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Abstract: This paper described a method to design a limit-cycle suppressor. The dithering technique
was used to eliminate self-sustained oscillations or limit cycles. Otherwise, the Dual Input Describing
Function (DIDF) method was applied to design dither parameters and analyze the existence of limit
cycles. This method was done in a nonlinear system with relay nonlinearity using three standard
dither signals, namely sine, triangle, and square waves. The aim of choosing varying dithers was
to investigate the effect of dither shapes and the minimum amplitude required for the quenching
strategy. First, the possibility and amplitude of limit cycles were determined graphically on the
DIDF curve. Then, the minimum amplitude of dither was calculated based on the DIDF analysis.
Finally, a simulation was built to verify the analytical work using a digital computer. The simulation
results were related to the analysis results. It was evident that the dithering technique is a simple way
to suppress limit cycles in a nonlinear system. This paper also presented that dither is an amplitude
function, and square-wave dither has the minimum amplitude to quench limit cycles.
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1. Introduction

Self-sustained oscillation or limit cycles is an important phenomenon that is encountered in a
nonlinear system. Some researchers have been devoted to study the limit cycle, i.e., Huang and Yap [1]
introduced an algorithmic approach to analyze the limit cycle bifurcation. This method is implemented
in Maple and is done effectively. By using the multiple switching curve, Yang [2] analyzed the
bifurcation of limit cycles for a piecewise near-Hamilton system. This showed that the number of
limit cycles is affected by the number of switching curves. Balajewicz and Dowel [3] presented
that the Volterra reduced-order model is capable of modeling aerodynamically induced limit-cycle
oscillations efficiently and accurately. This analysis method was demonstrated using a NACA 0012
benchmark model.

Limit-cycle can arise from nonlinearities that are inherent in nonlinear systems. On the other
hand, this oscillation cannot be derived from a linear method. Therefore, a nonlinear system analysis
technique must be developed [4]. As this phenomenon can affect the system’s overall behavior,
an approach to predict its existence and stability analysis is necessary. The methods based on analytical
analysis have been widely discussed throughout the literature. Hayes and Marques [5], followed by
Shukla and Patil [6], predicted the limit cycle amplitude and frequency by the harmonic balance
method. In [5], a formulation of High Dimensional Harmonic Balance is employed to determine the
condition of the limit cycle. This formulation is exploited in limit cycle conditions without evoking
the cost of the time-accurate simulation. Shukla and Patil reported the harmonic balance as a method
to estimate the limit cycle frequency and amplitude displayed by a flutter mode. Zhang and Wu [7]
proved that the homotopy analysis is a highly accurate method to approximate the limit cycles of a
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coupled oscillator. The authors in [8] presented the Holding type I and II to examine the variable
carrying capacity effect on the predator–prey dynamic system and it is analyzed using the numerical
solution and stability analysis under a Hopf bifurcation theorem. Denimal et al. [9] proposed the
modal amplitude stability analysis called the Generalized Modal Amplitude Stability Analysis to
estimate the limit cycle. This method is also used to identify the contributions and evolutions of
unstable modes. The powerful mathematical approach to analyze and improve the nonlinear behavior
is known as the Describing Function method (DF) [10]. The main idea of the DF method is to replace
the nonlinear element with its equivalent linear. This method is mainly used to predict the limit cycles
of nonlinear systems [4]. Several new results for predicting the limit cycles using the DF approach have
been recently announced. DF has been applied to predict and investigate the limit cycle in Stirling
Engine [11] and pressurized gas turbine combustor [12]. DF has also been used as a method to analyze
the nonlinear system [13], such as analysis stability of Chaotic PWM Boost Converters [14], or stability
analysis of dynamic nonlinear interval type-2 TSK fuzzy control [15].

In order to enhance the system’s performance, the limit cycle existence should be eliminated.
Recently, several works have been carried out aimed at eliminating the limit cycle. A nonlinear state
feedback control is proposed in [16], controlling the limit cycle oscillation in an aero-elastic system.
The harmonic balance method and the numerical continuation technique were used to produce an
analytical estimate of the initial velocity of the limit cycle. Girija et al. [17] showed that the reduced state
Kalman filter scheme eliminates the limit cycle in DC-DC converter completely and is more efficient
computationally. Kumar et al. [18] developed a new mechanism for stabilizing the undesirable limit
cycle in a chaotic attractor. This method is demonstrated with a bi-stable Duffing oscillator. In [19],
the authors implemented a linear controller based on a frequency response to eliminate the limit cycle
in the inverted pendulum on a cart. This control strategy has been successfully applied and is verified
by experimental means.

The other interesting method which can be adapted to compensate for the nonlinearities’ effects in
a feedback control system, including limit cycles, is the dithering technique. The method was done by
injecting an extra input signal called dither signal just ahead of the nonlinearity, causing the nonlinear
system to narrow so it could be stabilized. The use of dither signal to turn limit cycles off is referred to
as signal signals’ stabilization [20]. The dithering technique has been widely used in different fields
such as electronics [21,22], mechanics [23,24], and control system [25,26]. The modified direct torque
control with dithering to increase the performance of the induction motor drive is proposed by Behera
and Das [27,28]. It was investigated that the dither signal injection increases the inverter switching
frequency. The same strategy was also conducted by Kadjoudj et al. [29], which has been applied
to the PMSM drive. The dither injection technique has also been used for quenching the chaotic
system. From Chang, it is inferred that by adding the dither signal into the system, the chaos occurs in
a magnetically levitated system [30] and in electromechanical valve actuators [31] was successfully
eliminated. In reference [32], the dither technique has been examined for controlling chaos in an
automotive suspension system. Here, the chaotic behavior is converted into periodic motion. However,
all these reported works lack an analytical approach in designing the dither signal including the
amplitude, frequency, and shape of the dither signal. Even so, these parameters are important to
note [33]. Meanwhile, the shape of the dither signal could affect the transient response system [34,35].

In this present study, we use the dithering technique to suppress the limit cycle in a relay nonlinear
servo system and study the performance of three kinds of dither shapes, namely sinusoidal, triangle,
and square wave. In order to design the dither amplitude, the modified DF method named Duat
Input Describing Function (DIDF) was applied. DIDF was examined by West et al. [36] to solve the
possible limit cycles in a nonlinear system. Here the DIDF is defined as the ratio of the amplitude
of the desired frequency components (required for the analysis) in the output waveform to the
amplitude of the components of the same frequency in the input waveform. It was shown that the
DIDF could be used to evaluate the limit-cycle stability. Currently, the DIDF approach is also carried
out in research. In Reference [37], the unknown parameters for second-order-plus-dead-time and
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first-order-plus-dead-time are obtained using DIDF. In this method, the setting of relay bias does not
need to be changed during load disturbance to obtain the process information. Choe [38,39] introduced
a method to enhance the PID controller performance by using the DIDF characteristic. Another term of
DIDF is called pseudo-DF.

The main contributions of this study are briefly given in the following statement: (1) The dithering
techniques to suppress the limit cycles on a relay feedback loop are proposed; (2) The step of designing
dither signal analytically through the DIDF method is presented; (3) A simple simulation build in
Matlab-Simulink software is taken as an example to show the effectiveness of the purposed method
and to verify the analytical method; (4) The results of the analysis and simulation also pointed out
the minimum dither amplitude required from three common dither shapes and the effect of dither
signal shape.

The paper is organized as follows. The method to design dither signal amplitude based on the
DIDF approach is described in Section 2. Section 3 illustrated the Matlab/Simulink simulation to verify
the designing method and the effectiveness of the dithering technique in the relay feedback system.
The conclusions and future works are given in Section 4.

2. Method

Initially, the DF method was used to analyze the feedback control system containing a nonlinear
element. It was basically developed only for sinusoidal inputs. The development was done to analyze
the system with the addition of a stabilizing signal, named the DIDF method. This method is based on
the consideration of two sinusoids applied at the input of the nonlinear element. In that case, a high
suitable frequency signal (dither) is injected externally to modify the characteristics of the nonlinearity,
which often has a linearizing effect on the nonlinear element and stabilizes the system. The concept of
DIDF was first introduced by West et al. [36], and then extended by Gibson and Sridhar [33]. For the
system in which dithers are present, as shown in Figure 1, the investigation of signal stabilization
named dither via DF theory can be executed by the use of the DIDF approach.
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Figure 1. Nonlinear system with dither applied.

For implementing the DIDF method, it is important to represent the nonlinear system as the block
diagram exhibit in Figure 2. As shown in this figure, the system contains negative feedback associated
with nonlinear and linear terms. In this method, dithers and the nonlinear element are replaced with
an equivalent nonlinear element or DIDF.
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Figure 2. Nonlinear system.

The possibility of the limit cycle existence, including the suppression, could be investigated in the
servo system with dither injection, as shown in Figure 1.
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In this system, the linear part is represented by the transfer function, which contains an ideal relay
as a nonlinear element, described as

G(s) =
3

s(s + 1)(2s + 1)
(1)

The DIDF analysis is used to predict the limit-cycle amplitude. The basic approach to achieve
that is applying Nyquist criterion in linear control to the equivalent system. According to the Nyquist
criterion, limit cycles or self-sustained oscillations occur in loop system if, and only if, they satisfy the
form (2) where N(A,ω) is the DF of the nonlinear elements in the system, A is the amplitude of the
primary inputs, ω is the limit-cycle frequency and G(jω) defines the complex representation of the
overall linear transfer function [40].

G(jω)N(A,ω) = −1 (2)

Eventually, Equation (2) can be expressed as

G(jω) =
1

N(A)
(3)

The DIDF is substituted for the DF in Equation (3). A limit cycle can be sustained for some values
of B, A, andω, as follows

G(jω) =
−1

N(A, B)
(4)

As seen, Equation (4) consists of two relations, which are the function of variable A and B, where A
is the limit cycle amplitude and B the amplitude of dither signal. Equation (4) could be split in two
simultaneous equations ∣∣∣G(jω

∣∣∣ = ∣∣∣∣∣∣ 1
N(A, B)

∣∣∣∣∣∣ (5)

and

argG(jω) = arg
(
−1

N(A, B)

)
= (1± 2k)π (6)

Where N(A,B) denotes the DIDF, ω is the limit cycle oscillation frequency, which must be used to
determine the dither frequency, and k is an integer. The frequencyω is directly found from Equation (1)
with the aid of the Bode Plot or the Nyquist diagram. The critical value N(A, B)

∣∣∣
c of DIDF to be

nonlinear gain is significant to sustain a limit cycle. The critical value N(A, B)
∣∣∣
c can be calculated

through Equation (7). ∣∣∣N(A, B)
∣∣∣
c =

1
G(jω)

(7)

The problem should be reviewed, as it is assumed that the limit cycle takes place in the feedback
system with ideal relay nonlinearity. The frequency response of G(s) is shown in Figure 3.

From the Bode plot, it appears that any limit cycle which occurs must be at frequency ‘ω’, where the
phase shift is −180◦.

The frequency response of the system G(s) in Equation (1) isω= 0.707. The expression of frequency
domain could be found by substituting s = jω in the Laplace transform of the plant transfer function.
Then, the complex representation of linear transfer function G(jω) is 1.4∠1.43.

In determining the possibility of limit cycle, the critical value of DIDF N(A, B)
∣∣∣
c is calculated by

substituting the magnitude of G(jω) into Equation (7), yielding 0.714.
The DIDF of a perfect relay for three common dithers is taken into consideration to analyze the

performance of the dithers and their differences. The procedures to compute relay DIDF for each dither
are described below [41].
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The characteristics of input-output of an ideal relay is given by

y = Msign(e) =
{

M; e > 0
−M; e < 0

(8)

where e = A sinωt + B sin βt, M denotes the value of the parameter of the relay nonlinear element
and e is the input of the nonlinearity and β >>ω.

Equation (9) is the original DF with D sinωt as the input.

DF = 1
πA

2π∫
0

Msign(D sin ω t)sindω t

DF = 4M
A

(9)

The second integration indicated by Equation (10)

N(A, B) =
1
2

2π∫
0

g(A, B,φ)dφ (10)

where

g(A, B,φ) =
4M
π

 1 + B
A (cosφ)√

A2 + B2 + 2AB cosφ

 (11)

Substituting Equation (11) in Equation (10) gives

N(A, B) =
4M
π2

π∫
0

1 + B
A cosφ√

A2 + B2 + 2AB cosφ
(12)

This integral might be evaluated

N(A, B) =
8M
π2

1
A + B

[(
1 +

B
A

k2
− 2

k2

)
F(k) +

(
2 +

B
A

1
k

E(k)
)]

(13)

where F(k) is the complete elliptic integral of the first kind and E(k) is the complete elliptic integral of
the second kind, with k defining modulus, as shown in Equations (14) and (15).
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E(k) =
2E(k) −

(
1− k2

)
F(k)

1 + k
(14)

F(k) = (1 + k)F(k) (15)

The modulus k is formulated by

k =
2√B/A

1 + B/A
(16)

Equation (13) is valid for all values of A and B when

k = B/A; B < A
k = A/B; B > A

(17)

Substituting Equations (14) through (17) in Equation (13), the following relations are obtained.

N(A, B) =

 8M
π E(B/A); B < A

8M
π2A

1
A

[
E(A/B) −

(
1− A2

B2 k(A/B)
)]

; A < B
(18)

Equation (18) is the DIDF of ideal relay for sine wave dither signal, as simplified in Equation (19).

N(A, B) =
4M
π2

1

A2
[(A− B)K(k) + (A + B)E(k)] (19)

The DIDFs of relay for the triangle wave and square wave dithers are given in Equations (20)
and (21), respectively.

N(A, B) =
M

Bπ2
(2γ− sin 2γ) +

4M
πA

cosγ (20)

N(A, B) =
4M
πA

√
1−

( B
A

)
(21)

where
γ = sin−1

( B
A

)
(22)

Here, M is set to be 1. The normalized DIDF N(A, B) is plotted versus the normalized amplitude
A of the input with normalized amplitude B of dither signals as a parameter.

Figure 4a–c for an ideal relay are depicted for the sine wave, triangle, and square wave
dithers, respectively.

In these figures, the curves of DIDF are plotted for different amplitudes of dither B as a comparison.
A critical line, N(A, B)

∣∣∣
c is also drawn to make it easier when analyzing the limit cycle amplitude.

The possibility and amplitude of the limit cycle can be determined by constructing the DIDF curves for
a horizontal line of the nonlinearity representing the DIDF critical value or N(A, B)

∣∣∣
c.

The limit cycle amplitude is read from the intersection of the N(A, B)
∣∣∣
c line and the DIDF curve.

Therefore, the limit cycle amplitude typically is a stabilizing signal or a dither amplitude function.
The critical line N(A, B)

∣∣∣
c may not intersect the DIDF curve for a particular dither signal with certain

amplitude B. If the entire of the DIDF curve for the amplitude value B lies below the N(A, B)
∣∣∣
c line,

then the dither signal with the B value will completely suppress the limit cycles. Otherwise, if the
DIDF curve lies above the N(A, B)

∣∣∣
c line, then this dither signal will actually make the system become

unstable. In other words, not all the dither signals stabilize the nonlinear system. The selection of
suitable dither signal parameter values will have good effects to improve the system performance.
For example, as in Figure 4a–c, some curves lie above the critical line N(A, B)

∣∣∣
c and have an intersection,

and there are those that lie below the N(A, B)
∣∣∣
c line.

The procedures for finding the limit cycle amplitude are explained below.
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Consider the case in Figure 4a. The intersection of the normalized DIDF curve for B = 1 and the
critical line N(A, B)

∣∣∣
c at point P represents a possible limit cycle. The amplitude of the limit cycle is

read from the projection of the intersection at point P to point S on the abscissa, and the limit cycle
amplitude will be 1.69 units. The same means could also be used for relay DIDF for triangle and square
dithers in Figure 4b,c. It can be seen that the results display the similarity within Figure 4a.Mathematics 2020, 8, x FOR PEER REVIEW 7 of 14 

 

  
(a) (b) 

 
(c) 

Figure 4. DIDF curve for Ideal Relay, (a) Sine wave dither, (b) Triangle wave dither, (c) Square wave 
dither. 

In these figures, the curves of DIDF are plotted for different amplitudes of dither B as a comparison. 
A critical line, 

c
N(A, B) is also drawn to make it easier when analyzing the limit cycle amplitude. 

The possibility and amplitude of the limit cycle can be determined by constructing the DIDF curves 
for a horizontal line of the nonlinearity representing the DIDF critical value or

c
N(A, B) . 

The limit cycle amplitude is read from the intersection of the 
c

N(A,B) line and the DIDF curve. 

Therefore, the limit cycle amplitude typically is a stabilizing signal or a dither amplitude function. 
The critical line 

c
N(A, B) may not intersect the DIDF curve for a particular dither signal with certain 

amplitude B. If the entire of the DIDF curve for the amplitude value B lies below the 
c

N(A, B)  line, 

then the dither signal with the B value will completely suppress the limit cycles. Otherwise, if the 
DIDF curve lies above the 

c
N(A, B) line, then this dither signal will actually make the system become 

unstable. In other words, not all the dither signals stabilize the nonlinear system. The selection of 
suitable dither signal parameter values will have good effects to improve the system performance. 
For example, as in Figure 4a–c, some curves lie above the critical line 

c
N(A, B) and have an 

intersection, and there are those that lie below the 
c

N(A, B) line. 

The procedures for finding the limit cycle amplitude are explained below. 

Figure 4. DIDF curve for Ideal Relay, (a) Sine wave dither, (b) Triangle wave dither, (c) Square
wave dither.

Figure 4 is a graphical rule to determine the minimum amplitude of the dither signal required to
suppress the limit cycle. As plotted in the phase plane of amplitude, it appears obvious that the local
lowest point corresponds to the peak of the DIDF curve in Figure 4a–c. Then, set the locus so that it
will never cut the locus. This guarantees that the limit cycle will not occur. The required condition is
given in Equation (23) or in Equation (24)

N(A, B)
∣∣∣
max < N(A, B)

∣∣∣
c (23)

or

B
N(A, B)

M
<

N(A, B)
∣∣∣
c

M
B (24)
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The peak value N(A, B)
∣∣∣
max for each curve when B = 1 is found from DIDF curves (see Figure 4a–c)

for three-wave dithered relay of DIDF, as shown in Table 1.

Table 1. The peak value of dither signal.

Dither Signal The Peak Value (N(A,B)|max)

Sine 0.85
Triangle 1
Square 0.64

Equation (24) can be simplified to

Bmin >
N(A, B)

∣∣∣
max

N(A, B)
∣∣∣
c

M (25)

Substituting M = 1, as stated in the problem, and the peak values of the normalized DIDF curves
obtained earlier in Equation (25) yield the minimum values of dither amplitudes for each dither,
which are given in Table 2 below.

Table 2. The minimum value of dither amplitude.

Dither Signal The Minimum Value of Dither Amplitude (Bmin)

Sine >1.2
Triangle >1.4
Square >0.89

As can be seen, a smaller square wave dither amplitude is required to quench the limit cycle than
those of triangle or sine wave dithers. The maximum N(A, B)max displays that the peak value of the
normalized DIDF curve when the amplitude of dither chosen to be the minimum point is present in the
critical line N(A, B)

∣∣∣
c. Here, there is no intersection between the critical line N(A, B)

∣∣∣
c and the DIDF

curve for the minimum B. Therefore, if the amplitude of dither B is greater than Bmin, then no limit
cycle will exist.

3. Results and Discussion

In this section, the example of a nonlinear feedback system containing a perfect relay nonlinear
element exhibit in Figure 1 will be examined under a simulation using a digital computer.
Matlab-Simulink 2016b package is used as a simulation tool to illustrate and verify the analysis
method, which was developed in the previous section. In this case, the simulation software is running
on a laptop with the specifications as follows: (1) Intel(R) Core(TM) i5-4200U Processor @ 1.60 GHz,
(2) 4096 MB RAM, (3) Windows 7 Professional 64-bit Operating System.

Figure 5 shows the Simulink block diagram of the relay feedback system. It could be seen that the
linear part of the system is low pass and assumes that the input of the relay nonlinearity is the sum of a
dither signal and fundamental sinusoidal component. The frequency of the dither signal chosen is ten
times ofω = 0.707.

In this simulation, the input used is a unit step. The dither signal is introduced into the system
before the nonlinear element. The actual signal output will be monitored using a scope. Three different
types of dither signals were used in simulation tests of the relay control system: sine, triangle,
and square waves.

The limit cycle amplitude which was calculated using the DIDF method in the previous section for
a sine wave dither amplitude of B = 1 will be verified using the Simulink program. The output system
without dither injection was also displayed to compare the effect of dither introduced. The simulation
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results of the system with no dither signal showed that the limit cycle appears in system output with a
2.633-unit amplitude, as depicted in Figure 6.

Mathematics 2020, 8, x FOR PEER REVIEW 9 of 14 

 

Simulink 2016b package is used as a simulation tool to illustrate and verify the analysis method, 
which was developed in the previous section. In this case, the simulation software is running on a 
laptop with the specifications as follows: (1) Intel(R) Core(TM) i5-4200U Processor @ 1.60 GHz, (2) 
4096 MB RAM, (3) Windows 7 Professional 64-bit Operating System. 

Figure 5 shows the Simulink block diagram of the relay feedback system. It could be seen that 
the linear part of the system is low pass and assumes that the input of the relay nonlinearity is the 
sum of a dither signal and fundamental sinusoidal component. The frequency of the dither signal 
chosen is ten times of ω = 0.707. 

 
Figure 5. Simulink block diagram of the relay control system with dither injection. 

In this simulation, the input used is a unit step. The dither signal is introduced into the system 
before the nonlinear element. The actual signal output will be monitored using a scope. Three 
different types of dither signals were used in simulation tests of the relay control system: sine, 
triangle, and square waves. 

The limit cycle amplitude which was calculated using the DIDF method in the previous section 
for a sine wave dither amplitude of B = 1 will be verified using the Simulink program. The output 
system without dither injection was also displayed to compare the effect of dither introduced. The 
simulation results of the system with no dither signal showed that the limit cycle appears in system 
output with a 2.633-unit amplitude, as depicted in Figure 6. 

 
Figure 6. Closed-loop step response without any Dither signal injection. The amplitude of the limit 
cycle is 2.633 units. 

The next consideration should be put on the amplitude of sustained oscillation in Figure 6 when 
a sine wave dither with amplitude of 1 is added into the system. The 2.739-unit amplitude of the limit 
cycle is read from the simulation result. Compared to the calculation result before, it is not exactly 
the same as these two results. However, the DIDF method is just an approximation. All the simulation 
results for different amplitudes and the same frequency of dither B for three shapes of dither signals 
are shown in Figures 7–9. In Figure 7, for sine wave dither simulation results, it is interesting to see 
that when B = 1.5 unit, the dither signal starts to turn the limit cycle off. We also notice that the limit 
cycle amplitude decreased from 3.7 to 0.002 units when B = 2. 

Figure 5. Simulink block diagram of the relay control system with dither injection.

Mathematics 2020, 8, x FOR PEER REVIEW 9 of 14 

 

Simulink 2016b package is used as a simulation tool to illustrate and verify the analysis method, 
which was developed in the previous section. In this case, the simulation software is running on a 
laptop with the specifications as follows: (1) Intel(R) Core(TM) i5-4200U Processor @ 1.60 GHz, (2) 
4096 MB RAM, (3) Windows 7 Professional 64-bit Operating System. 

Figure 5 shows the Simulink block diagram of the relay feedback system. It could be seen that 
the linear part of the system is low pass and assumes that the input of the relay nonlinearity is the 
sum of a dither signal and fundamental sinusoidal component. The frequency of the dither signal 
chosen is ten times of ω = 0.707. 

 
Figure 5. Simulink block diagram of the relay control system with dither injection. 

In this simulation, the input used is a unit step. The dither signal is introduced into the system 
before the nonlinear element. The actual signal output will be monitored using a scope. Three 
different types of dither signals were used in simulation tests of the relay control system: sine, 
triangle, and square waves. 

The limit cycle amplitude which was calculated using the DIDF method in the previous section 
for a sine wave dither amplitude of B = 1 will be verified using the Simulink program. The output 
system without dither injection was also displayed to compare the effect of dither introduced. The 
simulation results of the system with no dither signal showed that the limit cycle appears in system 
output with a 2.633-unit amplitude, as depicted in Figure 6. 

 
Figure 6. Closed-loop step response without any Dither signal injection. The amplitude of the limit 
cycle is 2.633 units. 

The next consideration should be put on the amplitude of sustained oscillation in Figure 6 when 
a sine wave dither with amplitude of 1 is added into the system. The 2.739-unit amplitude of the limit 
cycle is read from the simulation result. Compared to the calculation result before, it is not exactly 
the same as these two results. However, the DIDF method is just an approximation. All the simulation 
results for different amplitudes and the same frequency of dither B for three shapes of dither signals 
are shown in Figures 7–9. In Figure 7, for sine wave dither simulation results, it is interesting to see 
that when B = 1.5 unit, the dither signal starts to turn the limit cycle off. We also notice that the limit 
cycle amplitude decreased from 3.7 to 0.002 units when B = 2. 

Figure 6. Closed-loop step response without any Dither signal injection. The amplitude of the limit
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The next consideration should be put on the amplitude of sustained oscillation in Figure 6 when a
sine wave dither with amplitude of 1 is added into the system. The 2.739-unit amplitude of the limit
cycle is read from the simulation result. Compared to the calculation result before, it is not exactly the
same as these two results. However, the DIDF method is just an approximation. All the simulation
results for different amplitudes and the same frequency of dither B for three shapes of dither signals
are shown in Figures 7–9. In Figure 7, for sine wave dither simulation results, it is interesting to see
that when B = 1.5 unit, the dither signal starts to turn the limit cycle off. We also notice that the limit
cycle amplitude decreased from 3.7 to 0.002 units when B = 2.

Considering the ideal relay DIDF curve for triangle wave dither signal (Figure 8), again, the limit
cycle presents a gradual decrease with respect to the dither amplitude. Meanwhile, it shows that the
limit cycle can be removed when the dither amplitude is 2.4 units. This amplitude value is greater than
that of the sine wave dither. This fact corroborates the previous analysis.

Finally, Figure 9 depicts the effect of square wave dither injection to quench limit cycle.
The minimum amplitude required should be at least 1.065 units. Even though all the simulation
results showed that the minimum amplitude of the dither signal is not exactly the same as those
obtained through the calculation of the analyses, generally, these results clearly validate the theoretical
investigation in the previous section.
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Table 3 shows a summary of this work from both analytical and simulation studies.

Table 3. The results of analytical and the simulation studies for the relay feedback system.

Dither Shape
Predicted Simulation

A Bmin A Bmin

Sine 1.69 >1.22 2.739 ≥1.5
Triangle 1.69 >1.4 2.753 ≥2.4
Square 1.69 >0.89 2.234 ≥1.065

4. Conclusions and Future Works

The main finding of this work is the dithering technique with a suitable high-frequency signal to
suppress the limit cycle oscillation of the control system with one nonlinearity component. The DIDF
method and practical guidelines have been presented to predict the limit-cycle amplitude and design
the dither signal amplitude. These works were verified on a nonlinear feedback loop system with a
perfect relay nonlinearity element using Matlab-Simulink simulation software. It has been shown that,
for controlling a servo feedback loop system with an ideal relay nonlinearity element, the sustained
oscillation or limit-cycle occurring in output can be quenched using the dithering injection strategy.
The simulation results illustrate the effect of changing the dither signal parameters, shape and amplitude
in a controller design for the system under study. It was found that dither is a function of amplitude,
which means that dither amplitude had effects on the smoothed system. Here, the square dither had
the minimum amplitude needed to narrow the nonlinear system, compared to triangle and sine wave
dither. Therefore, it is necessary to do the analytical calculation under the DIDF term to find the correct
dither amplitude and consider the choice of dither shape in the dithering method.

Future works have to be carried out in a practical experiment to investigate the application of the
purposed technique, such as in the DC Servo Motor system which has backlash and saturation with
dead zone nonlinearities. The self-oscillations or limit cycles that occur in this servo system will be
investigated using the DIDF approach. Then, the dithering technique will be applied to suppress the
limit cycle.
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Nomenclature

e Input to a nonlinear element
k The modulus in elliptic integrals
t time
y Output of nonlinear element
ω Frequency of limit cycle
ϕ Phase angles
A Amplitude of the limit cycle
B Amplitude of dither signal
Bmin The minimum of dither amplitude
E Complete elliptic integral of the second kind
F Complete elliptic integral of the first kind
M Parameter associated with nonlinear element
N(A,B) DIDF
N(A,B)|c Critical line of DIDF
N(A,B)|max The peak value of DIDF curve
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