 for |r| ≥ 2,
3. Σevenφ(r− i) = Σoddφ(r− i) = 1

2 for all r,
4. Σ[φ(r− i)]2 = constant for all r, and
5. Σ(r− i)φ(r− i) = 0 for all r.

There are some common choices for the discrete delta functions or regular functions φi, such as
2-point, 4-point, 4-point cosine, and 6-point functions. Figure 2 shows the profile of the various regular
functions, φi, i ∈ {2, 4c, 4, 6} that form the delta functions, δi. Among the choices, the only regular function
φ4, which satisfies all of the above five conditions, is defined, as follows:

φ4 =


1
8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
|r| ≤ 1,

1
8

(
5− 2|r| −

√
−7 + 12|r| − 4r2

)
1 ≤ |r| ≤ 2,

0 2 ≤ |r|.

(32)

Other regular functions can be obtained by changing the support size or adding/deleting conditions. For
example, the four-point cosine approximation does not satisfy the second moment condition (5th condition
in the list). The detailed formulas mentioned above can be found in [23].
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Figure 2. Various regular functions φi that form the delta functions δi.

We constructed a dumbbell-shaped boundary, as shown in the upper left panel of Figure 3,
to investigate how the selection of the delta function affects the simulation. The distance between
boundaries is equal to h/4 at X = 2. The initial boundary comprises a single closed curve and it is given a
stretching force. Thus, with time, the boundary must change to a circular shape.

Figure 3 shows the simulation results of the selection of the delta function in the IB method. When
using δ4c, it is the most affected by close distance, and when using δ2, it is the least affected. The delta
function δ6 has wider support than δ4c. However, the actual impact thickness shows that function δ6 is
narrower than function δ4c from the simulation results.

Figure 4 shows the area within the boundary over time in each case that is covered in Figure 3.
In general, the traditional IB method has a disadvantage of causing volume loss within boundaries. The
use of the δ2 function in this simulation result appears to be the most vulnerable to volume retention
within boundaries.
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Figure 3. Simulation results based on selection of the delta function.
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Figure 4. The area within the boundary over time in each case covered in Figure 3.

4.3. Effect of the Reynolds Number

Next, we apply the IB method for modeling flows around fixed rigid bodies. A simple approach for
implementing a fixed rigid body using the traditional IB method is to place the target point(XT) at the
desired location and attach the boundary(X) whlie using a rigid spring. Here, the tethered force density is
defined by

FT(s) = kT(XT(s)− X(s)),

where kT is the stiffness constant.
The flow around obstacles, such as circular or square cylinders, has been extensively studied for

Newtonian fluids [2,5,24–26]. Flows around these obstacles exhibit a variety of phenomena, such as
boundary layer separation, vortex shading, lift, and drag forces. In general, the flow around a circular
cylinder can be categorized by the range of the Reynolds number, as follows:

• Re ≤ 5, regime of unseparated flow,
• 10 ≤ Re ≤ 40, a fixed pair of Föppl vortices in the wake of the cylinder,
• 40 ≤ Re ≤ 150, periodic the von Karman vortex street, and
• 150 ≤ Re ≤ 300, transition to turbulence in vortex street.

Figure 5 shows vorticity and streamline distribution for fluid flow across 2D cylinders, depending
on the various Reynolds numbers. The flow around the circular cylinder according to the Reynolds
number is consistent with the literature. We can see that vortex shading is produced behind the obstacle
when Re = 100 and 200. Moreover, the length of the vortex shedding and distance between Karman
vortices in the square cylinder appears longer than in the circular cylinder. Figure 6 shows the drag
coefficients of circular and square cylinders as a function of the Reynolds numbers. The drag coefficient
is a dimensionless number used to quantify the drag of an object in a fluid environment. The higher the
Reynolds number, the smaller the drag coefficient. The drag coefficient is higher in the square cylinder
than in the circular cylinder.

Table 1 lists the drag coefficients and lift coefficients calculated for Re = 100 and 200. The value of
the present result is higher than that of the references. This is attributed to constraints caused by treating
rigid bodies while using the IB method. In the traditional IB method, the stiffness constant was set high
to indicate a fixed rigid body in response to the flow. This makes numerical calculations unstable and
makes it difficult to calculate the correct coefficients. Despite these limitations, simulating the rigid body
using traditional IB methods has the advantage of dealing with complex boundaries. Figure 7 shows the
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flow around the obstacle, which includes not only circular and rectangular cylinders, but also star-shaped
boundaries of complex boundaries. Looking at the flow around the star-shaped boundary, we can see
that the pointed part of the shape affects the flow. In other words, it is also sufficient to use traditional IB
methods to identify the behavioral characteristics of flows around complex boundaries.

Figure 5. Vorticity and streamline distribution of fluid flow across 2D circular (left panels) and square (right
panels) cylinders at t = 10 depending on the various Reynolds numbers.

Table 1. Lift and drag coefficients of flow around a circular cylinder at Re = 100 and 200.

Lift Coefficient (CL) Drag Coefficient (CD)
Reference

Re 100 Re 200 Re 100 Re 200

Braza et al. (1986) ±0.25 ±0.75 1.364± 0.015 1.40± 0.05 [24]
Ding et al. (2007) ±0.287 ±0.659 1.356± 0.010 1.348± 0.05 [25]
Harichandan et al. (2010) ±0.278 ±0.602 1.352± 0.010 1.32± 0.05 [26]
Present result ±0.359 ±0.726 1.517± 0.011 1.477± 0.05 tw
Present result (Square) ±0.29 ±0.91 1.681± 0.009 1.702± 0.061 tw
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Figure 6. Drag coefficients of circular and square cylinders as a function of the Reynolds number.

Figure 7. Flow simulation between various shapes, such as circles, squares, and star shapes at Re = 200.

4.4. Biological Problem

Simulations of eel, sperm, bacteria, and other swimmers have been developed whlie using the IB
method. In this section, we discuss the simulation results of various motions of the C. elegans and present a
simulation of the free swimming using the randomwalk. C. elegans is a nematode of approximately 1 mm
length that lives in temperate soil environments. To simulate the movement of the C. elegans, we used one
line representing the C. elegans body as the center skeleton. Two forces that produce movement are applied
to the center line; the stretching force and bending force. The stretching force is used for representing the
unextended body; the bending force is used for representing the body shape. The stretching energy is
shown in Equation (3), and the bending energy is shown, as follows:

E[X(·, t)] =
σb
2

∫ ∣∣∣∣∂2X
∂s2 ·N− c0

∣∣∣∣2 ds, (33)

where σb is the bending coefficient, N is the unit normal vector to the body, and c0 is the reference wave
curvature. Various movements may be indicated, depending on the construction of c0. For example,
to simulate a forward nematode, c0 is organized as a traveling wave, as follows:

c0 = −k2 Asin(ks−ωt), (34)
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where k = 2π/λ is the wave number with wavelength λ, A is the oscillation amplitude, and ω is the
oscillation frequency.

Figure 8 shows the simulation results for various movements (forwarding motion, backward motion,
rest, and coil turn) of C. elegans according to the c0 configuration. The left side of each panel represents the
wave shape, and the right side represents the snapshot of C. elegans over time. Unlike in the top panels, the
wave shape in the bottom panels is consistently applied over time. In-silico model of C. elegans combines
each of these motions to move forward or rotate to the desired point. Note that changes in wave curvature
alone lead to different movements.

Randomwalk is a process that comprises a sequence of steps determined by chance. As shown in
Figure 8, we simulated the randomwalk with the combination of each motion of C. elegans. Figure 9 shows
the results of the randomwalk. Each motion consists of forward, rest, and coil turns, assuming a motion
decision cycle of 0.25 s. In each panel, ’S’ represents the starting point and ’E’ represents the ending point.
In the top panel, it can be seen that the progress of C. elegans changes direction immediately after the coil
turn. In the lower panels, the trajectory of motion was compared according to the ratio of determination
of moving (forward) and stop (rest and coil turn) motion. Each simulation was performed for 20 s and
the ratio of rest and coil turns in stop motion set equal, which is 1 : 1. Table 2 shows the moving distance
and turn angle according to the ratio of the moving and stop motions. We can notice that a higher rate of
moving motion yields larger displacement, and a higher ratio of stop motion causes more rotation.
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Figure 8. Simulation results for various movements of elagans according to the c0 configuration. left-up:
forwarding motion, right-up: backward motion, left-bottom: rest, and right-bottom: coil turn.
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Figure 9. (top panel) Trajectory of C. elegans randomwalk and snapshot of forward(black), rest(blue), and
coil turn(red) and (bottom panels) comparison of trajectories according to the ratio of moving and stop
motion. In each panel, ’S’ and ’E’ represent the starting and the ending points, respectively.

Table 2. Moving distance and turn angle according to the ratio of moving and stop motion.

Motion Ratio 3:2 Motion Ratio 4:1

mean std mean std

moving distance (cm) 0.1755 0.0169 0.2223 0.0120
turn angle (◦) 22.8487 17.1738 11.3732 10.5050

5. Conclusions

In this paper, we briefly reviewed the IB method in order to investigate the fluid-structure
interaction problems that are governed by the NS equation and provided the MATLAB codes for
numerical implementation. The essence of the IB method is its simplicity to represent the (not limited
to simple) interaction between fluid and structure by coupling Eulerian and Lagrangian representations.
The equations of motion and discretization were described in the IB framework. The computational
results are shown as an example to facilitate the understanding of the IB method, including the choice
of discrete delta functions, the effect of the Reynolds number, and the application for the biological
problem. In a typical example or the volume conservation, it was shown that the choice of the discrete
delta function affects the dynamics. The error estimation of regular functions is a topic that has been
actively discussed. We also showed that the use of the conventional IB method is sufficient to identify the
behavioral characteristics of flows around complex boundaries by considering the effect of the Reynolds
number. Nevertheless, it remains an open problem to simulate flows around complex boundaries in the
case of high Reynolds numbers.
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The following abbreviations are used in this manuscript:

IB immersed boundary
NS Navier–Stokes

Appendix A. Code Structure

The MATLAB codes for our simulations are available from the corresponding author’s webpage:
https://sites.google.com/view/sglee/research.

• main_IB2D.m : main code, including animation code for vorticity and pressure.
• initialization.m : setting parameters, including the domain and grid sizes, Reynolds and Weber

numbers, and the initial boundary configuration
• spread.m : spreading out the boundary force density to the fluid force density using the

Dirac-delta function
• NSsolver.m : updating the fluid velocity and pressure by using fast Fourier transformation
• Interp.m : getting the velocity on the elastic IB boundary from the fluid velocity
• phi1.m : setting the Dirac-delta function along the x-direction
• phi2.m : setting the Dirac-delta function along the y-direction

https://sites.google.com/view/sglee/research
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