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Abstract: In spectroscopy, matching a measured spectrum to a reference spectrum in a large database
is often computationally intensive. To solve this problem, we propose a novel fast search algorithm
that finds the most similar spectrum in the database. The proposed method is based on principal
component transformation and provides results equivalent to the traditional full search method.
To reduce the search range, hierarchical clustering is employed, which divides the spectral data into
multiple clusters according to the similarity of the spectrum, allowing the search to start at the cluster
closest to the input spectrum. Furthermore, a pilot search was applied in advance to further accelerate
the search. Experimental results show that the proposed method requires only a small fraction of the
computational complexity required by the full search, and it outperforms the previous methods.

Keywords: fast search; vector quantization; cluster search; pilot search; Raman spectroscopy
identification

1. Introduction

Spectroscopy techniques, such as infrared and Raman spectroscopy, are increasingly being used
to measure and analyze the physical and chemical properties of materials. There are two types of
analysis methods related to this technique. The first is to identify the constituents of a given spectrum,
and the second is to identify the spectrum itself by comparing it directly to other known spectra in the
database [1,2]. The second type of analysis is addressed in this study.

Spectral identification methods can be divided into two categories: classification methods based
on machine learning (ML) and algorithms based on the similarity evaluation [3]. The first methods
show good classification performance through an optimal learning model by training a given database
with a ML-based algorithm. Conventionally, k-nearest neighbor (KNN) [4], random forest (RF) [5] and
artificial neural network (ANN) [6] methods have been proposed, and various 1D-convolutional neural
network(CNN) models based on deep learning have recently been proposed [7,8]. Good identification
performance is expected from these methods if a sufficient number of samples in each spectrum
is obtained.

However, most existing Raman libraries provide one sample for each type, such that ML methods
require significant time to build up sufficient samples of the target material. The other methods
are more suitable for utilizing existing Raman libraries. Representative methods include correlation
search [9] and cosine similarity, the Hit-quality index (HQI) [10], and the Euclidean distance (ED)
search [11,12]. These methods are intuitive and have often been used for identifying different types of
Raman spectra. In recent years, methods have been proposed that improve identification performance
in various applications along with the moving window technique [13,14].
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The spectral database is growing exponentially, and therefore, searching for similar spectra is
significantly more demanding. Further, larger databases are being built, as existing databases can
be merged and reused along with technologies that complement the characteristics of measurement
equipment [9,15], making high-speed search an essential and demanding task. A highly viable,
fast search method is particularly important in embedded systems with limited computing power,
such as handheld spectrometer systems [16–18]. These portable Raman spectrometers are often used
at accident sites, crime scenes or terrorist threat sites due to their advantages such as portability and
maneuverability [19]. In particular, applications that detect hazardous substances such as explosives
and poisons require fast and accurate solutions [20].

A more suitable identification method for the above fast search applications is the similarity
evaluation methods. The first methods require significant calculations in the learning process
depending on the volume of the database and the number of samples of the data. To introduce
the ML methods to Raman systems with limited computing power, such as handheld Raman
spectroscopy, hardware technologies such as the field-programmable gate array (FPGA) must be
incorporated [21,22]. These methods are currently showing remarkable achievements owing to
the breakthroughs in hardware. Meanwhile, because the identification method based on similarity
evaluation can be applied even if there is only one sample representing the data type, there is no
difficulty in applying it to the existing Raman library. Furthermore, there is no separate learning process,
and it has the advantage of simply configuring an identification system.

The simplest and most commonly applied comparison method for spectral identification is
to calculate and compare the ED between a given spectrum and the spectrum in the database,
i.e., the reference spectra. This method has a structure very similar to the HQI method and determines
the spectrum with the closest distance to the input spectrum as the identity of the input material.

Several fast search methods have been proposed in the context of vector quantization (VQ).
However, the Raman spectrum is generally higher dimensional than the image covered by VQ,
and hence, an appropriate method is required to solve this problem. Therefore, to introduce the major
algorithms of VQ into the Raman identification system, it is necessary to analyze the mathematical
modelling methods and key characteristics of each algorithm.

The conventional fast ED comparison methods can be classified into two groups. The methods
of the first group do not solve the nearest neighbor problem itself; however, these methods find
approximately the same solutions in terms of the mean squared error. These methods generally rely
on the use of data structures such as K-dimensional trees and other types of structures that facilitate
the fast search of reference data [23,24]. These methods are very fast, but they are not considered in
this study because an exact solution, and not an approximate one, is required.

Conversely, the methods provided in the second group deal with exact solutions to the
nearest neighbor search problem. These typically include the partial distance search (PDS) and
projection-based search algorithms. A very simple but effective approach is the PDS method reported
by Bei and Gray [25]. In this method, when the cumulative sum of the EDs between the reference data
and the input signal is larger than the distance of the current closest candidate, the distance calculation
is terminated to reduce computational costs [26,27]. This method does not require memory overhead;
however, the reduction in computational cost is limited.

Projection methods without transformation of input data such as the equal-average nearest
neighbor search (ENNS) and its variants [28–30] reduce unnecessary searches by using the mean of the
input data. These methods provide a significant reduction in computational time compared to the full
search method. However, they have their own weakness in that the performance gain is not significant
unless the mean of the data is not distinctly different. To overcome the weakness of these methods,
the mean pyramid search (MPS) method [31,32] was proposed. This method could avoid the weakness
by using a local segment mean. It generally performs better than the ENNS.
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Projection methods have likewise been proposed to transform the input data using singular
value decomposition (SVD), discrete wavelet transform (DWT), and Karhunen–Loeve Transform (KLT)
also known as principal component transformation (PCT). One of the most important properties of
these transformations is that most of the data energy can be stored using very few coefficients [33,34].
Based on these advantages, improved search methods combined with existing fast algorithms have
been proposed, providing faster search capabilities.

Apart from data transformation, our method adopted a cluster structure to reduce the search area.
Spectra from the database to be compared were pre-clustered into hierarchical cluster groups
based on similarity. In the proposed method, the spectra were sequentially tested in the order of
cluster distance, starting with the reference spectrum belonging to the nearest clusters, which helped
to quickly find the nearest spectrum. The search process was further accelerated using a pilot search
with fewer dimensions of the transformed data to find the closest candidates as quickly as possible.

The remainder of this paper is organized as follows. In Section 2, the main methods in the
existing VQ field were reviewed and compared. In Section 3, a novel fast search algorithm is described.
To confirm the applicability of our method, the simulation results of the proposed method are compared
with those of existing methods in Section 4. Finally, a brief conclusion is presented.

2. Previous Methods

2.1. Full Search and PDS

The full search method finds a vector ymin with the smallest ED between an input vector
x = (x1, x2, . . . , xN) and vectors in a database, C = (yi|i = 1, 2, . . . , M). This method is expressed by
Equation (1), where yi = (yi1, yi2, . . . , yiN) is a reference spectrum of one material in the database and
d2(x, yi) is the ED between an input spectrum x and a reference spectrum yi, which is expressed by
Equation (2).

ymin = argmin
yi∈C

d2(x, yi) (1)

d2(x, yi) =
N

∑
k=1

(xk − yik)
2 (2)

This method sequentially searches the entire database to determine the spectrum closest to the
input data. Therefore, assuming that the dimension of an input spectrum is N and the number of
spectra in the database is M, NM multiplications, M(2N − 1) additions, and M − 1 comparisons
are required.

PDS is a very simple way to reduce the amount of computation by allowing only a few dimensions
of the input data to be used to avoid unnecessary distance calculations. Assume the current minimum
distance is d2

min in the search process. For the next yi, if the cumulative sum from yi1 to yiq is larger than
d2

min as in Equation (3) where 1 ≤ q ≤ N, the distance calculation is terminated. Therefore, this method
reduces (N − q) multiplications and 2(N − q) additions.

q

∑
k=1

(xk − yik)
2 ≥ d2

min (3)

2.2. ENNS and MPS

ENNS uses hyperplanes orthogonal to the central line to partition search space. Each point
on the fixed hyperplane that intersects the central line has the same mean as Pm = (m, m, . . . , m).
The hyperplane is called an equal average hyperplane. ENNS calculates the mean mx for
input data x = (x1, x2, . . . , xN) first. Then a reference spectrum y is found, having the minimum
mean difference to x. d(x, y) is computed and set to the current minimum distance dmin. It is
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obvious that any reference spectra close to x is inside the hyperplane centered around x with
the radius dmin. By projecting the input data on the central axis, two boundary projection points,
Pmax = (mmax, mmax, . . . , mmax) and Pmin = (mmin, mmin,. . . , mmin) can be found, where

mmax = mx + dmin/
√

N, mmin = mx − dmin/
√

N. (4)

The search space is now bounded by the equal-average hyperplanes intersecting the above
two points. Hence, it is sufficient to search only those spectra having mean values raging
from mmin to mmax. During the search process, a more similar reference spectrum that is found leads to
a larger decrease in dmin, and the search area decreases further.

MPS based on the local segment mean and its structure were proposed to further accelerate
the search process. It showed better performance than ENNS and its variants. It is based on a two
dimensional mean pyramid structure and is mainly applied to image coding, so it is not suitable for one
dimensional spectra in its original form. However, this technique can be applied to one dimensional
cases with minor modifications. We modified the MPS as follows. Let mx,m/n be the sub-mean of x as
Equation (5).

mx,m/n = (xN(m−1)/n+1, xN(m−1)/n+2, . . . , xNm/n) (5)

For simplicity, the modified one dimensional MPS (MPS1D) for three layers can be represented
as follows.

d2(x, y) ≥ N/22(mx, 1
4
−my, 1

4
)2 + N/22(mx, 2

4
−my, 2

4
)2

+N/22(mx, 3
4
−my, 3

4
)2 + N/22(mx, 4

4
−my, 4

4
)2 (6)

≥ N/2(mx, 1
2
−my, 1

2
)2 + N/2(mx, 2

2
−my, 2

2
)2

≥ N(mx −my)
2.

The method first verify with the given y if the lowest right term in the above is larger than d2
min. If y

passes the test, then the second right term is checked along with the first. If y passes all tests, y could
be closer than the current closest spectrum; hence, d(x, y) is calculated. Otherwise, it is discarded.
As expected, these tests reduce the search area more effectively than ENNS. However, this method also
shares the same problem with ENNS because it relies on the mean of the given data at the lower level.
To overcome this limitation, methods using the coordinate transformation were proposed.

2.3. PCT

The principal component analysis is a type of multivariate analysis that reduces the dimension
of data while maintaining the information of the original dataset [35]. Assume thet an N × M
matrix Y consists of M number of N dimensional spectra. The N × N correlation matrix R can
be decomposed as in Equation (7), where λ1 ≥ λ2 ≥ · · · ≥ λN . Transformed coefficients known as
principal components (PCs) can be calculated using Equation (8).

R = YYT

= VΛVT

=
[
v1, v2, . . . , vN

]


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...
0 0 . . . λN




vT
1

vT
2
...

vT
N


(7)

W = VTY (8)
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PCT is known to be effective at compressing information of data into the first few PCs. The degree
of compression effect can be determined by calculating the percentage of the cumulative sum of
eigenvalues, as shown in Equation (9). The calculated results using experimental Raman spectra are
shown in Figure 1.

CR(K) =
K

∑
i=1

λi/
N

∑
i=1

λi (9)

Figure 1. Ratio of cumulative eigenvalues for experimental data.

The cumulative ratio saturates on a small number of PCs and reaches nearly one on approximately
250 PCs. This indicates that 250 PCs yield approximately the same results as 3300 dimensional data from
the original domain. The 250× 3300 calculations are significantly smaller than 3300× 3300 calculations
for the transformation; however, calculating 250 PCs for a given input spectrum is still considered
a high computational overhead. This computational overhead can be further reduced by using an
existing PDS. In this same context, MPS + PDS can also be considered. The performance of these
methods is reported in Section 4 along with the performance of the proposed method.

3. Cluster Search with a Pilot Search

3.1. Hierarchical Clustering

Hierarchical clustering (HC) is an algorithm that links similar data into groups called clusters [36].
To perform HC analysis, the similarity between data is measured first. The similarity measurement
generally uses a distance value, and for a data set consisting of M spectra, M ∗ (M− 1)/2 distance
values are obtained. Using the calculated distance values, data close to each other are linked to the
same cluster.

HC is divided into two types, divisive and agglomerative. Of the two methods, the divisive
method was chosen because it requires less computation and allows clusters to be divided according
to certain criteria, such as the maximum cluster distance or the sum of distances within the cluster.
This method, unlike K-means clustering, can perform training without predetermining the number
of clusters [37]. Thus, after the structure is complete, the desired number of clusters can be decided.
Figure 2 is an example of HC using 100 Raman spectra.

In general, the computational complexity of HC is larger than that of the K-means clustering.
However, because the clusters are precomputed and determined, the real-time search speed is
not affected. After finding the center of each cluster, the data closest to the center of each cluster is set
as the practical center of the cluster to minimize unnecessary computation. Then, the distance between
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the center and all data in that cluster is stored, and the farthest distance from the center is set as the
cluster size.

Figure 2. Example of Raman cluster groups.

3.2. Cluster Search (CS)

First, we calculate the distances between the centers of all clusters and the input spectrumx
and sort all clusters in ascending order. Then, we find the center of the cluster closest to the input
spectrum x. The distance between the center of that cluster and x as d(x, c) is denoted and set to the
current dmin. The closest cluster is most likely to contain the closest spectrum; hence, the search starts
from that cluster. When examining a specific cluster, if the difference between d(x, c) and d(y, c) is
lager than the current dmin, then all members of that cluster are excluded from the closest candidate by
the following inequality.

d(x, c)− d(y, c) > dmin (10)

If the above inequality is not true, then the spectra of the cluster must be searched in turn.
The order in which the spectra were searched was determined in the order far from the center.
This is because when a specific member satisfies the above inequality, all remaining members can be
excluded. Combining PDS into the process can further avoid unnecessary calculations. The loop is
repeated for all N clusters in ascending order to finally locate the spectrum closest to the input vector.
Ultimately, the proposed method significantly reduces computational complexity because partial or
all spectra of the cluster are excluded from the candidate by the inequality (10) and PDS.

3.3. Pilot Search (PS)

Applying a coarse-to-fine strategy to the above method can further reduce the computational
overhead. It is an approach that first finds a relatively close spectrum, and subsequently finds the
closest spectrum based on it. A relatively close spectrum can be found using a pilot search with few PCs,
the pilot search does not guarantee the same results as the full search. However, if a sufficiently close
spectrum is found, the closest spectrum can be found quickly, making the overall search much faster.

For the pilot search, previously built clusters or newly built clusters can be used. New clusters
require additional memory, so the same previously built clusters are used in this study. The number
of PCs to use for the pilot search is discussed in the experimental section. The pseudo-code of the
proposed method is given in Agorithm 1.
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Algorithm 1: Proposed algorithm

N : number of PCs
Np : number of PCs for pilot search
C : set of all clusters
dyck : pre-computed distance between y and k-th cluster
ck : center of k-th cluster
y : pre-transformed spectrum of y ∈ C

calculate x1:Np using PCT on the input spectrum w;
dmin = ∞;
while Ck ∈ C do

d2
xck

= d2(x1:Np , ck,1:Np) ;
if dxck < dmin then

dmin = dxck ;
end

end

sort the clusters in ascending order according to dxck;

/* Pilot search */
while Ck ∈ C do

while y ∈ Ck do
if dxck − dyck > dmin then

break;
end
dx,y = 0;
for i = 1 : Np do

d2
x,y += (xi − yi)

2;
if d2

x,y ≥ d2
min then

break;
end

end
if d2

x,y < d2
min then

ymin = y;
dmin = dx,y;

end
end

end

/* Main search */
calculate xNp :N using PCT on the input spectrum;
dmin = d(w, zmin) ;

while Ck ∈ C do
d2

xck
+= d2(xNp+1:N , ck,Np+1:N)) ;

while y ∈ Ck do
if dxck − dyck > dmin then

break;
end
for i = Np : N do

d2
x,y += (xi − yi)

2;
if d2

x,y ≥ d2
min then

break;
end

end
if d2

x,y < d2
min then

ymin = y;
dmin = d(w, zmin);

end
end

end

return dmin and ymin;
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4. Experimental Section

A total of 40 chemicals and 12 explosives were prepared using≥ 99% concentration standard from
Sigma-Aldrich (St. Louis, MO, USA) and the materials were measured using three Raman instruments.
They merged with a commercial Raman library (Thermo Fisher Scientific) of 14,033 spectra to form a
Raman database of 14,085 spectra. The Raman database consists of one template for each material.
Table 1 shows the detailed specifications of the four Raman spectroscopy systems used to measure
the spectrum.

Table 1. Mechanical specifications of four instruments.

Spectrometer Laser Power (mW) Excitation Wavelength (nm) Resolution (cm−1)

FT-Raman spectrometer 400–600 1064 1.93
Renishaw 2000 1.0 514.5 4

In Via 1.0 632.8 1
In Via 1.0 785.0 1

All spectra were adjusted to have a resolution of 201–3500 cm−1 by resampling and were
preprocessed with additive noise reduction and background noise removal [38,39]. Figure 3 shows
an example of Raman spectra after preprocessing. The types of chemicals are acetonitrile, benzene,
cyclohexane, and toluene.

Figure 3. Four examples from experimental Raman spectra.

To analyze the performance of the algorithm, 2817 types of the Raman spectrum, which is 20% of
the database, was searched from all 14,085 types of the Raman spectrum. Similar to the real spectrum,
noise of approximately 15, 20, and 25 dB was added to the input spectrum. The factor influencing
the identification performance of the proposed method is the noise of the input spectrum used in
the experiment. The identification performance of the spectrum acquired under harsh noise conditions
is expected to be relatively low, and the well-removed spectrum can be expected to have good
identification performance. Therefore, it is important to introduce suitable noise reduction methods
and find optimal parameters.

However, the VQ method has no effect on the identification performance of the full search method,
which is the reference identification algorithm. Therefore, to focus on the aim of this study, the main
content of this paper is limited to the VQ issue. Figure 4 depicts a flowchart of the proposed method
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including preprocessing. Black arrows on the right indicate real-time processes, while white arrows
indicate previously calculated processes.

Figure 4. Flowchart of proposed method.

5. Results and Discussion

There are several ways to evaluate the computational complexity of an algorithm. Among them,
the execution speed depends on various aspects of the CPU, such as the instruction mix,
pipeline structure, cache memory, and the number of cores, thus rendering it difficult to find an
explicit relationship between the search speed and execution time. Therefore, in this study, the number
of necessary additions and multiplications was chosen as a criterion for evaluating the search speed.

In general, the fast search technique in VQ presumes the same identification performance as the
full search technique, which uses the entire dimension of the input data. Therefore, all experimental
results were compared focusing only on the computational complexity, under the same identification
performance conditions as the full search.

Preliminary experiments were conducted to determine the appropriate number of clusters and PCs.
Table 2 shows the results of the PTC + PDS method according to the number of PCs. This method
showed the least computational complexity when 150 PCs were used. In Section 2, it was discussed
that 250 PCs contain almost all the information from the 3300 raw data points. However, this does
not indicate that it is the best parameter. Based on this result, we determined the optimal number
of clusters. Table 3 shows the number of multiplications and additions according to the number of
clusters in CS using 150 PCs.
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Table 2. Computational complexity of PCT + PDS method according to number of PCs.

Number of PCs Multiplication Addition Total

30 3,273,917 6,432,742 9,706,659
60 1,491,534 2,770,381 4,261,916
90 931,557 1,551,756 2,483,313
120 831,130 1,251,959 2,083,090
150 822,130 1,135,948 1,958,565
180 876,710 1,145,122 2,021,832
210 959,913 1,212,505 2,172,418
250 1,086,400 1,333,442 2,419,842

Table 3. Computational complexity according to number of clusters.

Number of Clusters Multiplication Addition Total

20 632,883 763,442 1,396,325
40 602,683 703,178 1,305,861
60 588,113 673,975 1,262,088
80 581,968 661,800 1,243,768
100 586,407 669,725 1,256,132

According to Table 3, the computational complexity decreases as the number of clusters increases.
However, once the number of clusters exceeds 80, the computational complexity increases again.
Therefore, the number of clusters was set at 80 in this study.

Subsequently, the number of clusters was fixed at 80, and the computational complexity,
cluster skip, and element skip according to the number of PCs were analyzed. The results are presented
in Table 4.

Table 4. CS results according to number of PCs.

Number of PCs 20 40 60 80 100 120 150

Multiplication 1,819,135 782,677 511,867 433,801 456,492 494,360 581,968
Addition 3,535,698 1,409,010 810,673 593,138 574,391 584,993 661,800

Total 5,354,833 2,191,687 1,322,540 1,026,939 1,030,883 1,079,353 1,243,768
Cluster skip 5.878 18.414 33.224 43.915 49.592 52.398 54.501
Element skip 71.437 60.326 46.194 35.816 30.267 27.513 25.444

Cluster skip refers to the exclusion of all cluster members from the candidates. In contrast,
element skip implies excluding some data in the cluster from the candidates. As the number of
PCs increases, the number of cluster skips increases, as information regarding the spectrum that can
be used in Equation (10) increases. Therefore, more clusters can be excluded than when the number
of PCs is small. However, the overall computational complexity must be considered, as converting
more PCs requires additional computation. According to Table 4, the best results are obtained using
80 PCs. For all PCs considered in the experiment, the sum of the number of cluster and element skips
approximates the number of total clusters 80. Hence, it can be confirmed that the cluster structure
effectively excludes spectra that cannot be candidates.

Finally, the pilot search was applied to further speed up the search. Table 5 shows the
experimental results obtained while investigating the effect of the number of PCs used in the pilot
search. The results show typical trade-off characteristics. As the number of PCs for the pilot search
increases, the computational amount of the pilot search decreases, while the computational amount of
CS increases. Due to these characteristics, the total number of calculations is similar. This means that
the pilot test reliably helps improve the performance. In the following experiments, we chose 40 as the
number of PCs for the pilot search.
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Table 5. Average number of multiplications and additions according to number of PCs.

Pilot Search CS

Multiplication Addition Multiplication Addition Total

CS (80 PCs) 0 0 433,801 593,138 1,026,939
PS (5 PCs) + CS (80 PCs) 58,648 60,183 274,026 290,293 683,150

PS (10 PCs) + CS (80 PCs) 72,125 76,495 257,469 273,685 679,774
PS (20 PCs) + CS (80 PCs) 102,251 109,281 225,152 242,060 678,744
PS (30 PCs) + CS (80 PCs) 130,474 140,501 192,393 209,552 672,920
PS (40 PCs) + CS (80 PCs) 158,978 171,389 160,586 178,948 669,721
PS (50 PCs) + CS (80 PCs) 190,741 206,155 130,535 151,853 679,284

To analyze the performance of each algorithm, including the proposed method, 2817 Raman spectra
were assessed, and the results are listed in Table 6. PDS significantly reduces the number of additions.
In contrast, MPS is more effective in reducing the number of multiplications. This is because MPS relies
on the segmental mean, which reduces the need for addition rather than multiplication. The overall
performance depends on the characteristics of the data. If the data are not distributed around the mean,
the benefit decreases. This is the reason for introducing the CS.

Table 6. Average number of multiplication and addition operations of each algorithm.

Method Multiplication Addition Total

Full Search 46,480,500 92,946,915 139,427,415
Full Search + PDS 8,846,894 17,679,704 26,526,598

MPS1D 3,582,504 50,501,333 54,083,837
MPS1D + PDS 1,210,602 11,012,972 12,223,574

MPS1D_Sort + PDS 853,773 4,520,642 5,374,415
PCT + PDS (150 PCs) 822,617 1,135,948 1,958,565

CS (150 PCs) 581,968 661,800 1,246,768
CS (80 PCs) 433,801 593,138 1,026,939

PS (40 PCs) + CS (80 PCs) 319,385 350,336 669,721

The combination of MPS1D and PDS reduces the overall computation complexity compared
to the case of using only MPS1D. The MPS1D_sort method sorts the reference spectra according
to the mean in advance. If the difference between the mean is more than K times the minimum
distance, further search is not needed as in ENNS, which speeds up the search. This method showed a
performance improvement of approximately 55.2% compared to the MPS1D + PDS.

Subsequently, PCT with PDS shows a reduction of approximately 63.56% in computational
complexity compared to MPS1D_Sort + PDS. The proposed method, CS, showed an improvement of
approximately 36.34% when using the same number of PCs as PCT + PDS, and nearly 47.57% when
using the optimal number of PCs. From these results, it was confirmed that pre-determining the
cluster structure of the database is effective for fast search. These properties are not just found in
CS. MPS1D, a method of determining the search structure in advance through database analysis,
also showed faster search speed compared to the method without structure. Determining an
appropriate search structure is a critical issue as this structure is created in advance and does not affect
the real-time search.

Finally, the introduction of the pilot search reduced the computational amount by approximately
34.78% compared to CS (80 PCs). This result corresponds to a computational complexity equivalent to
0.48% that of the full search. The overall average results of the major algorithms are shown in Figure 5
for convenience.
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Figure 5. Average number of multiplications and additions operations of major algorithms.

6. Conclusions

In this paper, we proposed a novel search method that speeds up the search for the identification
of Raman spectra. The principal component transformation was introduced along with the
cluster structure. The reduced number of data dimensions reduces the computational complexity of
distance calculations, and the cluster structure combines the well-known trigonometric inequality
with PDS to exclude numerous spectra that cannot be the candidate from the search. Finally, the pilot
search was applied to further speed up the search. Optimal parameters of the proposed method were
investigated and determined experimentally.

Moreover, various algorithms in the VQ field were modified and introduced into structures
suitable for 1D signals and compared with the proposed method. From the results of the experiments,
it was found that the proposed method significantly surpassed the existing method in terms of the
required number of additions and multiplications.

The proposed method is particularly suitable for systems with relatively limited computing power,
such as portable Raman spectroscopy and the compact Raman spectrometer. In addition, applications
such as hazardous substance detection require fast and accurate detection, and the search time is
particularly long for the large database of 14085 considered in the paper, so the proposed technique
can be used appropriately. We expect that the proposed method and its variants will be a promising
alternative to the spectral search problems in the above-mentioned applications.
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