
mathematics

Article

Serial and Parallel Iterative Splitting Methods:
Algorithms and Applications to Fractional
Convection-Diffusion Equations

Jürgen Geiser 1 , Eulalia Martínez 2,* and Jose L. Hueso 2

1 Department of Electrical Engineering and Information Technology, Ruhr-University of Bochum,
44801 Bochum, Germany; juergen.geiser@ruhr-uni-bochum.de

2 Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, 46022 Valencia,
Spain; jlhueso@mat.upv.es

* Correspondence: eumarti@mat.upv.es

Received: 11 May 2020; Accepted: 22 October 2020; Published: 4 November 2020
����������
�������

Abstract: The benefits and properties of iterative splitting methods, which are based on serial versions,
have been studied in recent years, this work, we extend the iterative splitting methods to novel classes
of parallel versions to solve nonlinear fractional convection-diffusion equations. For such interesting
partial differential examples with higher dimensional, fractional, and nonlinear terms, we could apply
the parallel iterative splitting methods, which allow for accelerating the solver methods and reduce
the computational time. Here, we could apply the benefits of the higher accuracy of the iterative
splitting methods. We present a novel parallel iterative splitting method, which is based on the
multi-splitting methods, The flexibilisation with multisplitting methods allows for decomposing large
scale operator equations. In combination with iterative splitting methods, which use characteristics of
waveform-relaxation (WR) methods, we could embed the relaxation behavior and deal better with the
nonlinearities of the operators. We consider the convergence results of the parallel iterative splitting
methods, reformulating the underlying methods with a summation of the individual convergence
results of the WR methods. We discuss the numerical convergence of the serial and parallel iterative
splitting methods with respect to the synchronous and asynchronous treatments. Furthermore, we
present different numerical applications of fluid and phase field problems in order to validate the
benefit of the parallel versions.

Keywords: multisplitting method; iterative splitting method; numerical analysis; operator-splitting
method; initial value problem; iterative solver method; waveform relaxation method;
convection-diffusion equation; viscous Burgers’ equation; fractional diffusion equations

MSC: 35K45; 35K90; 47D60; 65M06; 65M55

1. Introduction

Nowadays, iterative splitting methods are important solver methods to solve large systems of
ordinary, partial, or stochastic differential equations, see [1–6]. Iterative splitting methods are based on
two solver ideas: In the first part, we separate the full operators into different sub-operators and reduce
the computational time for such sub-computation. An additional benefit is the iterative technique,
which allows for solving a relaxation problem, as in the waveform-relaxation method or Picard’s
iterative method, see [7–10]. Both parts reduce the computational time and the complexity as if we
solved all parts (full operator and direct method) together, see [11]. Such iterative splitting methods
can be used to compute, with less computational burden, an approximate solution of the ordinary
differential equations (ODEs) or semi-discretized partial differential equations (PDEs), see [10,11].

Mathematics 2020, 8, 1950; doi:10.3390/math8111950 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-1093-0001
https://orcid.org/0000-0003-2869-4334
http://dx.doi.org/10.3390/math8111950
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/11/1950?type=check_update&version=2

Mathematics 2020, 8, 1950 2 of 42

Moreover, we consider parallel splitting methods, which are nowadays important to solve large
problems, see [3]. Such parallel splitting methods are applied to the splitted subproblems and
computed independently by the different processors. Therefore, in a second part we consider the
parallelization-techniques, which are given with the multi-splitting approach, see [5]. Such approaches
allow for embedding the splitting techniques of the first part into a parallelized version, see [12].
Based on the parallel versions of our methods, we can consider large computational problems.

For the computational problems, we consider the interesting part of higher dimensional and
nonlinear PDEs as nonlinear and fractional convection-diffusion equations, see [13,14]. The nonlinear
PDEs are applied in nonlinear flow problems, for example, to simulate traffic-flow problems, see [15]
and flow problems that are related to Navier–Stokes equations, see [16], which can be modeled with
the Burgers’ equation.

Furthermore, we take into account the fractional PDEs, e.g., fractional convection-diffusion
equations. Nowadays, the fractional calculus is applied to several fields of science and engineering,
for example, in visco-elastic and thermal diffusion in fractal domains, see [17,18], or in phase-field
models with mixtures of fluids [19,20], or in biological models to deal with fractional multi-models [21].
It is also interesting on a theoretical aspect, e.g., physical and geometrical interpretation [22],
fractional Dirac operators [23].

The treatment of such delicate fractional and nonlinear partial differential equations (PDEs) needs
additional spatial and nonlinear approximations of higher order, see [24]. We apply flexible iterative
splitting methods, see [13,25], which can be extended to parallel algorithms.

The underlying modeling equations are given as nonlinear fractional convection-diffusion equations:

∂tu = −ν u∇u + µ (Lα
xu + Lβ

y u) + f (x, y, t), (x, y, t) ∈ Ω× [0, T], (1)

u(x, y, 0) = u0(x, y, 0), (x, y) ∈ Ω, (2)

u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, T], (3)

where Ω ∈ IRd is the spatial domain with d as the dimension and T ∈ IR+. We denote by ν ∈ IR+ a
scalar parameter of the convection part and by µ ∈ IR+ the viscosity of the diffusion part, while f is a
right hand side function.

We have different cases:

• α = β = 2: viscous Burgers’ equation, see [2,26],
• α = β = 2 and ν = 0: Diffusion equation, see [2,26], and
• α, β ∈ (1, 2): fractional diffusion equation, see [14,27].

Further interesting examples that are related to fractional and nonlinear PDE can be found
in [24,28].

Equations (1)–(3) can be derived in a more general setting with the idea of the least action principle,
see [29,30]. Here, we are not restricted by the specific Lagrangian or Hamiltonian principle, such that
we can account for a much larger number of fractional differential equations.

Here, the fractional Laplace operator replaces the standard Laplacian operator, see [14], and it is
denoted as a sum of one-dimensional spatial operators, Lα,β = Lα

x + L
β
y :

Lα
xu :=

∂αu
∂xα

, (4)

where we have defined the Riemann fractional derivative of order α, as:

∂αu
∂xα

=
1

Γ(2− α)

∂2

∂x2

∫ x

L

u(ξ)
(x− ξ)α−1 dξ (5)

Mathematics 2020, 8, 1950 3 of 42

In the next step, we apply a semi-discretisation with higher order finite-difference methods
for α = β = 2, see [31] or with higher order Grünwald formula for the fractional operators with
α, β ∈ (1, 2), see [27,32]. Thus, we could reduce the computational cost of the time-splitting approaches,
which are given as an iterative splitting approach, see [33]. With such an approximation and the
consideration of the semi-discretization with higher order schemes, we obtain the nonlinear differential
equation system in a Cauchy-form, which is given as:

∂tc = Ã(c) c + B̃ c + F(t), t ∈ [0, T], (6)

c(0) = c0, (7)

where c ∈ X ⊂ IRM, while M = md, where d is the dimension and m is the number of grid-points in
each spatial direction. Furthermore, Ã(c) : X → X × X is a nonlinear matrix, which includes the
spatial discretization of the nonlinear convection in Equation (1) with the boundary conditions and
with higher order spatial finite difference schemes, see [31]. The operator B̃ ∈ X ×X is a linear matrix,
which includes the spatial discretization of the fractional diffusion term with the boundary conditions
and with the underlying fractional discretization methods, see [24,32]. The function F(t): IR+ → X is
the discretized right-hand side. We assume X to be an appropriate Banach space with a vector and
induced matrix norm || · ||, see [10,34,35].

For the nonlinear term, we apply the linearisation that is based on the Picard’s iteration, which is
also a special iterative splitting approach, see [7,36]. We have:

∂tvj = Ã(vj−1) vj + B̃ vj + F(t), t ∈ [0, T], (8)

v(0) = c0, (9)

where j = 1, 2, . . . , J with some J ∈ IN (number of the iterations for the nonlinear part) and starting
condition v0(t) = c0. Furthermore, we assume to have a sufficiently large J, such that ||vJ − vJ−1|| ≤
err, where err is an error-bound. For simplification, we assume F(t) = 0, while F(t) is a right hand
side, which can be approached by an integral equation, see [35].

Therefore, we obtain a linearised differential equation system, which is solved by the
outer-iterations with j = 1, . . . , J. In the following, we concentrate on solving such linearised
evolution equations by decomposing them with respect to their underlying matrix-operator in
submatrix-operators, so that we obtain the following differential equation,

∂t c = Ac =
L

∑
l=1

Al c, c(0) = c0, (10)

where A = Ã(vJ) + B̃ ∈ IRM × IRM is the full operator, and Al are the sub-operators. Further, c ∈
C1([0, T]; IRM) is the solution and c0 ∈ IRM is the initial condition.

The bottleneck of the iterative methods is due to the large sizes of the iteration matrices,
see [4,5]; therefore, we consider parallel versions of the iterative splitting method, see [3,12]. Based on
the decomposition of the large scale differential equation with operator A into different smaller
sub-differential equations with operators Al , where l = 1, . . . , L, and L is the number of processors,
we distribute the computational time to many processors and reduce the overall computational
time, see [5]. Furthermore, we modify the synchronous parallel splitting method with chaotic
(asynchronous) ideas, such that the computation and communication of the various processors can be
done independently, see [37].

In addition, we have considered different examples of the literature that also discuss optimized
computational cost and error bounds, see [28]. Here, we deal with models of viscous Burgers’ equation,
which are applied in flow-problems, and fractional convection-diffusion equations, which are applied
in diffusion interface phase field problems, see [20].

Mathematics 2020, 8, 1950 4 of 42

The outline of this paper is as follows. Section 2 explains the serial iterative splitting method.
Section 3 introduces the parallel iterative splitting method. We discuss the theoretical results in
Section 4. The numerical examples are presented in Section 5. In Section 6, we discuss the theoretical
and practical results.

2. Serial Iterative Splitting Method

We consider a two-level iterative splitting method, which is discussed for two operators in [2]
and for L operators in [38].

In this work, we also apply the recent theoretical results of our work in [26]. While in that
work we took the adaptivity of the splitting results into account, here we consider the application of
multi-operator splitting approaches and multi-splitting methods.

Based on the differential Equation (10), we have the following decomposition of the operator A:

• A = ∑L
l=1 Al , while Al are the sub-operators for the iterative part (solver part), and

• and Bl = A− Al are the sub-operators for the relaxation part (right hand side part).

where we have l = 1, . . . , L.
The serial iterative splitting method is given in the following algorithm. Here, we consider

discretization step-size τ = tn+1 − tn, which can also be set adaptively, see [26]. We assume to have
time-interval [tn, tn+1] with n = 0, 1, . . . , N, where t0 is the initial time and tN = T is the end time.
We consecutively solve the following sub-problems for i = 0, L, . . . , (m− 1)L:

∂ci+1(t)
∂t

= A1ci+1(t) + B1ci(t), with ci+1(tn) = cn, (11)

∂ci+2(t)
∂t

= A2ci+2(t) + B2ci+1(t), with ci+2(tn) = cn, (12)

. . . (13)
∂ci+L(t)

∂t
= ALci+L(t) + BLci+L−1(t), with ci+L(tn) = cn , (14)

where we can assume for the first initialisation c0(t) = 0, or a different initial-function, see [2].
cn = c(tn) is the known split approximation, which is computed in the previous iterative procedure.
The current split approximation at time t = tn+1 is defined as cn+1 = c(m−1)L(tn+1), where (m− 1)L
is the maximal number of iterative steps. The stopping criterion is ||c(m−1)L − c(m−2)L|| ≤ err and,
then we have the solution c(tn+1) = c(m−1)L(tn+1).

The solutions are given as:

ci+1(t) = exp(A1 (t− tn))cn +
∫ t

tn
exp(A1 (t− s)) B1 ci(s) ds, (15)

ci+2(t) = exp(A2 (t− tn))cn +
∫ t

tn
exp(A2 (t− s)) B2 ci+1(s) ds, (16)

. . . , (17)

ci+L(t) = exp(AL (t− tn))cn +
∫ t

tn
exp(AL (t− s)) BL ci+L−1(s) ds, (18)

where t ∈ [tn, tn+1].

Remark 1. We approximate the integral operator with a higher order integration scheme, e.g., exp-matrix
computations, see [39,40], exp-Runge–Kutta methods, see [41], Pade- or Magnus-expansions, see [42,43] or
with higher order numerical integration methods, as Trapezoidal- or Simpsons-rule, see [44].

We define the error-function as ei(t) = c(t)− ci(t) with e0(t) = c(t)− c0, the maximum-norm
||ei|| = maxt∈[0,T] ||ei(t)||∞, and the maximum operator norm ||Al || = ||Al ||∞.

Mathematics 2020, 8, 1950 5 of 42

Theorem 1. Consider the bounded operators Al ∈ IRm × IRm for l = 1, . . . , L, where L is the number of
operators. The iterations (11)–(14) for the Cauchy-problem (10), which are applied with i = 0, L, . . . , (m− 1)L,
are of order O(τmL).

Proof. The result for the 2-level method is given in [38]. We apply a recursive argument to the iterative
scheme with L operators and obtain:

||emL|| ≤
(

ΠL
l=1Cl ||Bl ||

)m
||e0||, (19)

where Cl is given with Cl = O(τ), see also [38].

Remark 2. The operators are based on the spatial discretization with higher order methods, e.g., [27,31].
Further, we assume that all of the operators, including the fractional discretized operators, are bounded, see [24].
Based on such assumption, we could generalize the results with respect to fractional operators.

3. Parallel Iterative Splitting Method

In the following, we parallelise the serial iterative splitting approach.
We present the following approaches:

• multi-splitting iterative approach, and
• two operator iterative splitting approach.

3.1. Multi-Splitting Iterative Approach

The problem is given as ∂c
∂t = Ac(t) = ∑L

l=1 Alc(t), c = c0.
The idea is a multiple decomposition of

A = Al + Bl , l = 1, . . . , L, (20)

Bl = A− Al , (21)

where Al is a non-singular and Bl is the rest matrix.
Further, we have the decomposition of the parallel computable vectors:

ci =
L

∑
l=1

Elci,l , and E =
L

∑
l=1

El , (22)

where ci is the i-th iterative solution and ci,l are the parallel computable solutions in the i-th iterative
step. E is the identity matrix and El are diagonal matrices with positive entries.

The multisplitting iterative approach is given as:

∂ci,l(t)
∂t

= Alci,l(t) + Blci−1(t), for t ∈ [tn, tn+1] (23)

with ci,l(tn) = c(tn), l = 1, . . . L,

where the initialisation is c0(t) = c(tn), and i = 1, . . . , I are the iterative steps. The stopping criterion
is ||ci − ci−1|| ≤ err and then we have the solution c(tn+1) = ci(tn+1).

The splitting error of the iterative splitting is of k + 1 order, i.e. O(τk+1), with

||erri+1|| = Kiτ
i
n||err0||+ O(τi+1

n) , (24)

where Ki = ∑L
l=1

1
ωl
||Bl || and ∑L

l=1
1

ωl
= 1 are the weights (ωl > 1) and ||err0|| = ||c0(t)||,

while c−1(t) = 0.

Mathematics 2020, 8, 1950 6 of 42

Benefit:

• Parallel implementation (the method is designed for parallel contributions), and
• Good error balance between the different operators

Drawback:

• Balances in the decomposition of El important to damp large errors

3.2. Parallel Splitting: Classical Version (Synchronous Version)

Here, we consider the classical version of the parallel splitting algorithm that is applied with
synchronisation, see also [45]. We assume to deal with L processors and i = 1, . . . , I are the iterative
steps, while I is the maximum number of iterative steps.

We deal with the parallel splitting in the synchronous version as:

∂ci,1(t)
∂t

= A1ci,1(t) + B1ci−1(t), with ci,1(tn) = cn, (25)

∂ci,2(t)
∂t

= A2ci,2(t) + B2ci−1(t), with ci,2(tn) = cn, (26)

. . . (27)
∂ci,L(t)

∂t
= Alci,L(t) + Blci−1(t), with ci,L(tn) = cn, (28)

ci(t) =
L

∑
l=1

Elci,l(t), and E =
L

∑
l=1

El , (29)

where we assume for the initialisation of the first step c0(t) = 0. E is the identity matrix and El
are diagonal matrices with positive entries. Al and Bl are given in the Equations (20) and (21).
Furthermore, cn = c(tn) is the known split approximation at the time-level t = tn, which is computed
in the previous iterative process. The split approximation at the time-level t = tn+1 is defined as
cn+1 = ci(tn+1), which is computed in the current iterative process.

The solutions are given as:

ci,1(t) = exp(A1 (t− tn))cn +
∫ t

tn
exp(A1 (t− s)) B1 ci−1(s) ds, (30)

ci,2(t) = exp(A2 (t− tn))cn +
∫ t

tn
exp(A2 (t− s)) B2 ci−1(s) ds, (31)

. . . , (32)

ci,L(t) = exp(AL (t− tn))cn +
∫ t

tn
exp(AL (t− s)) BL ci−1(s) ds, (33)

ci(t) =
L

∑
l=1

Elci,l(t), and E =
L

∑
l=1

El , (34)

where t ∈ [tn, tn+1].
The stopping criterion is given as:

||ci − ci−1|| ≤ err. (35)

The integrals can be solved by higher order integration-rules, see Remark 1.
In the classical algorithm, we have a synchronisation point, so that the next iterative step can

only start if all processors have submitted the results, see Equation (34). Such a hard point allows for
applying a simpler stopping criterion, which is given in Equation (35).

Mathematics 2020, 8, 1950 7 of 42

The bottleneck of the synchronous algorithm is that the finished processors could not go on
with the next iterative step and the computational time is wasted. Therefore, we explain the
ideas of the asynchronous algorithms, which are used to apply the parallel splitting method in
an asynchronous version.

3.3. Asynchronous Algorithm

The idea of an asynchronous algorithm is that each processor works independently and has access
to a common memory. If one processor needs an update of a solution of another processor, then he can
read the solution in the common memory. The processors are independent and the convergence is
given with the weighted norm, see [3].

An asynchronous algorithm is defined, as follows:

Definition 1. For i ∈ IN, let {I(i)}i∈IN be the subset indicating which components are computed at the i-th
iteration. Additionally, we have an iteration count sl(i) ∈ IN0 (prior to i), which indicates the iteration when
the l-th component was computed in processor l.

For i ∈ IN, we have I(i) ∈ {1, . . . , L}, where L is the number of processors and (s1(i), . . . , sL(i)) ∈ INL
0 ,

such that:

sl(i) ≤ i− 1, for l ∈ {1, . . . , L}, i ∈ IN, (36)

lim
i→∞

sl(i) = ∞, for l ∈ {1, . . . , L}, (37)

|{i ∈ IN : l ∈ I(i)}| = ∞, for l ∈ {1, . . . , L}. (38)

Subsequently, we define the asynchronous algorithm:

xi
l =

{
xi−1

l , for l /∈ I(i),
Hl(xs1(i)

1 , . . . , xsL(i)
L), for l ∈ I(i),

(39)

where x0 = (x0
1, . . . , x0

L)
t are the initialisations and Hl is the solver function of the l-th component, see [3].

In the following, the convergence of the asynchronous algorithm is presented with respect to the
weighted norm, see [3].

Definition 2. We assume that each component space Ei has a normed linear space (Ei, || · ||i). We can define
an appropriate norm for the parallel methods, which can be given as the weighted maximum norm:

||x||w =
m

max
i=1

||xi||i
wi

(40)

where the vector w = (w1, . . . , wm)t is positive in each component wi > 0 for all i = 1, . . . , m.

Theorem 2. We assume that we have a fixed point x∗ ∈ E = E1 × . . . × EL with Hi(x∗) = x∗ for all i.
Further, we assume that there exists γ ∈ [0, 1) and a positive vector w ∈ IRm, such that:

||Hi(x)− x∗||w ≤ γ ||x− x∗||w. (41)

Based on the assumptions, we conclude that the asynchronous iterates xk converge to x∗, which is the unique
fixed point of Hi = (Hi

1, . . . , Hi
l)

t.

Proof. The proof is given in [3].

Mathematics 2020, 8, 1950 8 of 42

3.4. Parallel Splitting: Modern Version (Asynchronous Version)

We have to apply the following asynchronous algorithm, which is given in Definitions 1 and 2
and with the convergence results in Theorem 2. We assume to deal with L processors and i = 1, . . . , I
are the iterative steps, while I is the maximum number of iterative steps.

We deal with the parallel splitting in the synchronous version as:

∂cs1(i+1)(t)
∂t

= A1cs1(i+1)(t) + B1ci(t), with cs1(i+1)(t
n) = cn, (42)

∂cs2(i+1)(t)
∂t

= A2cs2(i+1)(t) + B2ci(t), with csL(i+1)(t
n) = cn, (43)

. . . (44)
∂csL(i+1)(t)

∂t
= ALcsL(i+1)(t) + Blci(t), with csl(i+1)(t

n) = cn, (45)

ci+1,l(t) =

{
xi

l , for l /∈ I(i + 1),

xsl(i+1)
l , for l ∈ I(i + 1),

(46)

ci+1(t) =
L

∑
l=1

Elci+1,l(t), and E =
L

∑
l=1

El , (47)

where we assume for the initialisation of the first step c0(t) = 0. E is the identity matrix and El are
diagonal matrices with positive entries. Al and Bl are given in Equations (20) and (21). Further, cn is
the known split approximation at time t = tn, which is computed in the previous iterative process.
The split approximation at time t = tn+1 is given as cn+1 = ci(tn+1), which is computed in the current
iterative process.

The solutions are given as:

cs1(i+1) = exp(A1 (t− tn))cn +
∫ t

tn
exp(A1 (t− s)) B1 ci(s) ds, (48)

cs2(i+1) = exp(A2 (t− tn))cn +
∫ t

tn
exp(A2 (t− s)) B2 ci(s) ds, (49)

. . . , (50)

csL(i+1)(t) = exp(AL (t− tn))cn +
∫ t

tn
exp(AL (t− s)) BL ci(s) ds, (51)

ci+1,l(t) =

{
xi

l , for l /∈ I(i + 1),

xsl(i+1)
l , for l ∈ I(i + 1),

(52)

ci+1(t) =
L

∑
l=1

Elci+1,l(t), and E =
L

∑
l=1

El , (53)

where t ∈ [tn, tn+1].
The stopping criterion is given as:

||ci+1 − ci||w ≤
L

max
l=1

||ci+1,l − ci,l ||
wl

≤ err, (54)

where w = (w1, . . . , wL)
t and we have the maximum-norm with wl = 1 for all l = 1, . . . , L.

The integrals can be solved by higher order integration-rules, see Remark 1.
In the modern algorithm, we do not have a synchronisation point, so that each processor can

work independently. For the stopping criterion, we apply a weighted norm, which means that all
of the single results of the processors have to be lower than the given error-bound, see the stopping
criterion in Equation (54).

Mathematics 2020, 8, 1950 9 of 42

4. Theoretical Results

In the following, we deal with the m-dimensional initial value problem in the non-homogeneous
form, also see the homogeneous form in Equation (10):

c′(t) = Ac(t) + f (t), c(0) = c0, (55)

where A is conveniently decomposed in two operators A = M + N, and f is the right hand side.
Further, we deal in the following with the proof-ideas that are related to Waveform-relaxation

methods, see [37,45].
The initial value problem (55) is solved with the multisplitting Waveform-relaxation method,

which is given as:

c′i+1(t) = Mci+1(t) + Nci(t) + f (t), c(0) = c0, (56)

where A is given in Equation (10). Further, c0(t) = c0 is the starting condition.
For the multisplitting approach, we have the following Definition:

Definition 3. Let L ≥ 1 be the number of splittings, and A, Al , Bl , El real-valued m×m matrices. We say
that (Al , Bl , El) for l = 1, . . . , L is a multisplitting triple if:

• A = Al + Bl and Bl = ∑L
k=1,k 6=l Ak with l = 1, . . . , L,

• The matrices El are non-negative diagonal matrices and satisfy: ∑L
l=1 El = I ,

where I is the identity matrix, and
• sl(i + 1) ≤ i + 1 indicates the iteration, where the l-th component is computed prior to i + 1.

• The multisplitting approach that is based on the Waveform-relaxation in the classical version is
given by:

c′l,i+1(t) = Alcl,i+1(t) + Blci + f (t), cl,i+1(0) = c0, (57)

ci+1(t) =
L

∑
l=1

Elcl,i+1(t). (58)

• The multisplitting approach based on the Waveform-relaxation in the modern version is given by:

c′sl(i+1)(t) = Alcsl(i+1)(t) + Blci + f (t), csl(i+1)(0) = c0, (59)

ci+1(t) =
L

∑
l=1

Elcsl(i+1)(t). (60)

4.1. Stability Analysis

We deal with the following system:

cl,i+1(t) = Klci(t) + φl(t), (61)

where we have

Klc(t) =
∫ t

0
kl(t− s) c(s)ds, for l = 1, . . . , L, (62)

φl(t) = exp(tAl)c0 +
∫ t

0
exp((t− s)Al) f (s) ds, for l = 1, . . . , L. (63)

Mathematics 2020, 8, 1950 10 of 42

where kl(t) = exp(tAl) Bl for l = 1, . . . , L, and we apply the multisplitting notation (58), with:

Kc(t) =
L

∑
l=1

ElKlc(t), (64)

φ(t) =
L

∑
l=1

Elφl(t), (65)

where k(t) = ∑L
l=1 Elkl(t) and we obtain the standard Waveform-relaxation method as:

ci+1(t) = Kci(t) + φ(t). (66)

We can rewrite into an recursive notation and without loss of generality, we assume f (t) = 0,
then we obtain:

ci+1(t) =
L

∑
l=1

El

∫ t

0
exp((t− s)Al)Blci(s)ds +

L

∑
l=1

El exp(tAl)c0. (67)

Given a well-conditioned system of eigenvectors,we can consider the eigenvalues λ1,l of Al and
λ2,l of Bl instead of the operators Al , Bl themselves, for l = 1, . . . , L. For the matrices El we have the
eigenvalues λEl with 0 ≤ λEl ≤ 1 and ∑L

l=1 λEl = 1.
We can rewrite into the eigenvalue-notation and obtain:

ci+1(t) =
L

∑
l=1

λEl

∫ t

0
exp((t− s)λAl)λBl ci(s)ds +

L

∑
l=1

λEl exp(tλAl)c0. (68)

We assume that all of the initial values ci(tn) = capprox(tn) with i = 0, 1, 2, . . . , are as ||capprox(tn)−
cn|| ≤ O(τ I) where I is the order, following the ideas in the iterative splitting approach [46].

Further, we also assume that the pairs λ1,l 6= λ2,l for l = 1, . . . , L, otherwise we do not consider
the iterative splitting approach, while the time-scales are equal, see [34].

In the following, we apply the A(α)-stability.

4.1.1. A(α)-Stability

We define z1,l = τλ1,l and z2,l = τλ2,l with τ = tn+1 − tn, l = 1, . . . , L.
We have the following proposition 1:

Proposition 1. Starting with c(tn) = cn and a time-step τ = tn+1 − tn, we obtain:

ci(tn+1) =
i

∑
i=0

Sj(z1,l , z2,l , τ) cn, (69)

where Si is the stability function of the scheme. The Si are given as:

S0(z1,l , z2,l , t) =
L

∑
l=1

λEl exp(tλ1,l)cn. (70)

S1(z1,l , z2,l , t) =
L

∑
l=1

λEl

∫ t

0
exp((t− s)λ1,l)λ2,l

L

∑
l1=1

λEl1
exp(sλ1,l1)cn ds,

S1(z1,l , z2,l , t) =
L

∑
l=1

λEl

∫ t

0
exp((t− s)λ1,l)λ2,lS0(z1,l , z2,l , s)cn ds. (71)

Mathematics 2020, 8, 1950 11 of 42

and

Si(z1,l , z2,l , t) = (72)

=
L

∑
l=1

λEl

∫ t

0
exp((t− s)λ1,l)λ2,l

(
L

∑
l1=1

λEl1

∫ s

0
exp((s− s1)λ1,l1)λ1,l1 ·

·
(

. . . (
L

∑
li=1

λEl1

∫ si−1

0
exp((si−1 − si)λ1,li)λ2,li cn dsi) . . . ds1

)
ds

)
,

Si(z1,l , z2,l , t) =
L

∑
l=1

λEl

∫ t

0
exp((t− s)λ1,l)λ2,lSi−1(z1,l , z2,l , s)cn ds. (73)

with i-iterations.

Proof. We apply the complete induction.
We start with i = 0 and obtain:

c0(tn+1) =
0

∑
i=0

Sj(z1,l , z2,l , τ) cn, (74)

c0(tn+1) =
L

∑
l=1

λEl exp((tλAl)cn. (75)

We apply the induction step i→ i + 1, while we apply Equation (68):

ci+1(tn+1) = S0(z1, z2, τ)cn +
∫ t

0

L

∑
l=1

λEl exp((t− s)λ1,l) λ2,lci(s)ds, (76)

ci+1(tn+1) = S0(z1, z2, τ)cn +
∫ t

0

L

∑
l=1

λEl exp((t− s)λ1,l) λ2,l

i

∑
j=0

Sj(z1, z2, s)cnds, (77)

we apply the Equation (71) and obtain:

ci+1(tn+1) = S0(z1, z2, τ)cn +
i+1

∑
j=1

Sj(z1, z2, s)cnds, (78)

ci+1(tn+1) =
i+1

∑
j=0

Sj(z1, z2, s)cnds, (79)

and we obtain the results.

Let us consider the A(α)-stability that is given by the following eigenvalues in a wedge:

W = {ζ ∈ C : | arg(ζ) ≤ α}.

For the A-stability we have |Sm(z1, z2)| ≤ 1 whenever z1 ∈ Wπ/2. This means that we have the stiff
operator, where we assume that z2 is the non-stiff operator.

The stability of the two iterations is given in the following theorem with respect to A and
A(α)-stability.

Theorem 3. We have the following stability for the iterative operator splitting scheme (71):
For the stability function Si, where i is the iterative step, we have the following A-stability

max
z1∈Wα ,z2≤0

|Si(z1, z2)| ≤ 1 , ∀ α ∈ [0, π/2], (80)

Mathematics 2020, 8, 1950 12 of 42

with ω ∈ [0, 1], the initialization is given as c−1 = 0 and the initial conditions are ci(tn) = cn.

Proof. We consider the z1 → −∞, while z2 ≤ 0 is bounded as a nonstiff operator.
We apply the complete induction.
We start with i = 0 :

|S0(−∞, z2, t)| = |
L

∑
l=1

λEl exp(tλ1,l)| ≤ 1, (81)

with the assumption of the nonstiff operators λ2,l ≤ 0 with l = 1, . . . , L.
Further we also have i = 1 :

|S1(−∞, z1, t)| = |
L

∑
l=1

λEl

∫ t

0
exp((t− s)λ1,l)λ2,lS0(z1,l , z2,l , s) ds| (82)

≤ |
L

∑
l=1

λEl t exp(tλ1,l)λ2,l |S0(z1,l , z2,l , t)| = 0 ≤ 1. (83)

Subsequently, we apply the induction step for i→ i + 1:

|Si+1(z1, z2, t)| = ||S0(z1, z2, τ) +
∫ t

0

L

∑
l=1

λEl exp((t− s)λ1,l) λ2,l

i

∑
j=0

Sj(z1, z2, s)ds|| (84)

≤ ||S0(z1, z2, τ)||+ ||
L

∑
l=1

λEl t exp(tλ1,l) λ2,l

i

∑
j=0

Sj(z1, z2, t)|| = 0 ≤ 1, (85)

where we applied ||∑i
j=0 Sj(z1, z2, t)|| = 0.

Afterwards, we obtain our results, also see the ideas of the stability proofs in [47].

4.2. Convergence Analysis

In order to apply the multisplitting Waveform-relaxation method (57) and (58), we write the
solutions of the individual Equation (57) as:

cl,i+1(t) = Klci(t) + φl(t), (86)

where we have

Klc(t) =
∫ t

0
kl(t− s) c(s)ds, for l = 1, . . . , L, (87)

φl(t) = exp(tAl)c0 +
∫ t

0
exp((t− s)Al) f (s) ds, for l = 1, . . . , L. (88)

where kl(t) = exp(tAl)Bl for l = 1, . . . , L.
Further, we apply the multisplitting notation (58) and obtain the summations:

Kc(t) =
L

∑
l=1

ElKlc(t), (89)

φ(t) =
L

∑
l=1

Elφl(t), (90)

where k(t) = ∑L
l=1 Elkl(t) and we obtain the standard Waveform-relaxation method as:

ci+1(t) = Kci(t) + φ(t). (91)

Mathematics 2020, 8, 1950 13 of 42

We assume that Lemma 1 is fulfilled, see also [45].

Lemma 1. The following items are equivalent:

• c(t) is a solution of the initial value problem (55).
• c(t) is a solution of each multisplitted equation c(t) = Klc(t) + φl(t), c(0) = c0, l = 1, . . . , L.
• c(t) is the solution of the fixed point equation c(t) = Kc(t) + φl(t).

We define ||c||T = maxt∈[0,T] |c(t)| as maximum norm and we also denote by || · || the matrix
norm induced by the vector norm | · |.

Based on these assumptions, in the following we derive the errors and convergence results.
In Theorem 4, we derive the error of the i-th approximation, see also [45].

Theorem 4. There exists a constant C := ∑L
l=1 Cl , which is given to estimate the kernel k of the multisplitting

waveform-relaxation operator, such that we obtain ||k||T = C. Subsequently, the error of the i-th approximation
of the classical multisplitting WR method (57) and (58) is given by

||ci − c||T ≤
(CT)i

i!
(exp(CT)||φ||T + ||c0||T). (92)

Proof. We have given

ci(t) = Kci−1(t) + φ(t), (93)

We apply the Lemma 1 and follow with the iterative approach:

ci(t) = Kic0(t) +
i−1

∑
j=0

Kiφ(t), (94)

where is Kiu(t) is the i-times convolution

Kiu(t) =
∫ t

0 k(t− si)(
∫ si

0 k(t− si − si−1)(. . .
∫ t−∑i

j=0 si−j
0 k(t−∑i

j=0 si−j)u(s1)ds1 . . .)dsi−1)dsi.

Further, we have ||u||T = maxt∈[0,t] |u(t)|, where | · | is an appropriate Banach-Norm.
There exists:

||kl ||T ≤ Cl , for l = 1, . . . , L, (95)

and we have

|k(t)| ≤ ||k||T = ||
L

∑
l=1

Elkl || ≤
L

∑
l=1

Cl = C. (96)

We apply the estimation of the Waveform-relaxation, see [8], and obtain:

||Ki||T ≤
(CT)i

i!
, (97)

where we have limi→∞ ||Ki||T → 0.

Mathematics 2020, 8, 1950 14 of 42

The error estimate is then given as

||c− ci||T = ||(lim
j→∞

K jc0 −
∞

∑
j=0

K jφ(t))− (Kic0 −
i−1

∑
j=0

K jφ(t))||

≤ ||
∞

∑
j=i

K jφ(t) + Kic0|| ≤ ||Ki||T(||
∞

∑
j=0
||K j||T ||φ(t)||T + ||c0||T). (98)

We apply

∞

∑
j=0
||K j||T = ||K0||T + ||K1||T + . . . + ||K∞||T ≤ exp(CT). (99)

Subsequently, we obtain the estimation

||c− ci||T =≤ (CT)i

i!
(exp(CT)||φ||T + ||c0||T). (100)

We have the following new convergence Theorem 5 based on the extension of the classical
convergence Theorem version 4.

Theorem 5. There exists a constant C := ∑L
l=1 Cl , which is given to estimate the kernel k of the multisplitting

waveform-relaxation operator, such that we obtain ||k||T = C. Subsequently, the convergence of the modern
multisplittting WR method (59) and (60) is given by

||cimin − c||T ≤
(C T)imin

imin!
||c0 − c||T , (101)

where imin = minL
l=1 sl(i), where sl(i) ≤ i are the retarded iterations of the l-th processor.

Proof. We start with the estimation of the i-th iteration:

||cimin − c||T ≤ ||∑
l=1

ElKl(csl(i) − c)||T ≤ (102)

≤ ||∑
l=1

ElKl(cimin−1 − c)||T ≤ ||K||T ||(cimin−1 − c)||T . (103)

Afterwards, we have the recursion:

||cimin − c||T ≤ ||Kimin ||T ||(c0 − c)||T . (104)

where we apply ||Kimin ||T ≤ (C T)imin

imin ! , based on the idea in [8], and we obtain:

||cimin − c||T ≤
(C T)imin

imin!
||(c0 − c)||T , (105)

where imin = minL
l=1 sl(i).

Remark 3. For the parallel error, we obtain order O(τm) if we assume that all processors have at least m
iterative cycles, while, for the serial error, we have order O(τmL). Thus, in the serial version, we have to apply
mL iterative steps in sum to obtain the result, while in the parallel version, we only apply m iterative steps,
while L processors share the computation to solve the L sub-equations. Furthermore, we can assume that the
sub-equations are faster to solve, because the sub-operators are much smaller and simpler to handle. Subsequently,

Mathematics 2020, 8, 1950 15 of 42

we have tsub ≤
t f ull

L , where tsub is the time to solve a sub-problem and t f ull the time to solve the full problem.
Therefore, we have a benefit in the parallel distribution and obtain faster the higher order O(τmL) than with the
serial version.

Remark 4. While the classical version of the parallel splitting method has order O(τm), see the Theorem 4,
the modern version of the parallel splitting method can improve the order partially to higher order. We obtain
O(τmpartial) with m ≤ mpartial ≤ mL f ast, when we split into slow and fast convergent processors and assume
that the faster results of the fast convergent processors are sufficient for the update. We can define a new
ci = ∑l∈Fast Ẽlci,l with E = ∑l∈Fast Ẽl and the set Fast is given with the fast convergent processors, see also
the ideas of [37,48]. Therefore, we circumvent the slow processors and, later, we redistribute the decomposition of
the matrices to gain a more balanced load of the processors.

5. Numerical Examples

In what follows, we deal with different numerical examples, which are motivated by real-life
applications in fluid-flow and phase-field problems. We verify and test our theoretical results of the
novel parallel iterative splitting approaches.

We deal with:

• Only time-dependent linear problem: we apply ordinary differential equation to verify the
theoretical results.

• Time and space dependent linear problem: we apply a diffusion equation with different spatial
dependent operators and test the application to partial differential equations.

• Time and space dependent nonlinear problem: we apply a mixed diffusion-convection with
Burgers’ equation to test and verify the application to nonlinear problems.

• Time and space dependent fractional problem: we apply a fractional diffusion equation with
different spatial dependent operators and, furthermore, we test the application to fractional
differential equations.

5.1. First Example: Matrix Problem

In the first test example, we consider the following matrix equation,

u′(t) =

[
1 2
0 1

]
u, u(0) = u0 =

(
1
1

)
, (106)

whose exact solution is

exp(

[
1 2
0 1

]
t) =

(
exp(t) 2t exp(t)

0 exp(t)

)
. (107)

We split the matrix as:

• Two operator approach

A + B =

[
1 2
0 1

]
=

[
0.3 1
0 0.3

]
+

[
0.7 1
0 0.7

]
(108)

• Multiple operator approach

A1 + B1 =

[
1 2
0 1

]
=

[
0.1 1.0
0 0.1

]
+

[
0.9 1.0
0 0.9

]
(109)

Mathematics 2020, 8, 1950 16 of 42

A2 + B2 =

[
1 2
0 1

]
=

[
0.5 0.1
0 0.5

]
+

[
0.5 1.9
0 0.5

]
(110)

where the E1 and E2 are given as:

E1 =

[
0.9 0
0 0.1

]
, E2 =

[
0.1 0
0 0.9

]
. (111)

We include Tables 1 and 2 that correspond to multi-splitting iterative approach classical and
modern version with the above partitions and using different discretizations in [0, 1] of step h allowing
for a maximum of 10 iterations and a tolerance of 10−3. We can see in the results the relative and
absolute errors for each component of the solution and the average iterations performed in order to
reach the tolerance.

Figure 1 shows the influence of the tolerance value in the error of the modern version of the
algorithm. Each group of bars represents the error for the different step sizes indicated in the legend.
It can be seen that the error decreases with the step h if the tolerance is small enough. This is the
case, except for tol = 10−2, where higher errors appear for smaller steps. Looking at the bars that
correspond to the same step and different tolerances, it can be observed that the error for a given
temporal step h reaches a minimum as the tolerance decreases and, beyond this point, the errors
stabilize or even increase slightly for smaller tolerances.

Table 1. Multisplitting classic version.

h max e1 max e2 rel e1 rel e2 it 1 it 2

0.1 0.008308 0.00040332 0.0010188 0.00014837 4 4
0.05 0.00043184 2.906× 10−5 5.2955× 10−5 1.069× 10−5 3 3
0.025 0.00010623 7.2291× 10−6 1.3027× 10−5 2.6595× 10−6 3 3

0.0125 2.6335× 10−5 1.8026× 10−6 3.2294× 10−6 6.6316× 10−7 3 3
0.00625 6.5553× 10−6 4.5007× 10−7 8.0385× 10−7 1.6557× 10−7 3 3

Table 2. Multisplitting Modern version.

h max e1 max e2 rel e1 rel e2 it 1 it 2

0.1 0.0081586 0.0003996 0.0010005 0.000147 4 4
0.05 0.00030027 3.1292× 10−5 0.00012447 1.1512× 10−5 3.35 3

0.025 0.00027348 1.3123× 10−5 3.3536× 10−5 4.8277× 10−6 3 3
0.0125 6.8274× 10−5 3.281× 10−6 8.3723× 10−6 1.207× 10−6 3 3

0.00625 1.7056× 10−5 8.2026× 10−7 2.0915× 10−6 3.0176× 10−7 3 3

tol=10
-2

tol=10
-3

tol=10
-4

tol=10
-5

10
-5

10
-4

10
-3

10
-2

10
-1

e
rr

h=0.1

h=0.05

h=0.025

h=0.0125

h=0.00625

Figure 1. Matrix problem. Precision of the modern version of the multi-splitting iterative approach in
terms of the time step h and the tolerance.

Mathematics 2020, 8, 1950 17 of 42

Remark 5. We applied the multisplitting method with the classical (synchronous) and modern (chaotic)
approach. We receive the same accuracy of the numerical results, which means that the methods are equally
accurate. We obtain some more benefits of the modern method if we apply large time-steps, such that the solution
of one sub-problem can be achieved faster and benefit the solution of the second sub-problem. For such small
computational unbalances, the modern approach is more efficient.

5.2. Second Example: Diffusion Problem

We deal with the following diffusion problem:

u′(x, t) = ∆u(x, t), (x, t) ∈ ∂Ω× [0, T], (112)

u(x, 0) = sin x sin y sin z, x ∈ Ω, (113)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T], (114)

where we have the analytical solution uan(x, t) = exp(−3t) sin x sin y sin z, with x = (x, y, z)t and
Ω = [−π, π]× [−π, π]× [−π, π].

In operator notation, we write:

A = A1 + A2 + A3, (115)

where A1 = ∂2

∂x2 , A2 = ∂2

∂y2 , A3 = ∂2

∂z2 and we assume that the zero-boundary conditions (Dirichlet
boundary conditions) are fulfilled.

The problem is discretized by using a four-dimensional (4-D) mesh in Ω× [0, T]. Denote by ui,j,k,t
the approximated value of the solution at node (xi, yj, zk, t) for a given t. For the time-integration,
we apply the integral formulation, see Equations (15)–(18).

For the spatial discretization, we test a second order scheme:

∂2

∂x2 ui,j,k,t =
ui+1,j,k,t − 2ui,j,k,t + ui−1,j,k,t

∆x2 , (116)

and a fourth order scheme:

∂2

∂x2 ui,j,k,t =
−ui+2,j,k,t + 16ui+1,j,k,t − 30ui,j,k,t + 16ui−1,j,k,t − ui−2,j,k,t

12∆x2 , (117)

where we have the analogous operators for the y and z derivatives.
We compute the solution u(∆x, h) obtained using spatial and temporal steps ∆x = ∆y = ∆z and

h, respectively, in order to establish the convergence of the algorithms. We use different measures to
estimate the convergence. On one hand, we can compare the outcome of the method u(∆x, h) with the
exact solution uana for every point of the mesh, which shows the convergence of the method. On the
other hand, we can compare u(∆x, h) with the result that was obtained halving the time steps, h/2,
at the points shared by the corresponding meshes. This allows for analyzing how the results depend
on these steps.

Denote by ei,j,k(∆x, h) the difference between the results at a mesh point in the final time T,
(xi, yj, zk, T), obtained using time steps h and h/2, and by δi,j,k(∆x, h) the difference with the analytical
solution at the same point. In the tables, we will denote the maximum errors by

emax = max
i,j,k
|ei,j,k(∆x, h)|, (118)

and

δmax = max
i,j,k
|δi,j,k(∆x, h)|, (119)

Mathematics 2020, 8, 1950 18 of 42

and the mean errors by

emean =
1
N ∑

i,j,k
|ei,j,k(∆x, h)|, (120)

and

δmean =
1
N ∑

i,j,k
|δi,j,k(∆x, h)|, (121)

where N is the number of spatial nodes at time T.
In the following, we discuss different decompositions of the multi-operator splitting approach:

• Directional decomposition: We decompose into the different directions:

A1 =
∂2

∂x2 , A2 =
∂2

∂y2 , A3 =
∂2

∂z2 . (122)

Here, we have the benefit of decomposing the different directions.

The drawback is related to the unbalanced decomposition, where the matrices have different
sparse entries. Therefore, the exponential matrices of the operators are different in their sparse
behaviour and the error can not be optimally reduced.

We can reduce the unbalanced problem, if we deal with the idea to use ∆t ≈ ∆x, see [38].
Subsequently, we obtain at least a second order scheme (related to the spatial discretization).

We compare our sequential and parallel iterative splitting methods with standard ones such
as the sequential operator splitting [49] and the Strang–Marchuk splitting [50]. We apply the
splitting algorithms with directional decomposition in [0, 1]. The splitting is iterated until a
tolerance of 10−8 or a maximum of 10 iterations is reached. The values that are shown in the tables
correspond to maximum or mean values at T = 1. Tables 3 and 4 present the results obtained
using different number of temporal steps and the second and fourth order schemes for the spatial
discretization, respectively.

The standard methods, sequential operator, and Strang–Marchuk splitting give almost the same
results independently of the number of time steps, because of the linearity of the equation. The e
error estimates are negligible, whereas the δ error estimates are independent of the time step,
reflecting the spatial discretization error.

Mathematics 2020, 8, 1950 19 of 42

Table 3. Diffusion problem. Results of the directional decomposition using the second order scheme
for the spatial discretization, with 10 spatial subintervals and different number of temporal steps.

Splitting Algorithm Time Steps emax emean δmax δmean Average Iterations

Sequential Operator

20 6.3838× 10−16 8.4685× 10−17 3.2022× 10−2 4.0127× 10−3 1.0000
40 2.1580× 10−15 2.1350× 10−16 3.2022× 10−2 4.0127× 10−3 1.0000
80 1.6133× 10−15 2.3525× 10−16 3.2022× 10−2 4.0127× 10−3 1.0000

160 3.6013× 10−15 3.2583× 10−16 3.2022× 10−2 4.0127× 10−3 1.0000

Strang-Marchuk

20 9.7838× 10−16 6.7970× 10−17 3.2022× 10−2 4.0127× 10−3 1.6667
40 2.4702× 10−15 1.5928× 10−16 3.2022× 10−2 4.0127× 10−3 1.6667
80 6.6128× 10−15 5.9749× 10−16 3.2022× 10−2 4.0127× 10−3 1.6667

160 1.4572× 10−14 9.5031× 10−16 3.2022× 10−2 4.0127× 10−3 1.6667

Serial Iterative

20 4.7546× 10−3 1.6356× 10−4 2.0304× 10−2 2.1113× 10−3 3.0000
40 2.2831× 10−3 7.5764× 10−5 2.0135× 10−2 2.0213× 10−3 3.0000
80 1.1013× 10−3 3.6053× 10−5 2.0059× 10−2 1.9958× 10−3 2.0688

160 5.3905× 10−4 1.7569× 10−5 2.0024× 10−2 1.9835× 10−3 2.0031

Classical Parallel

20 6.1563× 10−4 7.1759× 10−5 2.0942× 10−2 2.2622× 10−3 7.0000
40 3.1759× 10−4 3.7914× 10−5 2.1295× 10−2 2.3328× 10−3 5.0750
80 1.6070× 10−4 1.9398× 10−5 2.1479× 10−2 2.3701× 10−3 4.8688

160 8.0751× 10−5 9.7999× 10−6 2.1574× 10−2 2.3891× 10−3 4.0031

Modern Parallel

20 5.4241× 10−4 8.2138× 10−5 2.0487× 10−2 2.2348× 10−3 7.9750
40 3.0696× 10−4 4.5356× 10−5 2.1029× 10−2 2.3158× 10−3 6.0000
80 1.6316× 10−4 2.3798× 10−5 2.1336× 10−2 2.3605× 10−3 4.9938

160 8.4106× 10−5 1.2186× 10−5 2.1499× 10−2 2.3841× 10−3 4.0031

Table 4. Diffusion problem. Results of the directional decomposition using the fourth order scheme
for the spatial discretization, with 10 subintervals in each dimension and different number of
temporal steps.

Splitting Algorithm Time Steps emax emean δmax δmean Average Iterations

Sequential Operator

20 2.8449× 10−16 2.3056× 10−17 2.6024× 10−4 4.7017× 10−5 1.0000
40 2.9143× 10−16 2.6939× 10−17 2.6024× 10−4 4.7017× 10−5 1.0000
80 1.2490× 10−16 1.5822× 10−17 2.6024× 10−4 4.7017× 10−5 1.0000

160 7.9103× 10−16 1.2310× 10−16 2.6024× 10−4 4.7017× 10−5 1.0000

Strang-Marchuk

20 1.6653× 10−16 1.4661× 10−17 2.6024× 10−4 4.7017× 10−5 1.6667
40 3.2613× 10−16 3.9698× 10−17 2.6024× 10−4 4.7017× 10−5 1.6667
80 3.1919× 10−16 2.0470× 10−17 2.6024× 10−4 4.7017× 10−5 1.6667

160 1.5127× 10−15 2.1817× 10−16 2.6024× 10−4 4.7017× 10−5 1.6667

Serial Iterative

20 5.3739× 10−5 1.0912× 10−5 3.1645× 10−4 6.1276× 10−5 3.0000
40 1.3425× 10−5 2.7263× 10−6 2.7126× 10−4 5.0429× 10−5 3.0000
80 3.3557× 10−6 6.8147× 10−7 2.6299× 10−4 4.7851× 10−5 2.0063

160 8.3886× 10−7 1.7036× 10−7 2.6093× 10−4 4.7225× 10−5 2.0031

Classical Parallel

20 5.3681× 10−5 1.0912× 10−5 3.1644× 10−4 6.1276× 10−5 6.0250
40 1.3412× 10−5 2.7263× 10−6 2.7125× 10−4 5.0429× 10−5 5.0125
80 3.3528× 10−6 6.8152× 10−7 2.6299× 10−4 4.7851× 10−5 4.0062

160 8.3793× 10−7 1.7032× 10−7 2.6093× 10−4 4.7225× 10−5 4.0031

Modern Parallel

20 5.3684× 10−5 1.0912× 10−5 3.1644× 10−4 6.1276× 10−5 6.0250
40 1.3412× 10−5 2.7263× 10−6 2.7125× 10−4 5.0429× 10−5 5.0125
80 3.3528× 10−6 6.8152× 10−7 2.6299× 10−4 4.7851× 10−5 4.0062

160 8.3794× 10−7 1.7032× 10−7 2.6093× 10−4 4.7225× 10−5 4.0031

Tables 3 and 4 show that the estimated errors emax and emean of the iterative splitting methods
are proportional to h for the second order scheme of discretization of the directional derivatives,
whereas they are proportional to h2 for the fourth order scheme. The mean differences with the
analytical solution, δmean, of the iterative splitting methods tend to those of the non iterative ones
as h decreases. The δ error estimates are more than one order of magnitude better for the fourth
order scheme than for the second order scheme. Figures 2 and 3 depict these results.

Mathematics 2020, 8, 1950 20 of 42

n
t
=20 n

t
=40 n

t
=80 n

t
=160

10
-6

10
-5

10
-4

10
-3

e
m

e
a
n

SI

CP

MP

n
t
=20 n

t
=40 n

t
=80 n

t
=160

2

2.5

3

3.5

4

δ
m

e
a
n

×10
-3

SO

SM

SI

CP

MP

Figure 2. Diffusion problem, directional decomposition. Precision of the proposed methods: sequential
iterative SI, classical parallel CP, and modern parallel MP, as compared with the classical ones:
sequential operator SO and Strang–Marchuk SM, with second order approximations for the spatial
derivatives for different number of time steps.

n
t
=20 n

t
=40 n

t
=80 n

t
=160

10
-7

10
-6

10
-5

10
-4

e
m

e
a
n

SI

CP

MP

n
t
=20 n

t
=40 n

t
=80 n

t
=160

4.8

5

5.2

5.4

5.6

5.8

6

δ
m

e
a
n

×10
-5

SO

SM

SI

CP

MP

Figure 3. Diffusion problem, directional decomposition. Precision of the proposed methods: sequential
iterative SI, classical parallel CP, and modern parallel MP, compared with the classical ones: sequential
operator SO and Strang–Marchuk SM, with fourth order approximations for the spatial derivatives for
different number of time steps.

Now, we analyze the influence of the number of spatial intervals on the convergence properties
of the iterative splitting algorithms. The spatial step is reduced simultaneously in the three
dimensions, in order to keep the increments equal, because the performance of the method is
better in this case. The time step is small enough to ensure the convergence in the case of the
smaller spatial subinterval and is the same in all of the cases to allow the comparison depending
only on the spatial step.

For the second order scheme (see Table 5), the e error estimates are proportional to the number of
spatial subintervals in each dimension, whereas the δ error estimates decrease, indicating a better
approximation to the analytical solution as the spatial step decreases.The parallel methods obtain
slightly less approximation to the analytical result and they require more iterations than the serial
iterative method. The modern parallel method needs more iterations per step to converge than
the classical parallel method.

For the fourth order scheme (see Table 6), the e error estimates are unaffected by the number of
spatial subintervals, so that the convergence is maintained. The δ error estimates are proportional

Mathematics 2020, 8, 1950 21 of 42

to a power of the spatial step of degree between 3 and 5, greatly improving the approximation of
the second order scheme.

Table 5. Diffusion problem. Results of the directional decomposition using the second order scheme
for the spatial discretization, with 320 temporal steps and different number of spatial subintervals.

Splitting Algorithm Space Intervals emax emean δmax δmean Average Iterations

Sequential Operator
10 1.8437× 10−14 2.3626× 10−15 3.2022× 10−2 4.0127× 10−3 1.0000
20 2.2100× 10−14 4.3596× 10−15 1.8587× 10−2 2.7497× 10−3 1.0000
40 3.7588× 10−14 6.9991× 10−15 9.7462× 10−3 1.5908× 10−3 1.0000

Strang-Marchuk
10 2.8838× 10−14 2.2970× 10−15 3.2022× 10−2 4.0127× 10−3 1.6667
20 3.7408× 10−14 3.9795× 10−15 1.8587× 10−2 2.7497× 10−3 1.6667
40 6.2721× 10−14 8.1078× 10−15 9.7462× 10−3 1.5908× 10−3 1.6667

Serial Iterative
10 2.6647× 10−4 8.6700× 10−6 2.0006× 10−2 1.9774× 10−3 2.0000
20 4.4399× 10−4 9.5320× 10−6 1.1625× 10−2 1.1212× 10−3 2.0000
40 7.4728× 10−4 9.9603× 10−6 5.8701× 10−3 6.0205× 10−4 2.0078

Classical Parallel
10 4.0467× 10−5 4.9240× 10−6 2.1621× 10−2 2.3988× 10−3 4.0000
20 8.2970× 10−5 1.1843× 10−5 1.2119× 10−2 1.7252× 10−3 4.0016
40 1.5751× 10−4 2.4059× 10−5 6.1534× 10−3 9.8751× 10−4 4.4063

Modern Parallel
10 4.2699× 10−5 6.1656× 10−6 2.1583× 10−2 2.3962× 10−3 4.0000
20 9.7992× 10−5 1.5103× 10−5 1.2050× 10−2 1.7183× 10−3 4.9828
40 1.7725× 10−4 2.9509× 10−5 6.0466× 10−3 9.7394× 10−4 6.9922

Table 6. Diffusion problem, directional decomposition. Results using the fourth order scheme for the
spatial discretization, with 320 temporal steps and different number of subintervals in each dimension.

Splitting Algorithm Space Intervals emax emean δmax δmean Average Iterations

Sequential Operator
10 9.6451× 10−16 1.5113× 10−16 2.6024× 10−4 4.7017× 10−5 1.0000
20 1.0686× 10−15 1.0900× 10−16 1.2606× 10−5 3.0953× 10−6 1.0000
40 3.9899× 10−15 8.3332× 10−16 4.1987× 10−7 1.1088× 10−7 1.0000

Strang-Marchuk
10 1.7972× 10−15 2.6813× 10−16 2.6024× 10−4 4.7017× 10−5 1.6667
20 1.5821× 10−15 1.8215× 10−16 1.2606× 10−5 3.0953× 10−6 1.6667
40 1.3531× 10−15 2.0462× 10−16 4.1987× 10−7 1.1088× 10−7 1.6667

Serial Iterative
10 2.0971× 10−7 4.2590× 10−8 2.6041× 10−4 4.7069× 10−5 2.0000
20 2.4313× 10−7 5.2851× 10−8 1.2777× 10−5 3.1437× 10−6 2.0000
40 2.4310× 10−7 5.7886× 10−8 4.1609× 10−7 1.1596× 10−7 2.0000

Classical Parallel
10 2.0952× 10−7 4.2587× 10−8 2.6041× 10−4 4.7069× 10−5 4.0000
20 2.4312× 10−7 5.2848× 10−8 1.2777× 10−5 3.1437× 10−6 4.0000
40 2.4309× 10−7 5.7883× 10−8 4.1609× 10−7 1.1596× 10−7 4.0000

Modern Parallel
10 2.0952× 10−7 4.2587× 10−8 2.6041× 10−4 4.7069× 10−5 4.0000
20 2.4312× 10−7 5.2848× 10−8 1.2777× 10−5 3.1437× 10−6 4.0000
40 2.4309× 10−7 5.7883× 10−8 4.1609× 10−7 1.1596× 10−7 4.0000

Figures 4 and 5 present the results that were obtained by the analyzed splitting methods with
different number of spatial steps, using the second and the fourth order schemes for the spatial
discretization, respectively.

Mathematics 2020, 8, 1950 22 of 42

n
x
=10 n

x
=20 n

x
=40

10
-6

10
-5

10
-4

e
m

e
a
n

SI

CP

MP

n
x
=10 n

x
=20 n

x
=40

10
-4

10
-3

10
-2

δ
m

e
a
n

SO

SM

SI

CP

MP

Figure 4. Diffusion problem, directional decomposition. Precision of the proposed methods: sequential
iterative SI, classical parallel CP, and modern parallel MP, compared with the classical ones: sequential
operator SO and Strang–Marchuk SM, with second order approximations for the spatial derivatives
with 320 time steps and different number of spatial steps.

n
x
=10 n

x
=20 n

x
=40

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

e
m

e
a
n

SO

SM

SI

CP

MP

n
x
=10 n

x
=20 n

x
=40

10
-7

10
-6

10
-5

10
-4

δ
m

e
a
n

SO

SM

SI

CP

MP

Figure 5. Diffusion problem, directional decomposition. Precision of the proposed methods: sequential
iterative SI, classical parallel CP, and modern parallel MP, compared with the classical ones: sequential
operator SO and Strang–Marchuk SM, with fourth order approximations for the spatial derivatives for
different number of spatial steps.

• Balanced decomposition: We decompose into:

A1 =
1
3

A, A2 =
1
3

A, A3 =
1
3

A. (123)

Here, we have the benefit of equal load balances of the matrices, such that the exp-matrices have
the same sparse structure. The results of the splitting algorithms with balanced decomposition
are shown in Tables 7 and 8 for the second and fourth order schemes for the spatial discretization,
and in Figures 6 and 7, respectively. The numerical behaviour is similar to that of the
directional decomposition.

Mathematics 2020, 8, 1950 23 of 42

Table 7. Diffusion problem. Results of the balanced decomposition using the second order scheme for
the spatial discretization, with 10 spatial subintervals and different number of temporal steps.

Splitting Algorithm Time Steps emax emean δmax δmean Average Iterations

Sequential Operator
20 4.2674× 10−15 4.9711× 10−16 4.3817× 10−3 8.9251× 10−4 1.0000
40 7.5459× 10−15 9.4849× 10−16 4.3817× 10−3 8.9251× 10−4 1.0000
80 7.9486× 10−15 1.0959× 10−15 4.3817× 10−3 8.9251× 10−4 1.0000

160 3.1839× 10−14 4.4734× 10−15 4.3817× 10−3 8.9251× 10−4 1.0000

Strang-Marchuk
20 3.9690× 10−15 3.6874× 10−16 4.3817× 10−3 8.9251× 10−4 1.6667
40 7.9000× 10−15 1.2019× 10−15 4.3817× 10−3 8.9251× 10−4 1.6667
80 2.3551× 10−14 3.5211× 10−15 4.3817× 10−3 8.9251× 10−4 1.6667

160 8.0304× 10−14 1.1365× 10−14 4.3817× 10−3 8.9251× 10−4 1.6667

Serial Iterative
20 5.3493× 10−5 1.0896× 10−5 4.3104× 10−3 8.7798× 10−4 3.0000
40 1.3365× 10−5 2.7223× 10−6 4.3639× 10−3 8.8888× 10−4 3.0000
80 3.3408× 10−6 6.8047× 10−7 4.3773× 10−3 8.9160× 10−4 2.0063

160 8.3516× 10−7 1.7011× 10−7 4.3806× 10−3 8.9228× 10−4 2.0031

Classical Parallel
20 5.3493× 10−5 1.0896× 10−5 4.3104× 10−3 8.7798× 10−4 6.0000
40 1.3365× 10−5 2.7223× 10−6 4.3639× 10−3 8.8888× 10−4 5.0125
80 3.3410× 10−6 6.8052× 10−7 4.3773× 10−3 8.9160× 10−4 4.0062

160 8.3499× 10−7 1.7008× 10−7 4.3806× 10−3 8.9228× 10−4 4.0031

Modern Parallel
20 5.3493× 10−5 1.0896× 10−5 4.3104× 10−3 8.7798× 10−4 6.0000
40 1.3365× 10−5 2.7223× 10−6 4.3639× 10−3 8.8888× 10−4 5.0125
80 3.3410× 10−6 6.8052× 10−7 4.3773× 10−3 8.9160× 10−4 4.0062

160 8.3499× 10−7 1.7008× 10−7 4.3806× 10−3 8.9228× 10−4 4.0031

Table 8. Diffusion problem. Results of the balanced decomposition using the fourth order scheme for
the spatial discretization, with 10 spatial subintervals and different number of temporal steps.

Splitting Algorithm Time Steps emax emean δmax δmean Average Iterations

Sequential Operator

20 1.1796× 10−15 1.0685× 10−16 2.6024× 10−4 4.7017× 10−5 1.0000
40 2.9143× 10−15 3.5778× 10−16 2.6024× 10−4 4.7017× 10−5 1.0000
80 4.3715× 10−15 5.4513× 10−16 2.6024× 10−4 4.7017× 10−5 1.0000

160 1.3073× 10−14 1.7961× 10−15 2.6024× 10−4 4.7017× 10−5 1.0000

Strang-Marchuk

20 8.4655× 10−16 6.8614× 10−17 2.6024× 10−4 4.7017× 10−5 1.6667
40 1.9776× 10−15 2.8005× 10−16 2.6024× 10−4 4.7017× 10−5 1.6667
80 3.6429× 10−15 2.9301× 10−16 2.6024× 10−4 4.7017× 10−5 1.6667

160 4.2882× 10−15 5.7185× 10−16 2.6024× 10−4 4.7017× 10−5 1.6667

Serial Iterative

20 5.3718× 10−5 1.0912× 10−5 3.1641× 10−4 6.1276× 10−5 3.0000
40 1.3421× 10−5 2.7263× 10−6 2.7124× 10−4 5.0429× 10−5 3.0000
80 3.3547× 10−6 6.8147× 10−7 2.6299× 10−4 4.7851× 10−5 2.0063

160 8.3865× 10−7 1.7036× 10−7 2.6093× 10−4 4.7225× 10−5 2.0031

Classical Parallel

20 5.3718× 10−5 1.0912× 10−5 3.1641× 10−4 6.1276× 10−5 6.0250
40 1.3421× 10−5 2.7263× 10−6 2.7124× 10−4 5.0429× 10−5 5.0125
80 3.3550× 10−6 6.8152× 10−7 2.6299× 10−4 4.7851× 10−5 4.0062

160 8.3847× 10−7 1.7032× 10−7 2.6093× 10−4 4.7225× 10−5 4.0031

Modern Parallel

20 5.3718× 10−5 1.0912× 10−5 3.1641× 10−4 6.1276× 10−5 6.0250
40 1.3421× 10−5 2.7263× 10−6 2.7124× 10−4 5.0429× 10−5 5.0125
80 3.3550× 10−6 6.8152× 10−7 2.6299× 10−4 4.7851× 10−5 4.0062

160 8.3847× 10−7 1.7032× 10−7 2.6093× 10−4 4.7225× 10−5 4.0031

Mathematics 2020, 8, 1950 24 of 42

n
t
=20 n

t
=40 n

t
=80 n

t
=160

10
-7

10
-6

10
-5

e
m

e
a
n

SI

CP

MP

n
t
=20 n

t
=40 n

t
=80 n

t
=160

8.78

8.8

8.82

8.84

8.86

8.88

8.9

8.92

m
e
a

n

10
-4

SO

SM

SI

CP

MP

Figure 6. Diffusion problem, balanced decomposition. Precision of the proposed methods: sequential
iterative SI, classical parallel CP, and modern parallel MP, compared with the classical ones: sequential
operator SO and Strang–Marchuk SM, with second order approximations for the spatial derivatives for
different number of time steps.

n
t
=20 n

t
=40 n

t
=80 n

t
=160

10
-7

10
-6

10
-5

e
m

e
a
n

SI

CP

MP

n
t
=20 n

t
=40 n

t
=80 n

t
=160

4.8

5

5.2

5.4

5.6

5.8

6

m
e
a
n

10
-5

SO

SM

SI

CP

MP

Figure 7. Diffusion problem, balanced decomposition. Precision of the proposed methods: sequential
iterative SI, classical parallel CP, and modern parallel MP, compared with the classical ones: sequential
operator SO and Strang–Marchuk SM, with fourth order approximations for the spatial derivatives for
different number of time steps.

• Mixed decomposition: We decompose into:

A1 = (1− ε)
∂2

∂x2 +
ε

2
(

∂2

∂y2 +
∂2

∂z2), A2 = (1− ε)
∂2

∂y2 +
ε

2
(

∂2

∂x2 +
∂2

∂z2), (124)

A3 = (1− ε)
∂2

∂z2 +
ε

2
(

∂2

∂x2 +
∂2

∂y2), (125)

where ε = [0, 2/3]. For ε = 0, we have the directional decomposition, while, for ε = 2/3, we have
the balanced decomposition.

Remark 6. Based on the balanced decomposition with ε = 2/3, we do not have problems with the splitting
approaches and obtain optimal results. For the pure unbalanced decomposition, which means ε = 0, we decompose
into different directions. Here, we have to restrict us to the exact second order approach, which is ∆t ≈ ∆x.

Mathematics 2020, 8, 1950 25 of 42

Remark 7. We obtain the benefit of the classical and modern parallel iterative splitting method that is based on
larger time-steps and more iterative steps. In such an optimal version, we are much faster than the serial version
and also the result is more accurate. For very fine time-steps, we do not see an improvement in the accuracy, but
we see a benefit in the computational time; the parallel versions are faster.

5.3. Third Example: Mixed Convection-Diffusion and Burgers’ Equation

We consider a partial differential equation, which is a two-dimesnional (2D) example of a mixed
convection-diffusion and Burgers’ equation. Such mixed PDEs are used to model fluid flow problems
in traffic or population dynamics, see [15,16,51]. For testing the numerical methods, we consider a
Burgers’ equation, where we can find an analytical solution. The model problem is:

∂tu = − 1/2u∂xu− 1/2u∂yu− 1/2∂xu− 1/2∂yu

+ µ(∂xxu + ∂yyu) + f (x, y, t), (x, y, t) ∈ Ω× [0, T], (126)

u(x, y, 0) = uana(x, y, 0), (x, y) ∈ Ω, (127)

u(x, y, t) = uana(x, y, t) on ∂Ω× [0, T], (128)

where Ω = [0, 1]× [0, 1], T = 1.25, and µ is the viscosity.
The analytical solution is given by

uana(x, y, t) = (1 + exp(
x + y− t

2µ
))−1 + exp(

x + y− t
2µ

), (129)

where we compute f (x, y, t) accordingly.
As in the previous example, denote, by u(∆, h), the numerical solution obtained using spatial

subintervals of amplitude ∆ = ∆x = ∆y, time steps h and a tolerance of tol = 10−6, allowing a
maximum of 40 iterations. On one hand, we will compare the numerical solution with the exact one
uana for every point of the mesh, which shows the convergence of the method. On the other hand,
we will compare u(∆, h) with the result obtained halving the time steps, h/2, at the points that are
shared by the corresponding meshes. Denote by ei,j,k(∆, h) the difference between the results obtained
using two different time steps, h and h/2, at a common mesh point (xi, yj, tk), and by δi,j,k(∆, h) the
difference with the analytical solution at the same point. In the tables, we will use the error estimates
given by

emax = max
i,j,k
|ei,j,k(∆, h)|, (130)

and

δmax = max
i,j,k
|δi,j,k(∆, h)|, (131)

and the mean errors by

emean =
1
N ∑

i,j,k
|ei,j,k(∆, h)|, (132)

and

δmean =
1
N ∑

i,j,k
|δi,j,k(∆, h)|, (133)

where N is the total number of nodes (xi, yj, tk).

Mathematics 2020, 8, 1950 26 of 42

We measure the time consumed by processor l in each iteration m, in [tk, tk+1], tpk,l,m in order
to obtain the temporal cost of the parallel schemes. In the classical parallel scheme, the processors
synchronize at each iteration, so the cost for this time interval is tpk = ∑m max

l=1,2
tpk,l,m, whereas, in the

modern parallel scheme, the processors iterate independently in [tk, tk+1] performing ml , l = 1, 2
iterations until convergence, thus the cost is tpk = max

l=1,2
∑m tpk,l,m. The final cost is obtained adding

the results of all time subintervals.
In the following, we discuss different decompositions of the multi-operator splitting approach:

• Directional decomposition

We decompose into the different directions (x and y direction):

A(u)u = −1/2u∂xu− 1/2∂xu + µ∂xxu, (134)

B(u)u = −1/2u∂yu− 1/2∂yu + µ∂yyu + f (x, y, t). (135)

Let us first analyze the influence of parameter µ on the convergence of the algorithms.
Tables 9 and 10 show the error estimations of the considered algorithms for different values of µ

using the second and the fourth order discretization scheme, respectively, taking 10 subintervals in
each spatial dimension and 640 time steps. The results for the different algorithms are similar. As it
could be expected, higher viscosity values give lower error estimates.

Table 9. Mixed convection-diffusion and Burgers’ equation. Results of the directional decomposition
using the second order scheme for the spatial discretization, with 10 spatial subintervals, 640 temporal
intervals and different values of µ.

Splitting Algorithm µ emax emean δmax δmean Average Iterations Time

Sequential Operator

0.25 5.8112× 10−1 8.0638× 10−3 9.3476× 10−1 1.1794× 10−2 1.0000 10.9421
0.5 4.5508× 10−3 2.1796× 10−4 7.9207× 10−3 5.7747× 10−4 1.0000 11.8920
1 2.8491× 10−4 1.0611× 10−4 6.0982× 10−4 2.3120× 10−4 1.0000 11.2869
2 1.3365× 10−4 5.5167× 10−5 2.7611× 10−4 1.1307× 10−4 1.0000 11.8224

Strang-Marchuk

0.25 1.1244× 10−1 8.2317× 10−4 6.5305× 10−2 7.8549× 10−3 1.5000 16.2900
0.5 1.8260× 10−3 3.3699× 10−4 4.8191× 10−3 1.0202× 10−3 1.5000 16.4826
1 4.5546× 10−4 1.4794× 10−4 9.5796× 10−4 3.1493× 10−4 1.5000 17.5409
2 1.4546× 10−4 6.5449× 10−5 2.9273× 10−4 1.3371× 10−4 1.5000 16.8117

Serial Iterative

0.25 1.3150× 10−2 1.2382× 10−3 2.2903× 10−1 1.0361× 10−2 2.1500 22.3302
0.5 2.0471× 10−3 3.7850× 10−4 5.3038× 10−3 1.1031× 10−3 2.0031 21.5187
1 4.6720× 10−4 1.5130× 10−4 9.7092× 10−4 3.2097× 10−4 2.5313 27.0622
2 1.5460× 10−4 6.6664× 10−5 3.0698× 10−4 1.3545× 10−4 3.0141 34.6163

Classical Parallel

0.25 1.2263× 10−2 1.2385× 10−3 2.2913× 10−1 1.0361× 10−2 3.2531 17.8904
0.5 2.0418× 10−3 3.7840× 10−4 5.2987× 10−3 1.1030× 10−3 3.9859 22.5435
1 4.5870× 10−4 1.5117× 10−4 9.6710× 10−4 3.2087× 10−4 4.0078 24.1887
2 1.4252× 10−4 6.6562× 10−5 2.9093× 10−4 1.3539× 10−4 5.0328 32.4515

Modern Parallel

0.25 1.2348× 10−2 1.2388× 10−3 2.2923× 10−1 1.0361× 10−2 3.7172 25.2081
0.5 2.0354× 10−3 3.7825× 10−4 5.2929× 10−3 1.1029× 10−3 4.0062 24.5462
1 4.5939× 10−4 1.5113× 10−4 9.6862× 10−4 3.2087× 10−4 5.0109 30.8930
2 1.4410× 10−4 6.6516× 10−5 2.9168× 10−4 1.3524× 10−4 10.0828 63.1537

Mathematics 2020, 8, 1950 27 of 42

Table 10. Mixed convection-diffusion and Burgers’ equation. Results of the directional decomposition
using the fourth order scheme for the spatial discretization, with 10 spatial subintervals, 640 temporal
intervals and different values of µ.

Splitting Algorithm µ emax emean δmax δmean Average Iterations Time(s)

Sequential Operator

0.25 5.8896× 10−1 7.9743× 10−3 1.1575 1.5807× 10−2 1.0000 9.7930
0.5 4.5804× 10−3 2.1804× 10−4 8.9458× 10−3 4.3546× 10−4 1.0000 9.7708
1 2.8621× 10−4 1.0646× 10−4 5.8378× 10−4 2.1488× 10−4 1.0000 10.0130
2 1.3465× 10−4 5.5478× 10−5 2.7645× 10−4 1.1254× 10−4 1.0000 10.7038

Strang-Marchuk

0.25 1.7993× 10−2 6.0015× 10−4 5.4593× 10−2 1.2833× 10−3 1.5000 14.9624
0.5 1.8507× 10−3 3.3834× 10−4 3.7379× 10−3 6.7850× 10−4 1.5000 14.9328
1 4.5736× 10−4 1.4837× 10−4 9.4192× 10−4 2.9859× 10−4 1.5000 15.6433
2 1.4761× 10−4 6.5866× 10−5 2.9398× 10−4 1.3333× 10−4 1.5000 15.4479

Serial Iterative

0.25 1.5854× 10−2 1.2976× 10−3 3.1234× 10−2 2.5814× 10−3 2.1922 18.4870
0.5 2.0512× 10−3 3.7922× 10−4 4.1861× 10−3 7.6029× 10−4 2.0031 17.0251
1 4.6948× 10−4 1.5139× 10−4 9.5395× 10−4 3.0419× 10−4 2.1734 18.9489
2 3.5872× 10−4 6.7393× 10−5 3.5875× 10−4 1.3508× 10−4 3.0781 28.1390

Classical Parallel

0.25 1.6499× 10−2 1.2986× 10−3 3.1931× 10−2 2.5824× 10−3 3.2641 15.7949
0.5 2.0442× 10−3 3.7916× 10−4 4.1796× 10−3 7.6023× 10−4 4.0000 18.9540
1 4.6044× 10−4 1.5136× 10−4 9.5063× 10−4 3.0417× 10−4 4.0094 20.2018
2 4.9841× 10−4 6.7084× 10−5 4.9845× 10−4 1.3493× 10−4 5.8922 30.5905

Modern Parallel

0.25 1.7037× 10−2 1.2990× 10−3 3.2501× 10−2 2.5830× 10−3 4.0906 20.3866
0.5 2.0357× 10−3 3.7908× 10−4 4.1717× 10−3 7.6017× 10−4 4.0062 20.6630
1 4.6092× 10−4 1.5129× 10−4 9.5182× 10−4 3.0411× 10−4 5.0813 26.9929
2 2.4848× 10−2 8.3803× 10−5 2.4848× 10−2 1.5144× 10−4 40.0000 221.3149

Figure 8 shows the dependence on µ of the values of emean for the different algorithms,
using second and fourth order approximations for the spatial derivatives. In contrast with the former
example, the use of higher order approximations for the spatial derivatives produces only a slight
improvement in the error estimations, in both cases being of the same order with respect to the
time step.

=0.25 =0.5 =1 =2

10
-4

10
-3

10
-2

e
m

e
a
n

SO

SM

SI

CP

MP

=0.25 =0.5 =1 =2

10
-4

10
-3

10
-2

e
m

e
a
n

SO

SM

SI

CP

MP

Figure 8. Mixed convection-diffusion and Burgers’ equation, directional decomposition. Precision of
the proposed methods: sequential iterative SI, classical parallel CP, and modern parallel MP, compared
with the classical ones: sequential operator SO and Strang–Marchuk SM, for different viscosities µ. Left:
order 2 approximation and right: order 4 approximation for the discretization of the spatial derivatives.

As we can observe, the mean error is approximately proportional to the inverse of the viscosity, µ,
and it is not much affected by the order of approximation of the spatial derivatives. The number of
iterations and the execution time are not affected by the viscosity changes, except for the case of µ = 2
in the modern parallel algorithm, where the maximum number of iterations is reached in each step,
also consuming more execution time. In what follows, we will take the viscosity parameter µ = 0.5
and use second order approximations for the spatial derivatives.

Mathematics 2020, 8, 1950 28 of 42

We will now analyze the influence of the number of time steps on the convergence of
the algorithms.

Table 11 shows that the estimated error is roughly proportional to the time step, although, in the
end, the differences δ with the analytical solution decrease more slowly, due to the discretization error.
All of the considered methods have errors of the same order. The sequential operator splitting method
presents higher estimates than the iterative schemes for the maximum error, but lower estimates of the
mean error, as seen in Figure 9.

Table 11. Mixed convection-diffusion and Burgers’ equation. Results of the directional decomposition
with 10 spatial subintervals and different number of temporal steps.

Splitting Algorithm Time Steps emax emean δmax δmean Average Iterations Time

Sequential Operator

160 2.1627× 10−2 8.8698× 10−4 3.9223× 10−2 1.8270× 10−3 1.0000 1.8802
320 9.6835× 10−3 4.3790× 10−4 1.7596× 10−2 9.7195× 10−4 1.0000 3.7410
640 4.5508× 10−3 2.1796× 10−4 7.9207× 10−3 5.7747× 10−4 1.0000 7.5102
1280 2.2024× 10−3 1.0880× 10−4 3.3878× 10−3 4.1692× 10−4 1.0000 14.3002

Strang-Marchuk

160 6.7325× 10−3 1.2989× 10−3 1.5103× 10−2 2.9795× 10−3 1.5000 2.7755
320 3.5515× 10−3 6.6569× 10−4 8.3706× 10−3 1.6847× 10−3 1.5000 5.5802
640 1.8260× 10−3 3.3699× 10−4 4.8191× 10−3 1.0202× 10−3 1.5000 11.0716
1280 9.2592× 10−4 1.6954× 10−4 2.9931× 10−3 6.8365× 10−4 1.5000 22.0197

Serial Iterative

160 8.0785× 10−3 1.4732× 10−3 1.6809× 10−2 3.3199× 10−3 5.0375 9.8504
320 3.8934× 10−3 7.4966× 10−4 9.1969× 10−3 1.8514× 10−3 3.0062 11.2158
640 2.0471× 10−3 3.7850× 10−4 5.3038× 10−3 1.1031× 10−3 2.0031 14.7620
1280 1.0522× 10−3 1.9023× 10−4 3.2567× 10−3 7.2500× 10−4 2.0008 28.9387

Classical Parallel

160 6.9233× 10−3 1.4687× 10−3 1.6080× 10−2 3.3149× 10−3 10.0938 10.1398
320 3.8634× 10−3 7.4911× 10−4 9.1617× 10−3 1.8507× 10−3 5.0125 9.7186
640 2.0418× 10−3 3.7840× 10−4 5.2987× 10−3 1.1030× 10−3 3.9859 15.7576
1280 1.0525× 10−3 1.9024× 10−4 3.2570× 10−3 7.2501× 10−4 3.0016 22.4570

Modern Parallel

160 6.7471× 10−3 1.4653× 10−3 1.5863× 10−2 3.3107× 10−3 20.0562 21.0610
320 3.8313× 10−3 7.4855× 10−4 9.1238× 10−3 1.8501× 10−3 6.0188 12.0327
640 2.0354× 10−3 3.7825× 10−4 5.2929× 10−3 1.1029× 10−3 4.0062 16.4724
1280 1.0530× 10−3 1.9026× 10−4 3.2575× 10−3 7.2504× 10−4 3.0023 23.0908

n
t
=160 n

t
=320 n

t
=640 n

t
=1280

10
-4

10
-3

e
m

e
a
n

SO

SM

SI

CP

MP

n
t
=160 n

t
=320 n

t
=640 n

t
=1280

0.5

1

1.5

2

2.5

3

m
e
a
n

10
-3

SO

SM

SI

CP

MP

Figure 9. Mixed convection-diffusion and Burgers’ equation, directional decomposition. Precision of
the proposed methods: sequential iterative SI, classical parallel CP, and modern parallel MP, compared
with the classical ones: sequential operator SO and Strang–Marchuk SM, for different number of
time steps.

Now, we analyze the dependence on the number of spatial subintervals. Table 12 displays the
errors obtained varying the number of space subintervals, considering 1280 time steps, µ = 0.5,
tolerance 10−6 and maximum number of iterations 40.

Mathematics 2020, 8, 1950 29 of 42

Table 12. Mixed convection-diffusion and Burgers’ equation. Results of the directional decomposition
using the second order scheme for the spatial discretization, with 1280 time subintervals and different
number of spatial steps.

Splitting Algorithm Space Steps emax emean δmax δmean Average Iterations Time(s)

Sequential operator
5 1.9600× 10−2 1.0751× 10−4 3.8363× 10−2 1.1866× 10−3 1.0000 2.5386
10 5.4143× 10−2 2.7859× 10−4 1.0181× 10−1 6.0435× 10−4 1.0000 7.0674
20 1.5522× 10−1 2.4284× 10−3 2.4936× 10−1 3.3760× 10−3 1.0000 19.1647

Strang-Marchuk
5 1.9504× 10−2 1.1148× 10−4 3.8228× 10−2 1.2082× 10−3 1.5000 3.7953
10 5.3092× 10−2 2.2084× 10−4 1.0038× 10−1 5.9598× 10−4 1.5000 9.3821
20 1.4010× 10−1 1.5951× 10−3 2.2965× 10−1 2.2729× 10−3 1.5000 24.3018

Serial Iterative
5 1.5415× 10−4 1.5346× 10−5 6.7133× 10−3 1.0434× 10−3 2.0008 6.7669
10 1.2967× 10−3 1.3550× 10−4 2.2505× 10−3 4.2699× 10−4 2.0008 8.3770
20 3.0299× 10−2 1.6372× 10−3 3.9211× 10−2 2.1837× 10−3 2.4992 27.8058

Classical Parallel
5 1.5192× 10−4 9.4243× 10−6 6.7124× 10−3 1.0434× 10−3 3.0008 4.2199
10 1.0957× 10−3 1.0800× 10−4 2.2581× 10−3 3.5285× 10−4 3.0016 10.2357
20 1.8765× 10−2 1.0091× 10−3 2.5443× 10−2 1.4653× 10−3 4.0047 34.6686

Modern Parallel
5 1.5292× 10−4 9.4575× 10−6 6.7112× 10−3 1.0434× 10−3 3.0008 4.8821
10 1.1220× 10−3 1.1151× 10−4 2.2857× 10−3 3.5492× 10−4 3.0023 8.1929
20 2.0590× 10−2 1.1583× 10−3 2.7563× 10−2 1.6374× 10−3 7.0039 51.4063

Figure 10 shows, on the left, that the convergence properties degrade with the number of spatial
steps for a fixed time step and, on the right, that the best approximations are obtained for 10 subintervals
in each spatial dimension. The error increment for more space intervals can be due to the fact that the
condition number of the exponential matrix utilized in order to solve the differential system increases
fast with the number of spatial intervals, making the solution less reliable.

n
x
=5 n

x
=10 n

x
=20

10
-6

10
-5

10
-4

10
-3

10
-2

e
m

e
a
n

SO

SM

SI

CP

MP

n
x
=5 n

x
=10 n

x
=20

10
-4

10
-3

10
-2

δ
m

e
a
n

SO

SM

SI

CP

MP

Figure 10. Mixed convection-diffusion and Burgers’ equation, directional decomposition. Precision of
the proposed methods: sequential iterative SI, classical parallel CP, and modern parallel MP, compared
with the classical ones: sequential operator SO and Strang–Marchuk SM, for different number of spatial
steps in the directional decomposition.

• Convection and diffusion decomposition

Here, we decompose to an explicit part, which is the convection, and into an implicit part, which is
the diffusion.

A(u)u = −1/2u(∂xu + ∂yu)− 1/2(∂xu + ∂yu), (136)

Bu =
1
2

µ(∂xxu + ∂yyu) + f (x, y, t). (137)

Table 13 analyzes the convergence of the different splitting methods for the convection and diffusion
decomposition varying the time step. The errors are proportional to the time step, as shown in the

Mathematics 2020, 8, 1950 30 of 42

log-log diagrams in Figure 11. The iterative methods have slightly better accuracy than the reference
methods, particularly better than the sequential operator splitting method. The modern parallel
version does not converge for 160 time steps.

Table 13. Mixed convection-diffusion and Burgers’ equation. Results for the convection diffusion
decomposition using the second order scheme for the spatial discretization with 10 spatial subintervals
and different number of temporal steps.

Splitting Algorithm Time Steps emax emean δmax δmean Average Iterations Time(s)

Sequential Operator

160 5.5916× 10−2 3.9170× 10−3 1.1155× 10−1 7.5286× 10−3 1.0000 2.2217
320 2.8229× 10−2 1.9781× 10−3 5.5638× 10−2 3.6224× 10−3 1.0000 4.1601
640 1.4194× 10−2 9.9398× 10−4 2.7412× 10−2 1.6466× 10−3 1.0000 8.1867
1280 7.1179× 10−3 4.9822× 10−4 1.3220× 10−2 6.5429× 10−4 1.0000 16.1663

Strang-Marchuk

160 1.0750× 10−2 1.8276× 10−3 2.2543× 10−2 3.9088× 10−3 1.5000 3.2557
320 5.3570× 10−3 8.8281× 10−4 1.1836× 10−2 2.0865× 10−3 1.5000 6.1221
640 2.6780× 10−3 4.3354× 10−4 6.4794× 10−3 1.2052× 10−3 1.5000 12.2784
1280 1.3392× 10−3 2.1479× 10−4 3.8023× 10−3 7.7212× 10−4 1.5000 23.9329

Serial Iterative

160 1.1984× 10−2 1.3870× 10−3 2.2076× 10−2 3.0691× 10−3 3.7250 7.0300
320 4.8721× 10−3 6.7652× 10−4 1.0137× 10−2 1.6865× 10−3 3.0062 10.7644
640 2.1637× 10−3 3.3484× 10−4 5.2782× 10−3 1.0112× 10−3 2.0031 14.1231
1280 1.0151× 10−3 1.6667× 10−4 3.1179× 10−3 6.7675× 10−4 2.0008 29.3916

Classical Parallel

160 9.7517× 10−3 1.4278× 10−3 1.9648× 10−2 3.1946× 10−3 10.1000 11.5662
320 4.5454× 10−3 7.1452× 10−4 9.9089× 10−3 1.7712× 10−3 5.0125 10.6269
640 2.1597× 10−3 3.5723× 10−4 5.3681× 10−3 1.0580× 10−3 4.0031 17.3560
1280 1.0506× 10−3 1.7865× 10−4 3.2100× 10−3 7.0114× 10−4 3.0016 25.8503

Modern Parallel

320 4.5794× 10−3 7.1442× 10−4 9.9479× 10−3 1.7711× 10−3 9.6687 20.3683
640 2.1612× 10−3 3.5716× 10−4 5.3734× 10−3 1.0579× 10−3 4.8344 20.8872
1280 1.0537× 10−3 1.7866× 10−4 3.2137× 10−3 7.0116× 10−4 3.0047 26.5525

n
t
=160 n

t
=320 n

t
=640 n

t
=1280

10
-4

10
-3

10
-2

e
m

e
a
n

SO

SM

SI

CP

MP

n
t
=160 n

t
=320 n

t
=640 n

t
=1280

10
-4

10
-3

10
-2

δ
m

e
a
n

SO

SM

SI

CP

MP

Figure 11. Mixed convection-diffusion and Burgers’ equation, convection-diffusion decomposition.
Precision of the proposed methods: sequential iterative SI, classical parallel CP, and modern parallel
MP, compared with the classical ones: sequential operator SO and Strang–Marchuk SM, for different
number of time steps.

Table 14 analyzes the dependence on the spatial step. The behavior is similar to the case of the
directional decomposition, presenting an increment of the estimated error with the number of spatial
subintervals for a fixed time step. In the second order scheme, the δ-errors decrease with the space step.
The temporal cost is relatively high in the case of 20 subintervals, due to the computational overhead
for dealing with big matrices.

Mathematics 2020, 8, 1950 31 of 42

Table 14. Mixed convection-diffusion and Burgers’ equation. Results for the convection diffusion
decomposition using the second order scheme for the spatial discretization with 10 temporal steps and
different number of spatial subintervals.

Splitting Algorithm Spatial Intervals emax emean δmax δmean Average Iterations Time(s)

Sequential operator
5 4.1014× 10−3 3.1046× 10−4 3.0286× 10−3 4.4136× 10−4 1.0000 4.9225
10 7.1179× 10−3 4.9822× 10−4 1.3220× 10−2 6.5429× 10−4 1.0000 13.9807
20 9.5637× 10−3 6.3048× 10−4 1.9117× 10−2 1.1655× 10−3 1.0000 246.2290

Strang-Marchuk
5 1.0128× 10−3 1.3655× 10−4 8.9821× 10−3 1.3134× 10−3 1.5000 8.8805
10 1.3392× 10−3 2.1479× 10−4 3.8023× 10−3 7.7212× 10−4 1.5000 25.2552
20 1.5215× 10−3 2.6922× 10−4 3.1757× 10−3 6.3273× 10−4 1.5000 379.1765

Serial Iterative
5 5.6621× 10−4 1.0099× 10−4 8.0418× 10−3 1.2428× 10−3 2.0008 21.1443
10 1.0151× 10−3 1.6667× 10−4 3.1179× 10−3 6.7675× 10−4 2.0008 49.0657
20 1.5741× 10−3 2.1460× 10−4 3.1037× 10−3 5.2448× 10−4 2.0016 707.5677

Classical Parallel
5 6.4980× 10−4 1.1055× 10−4 8.2248× 10−3 1.2617× 10−3 3.0008 18.2641
10 1.0506× 10−3 1.7865× 10−4 3.2100× 10−3 7.0114× 10−4 3.0016 43.1654
20 1.4562× 10−3 2.2646× 10−4 2.9778× 10−3 5.4990× 10−4 4.0039 792.4449

Modern Parallel
5 6.4782× 10−4 1.1048× 10−4 8.2242× 10−3 1.2617× 10−3 3.0016 8.3758
10 1.0537× 10−3 1.7866× 10−4 3.2137× 10−3 7.0116× 10−4 3.0047 21.2526
20 1.4709× 10−3 2.2651× 10−4 2.9890× 10−3 5.4993× 10−4 6.0141 687.0917

Figure 12 compares the estimated mean errors emean and δmean of the different methods with the
convection-diffusion decomposition and second order approximation of the spatial derivatives for
different number of spatial steps. The sequential operator splitting has poorer convergence properties
than the other methods, and its result differs more from the analytical solution as the number of spatial
nodes increases.

n
x
=10 n

x
=20 n

x
=40

2

3

4

5

6

e
m

e
a
n

×10
-4

SO

SM

SI

CP

MP

n
x
=5 n

x
=10 n

x
=20

10
-4

10
-3

10
-2

δ
m

e
a
n

SO

SM

SI

CP

MP

Figure 12. Mixed convection-diffusion and Burgers’ equation, convection-diffusion decomposition.
Precision of the proposed methods: sequential iterative SI, classical parallel CP, and modern parallel
MP, compared with the classical ones: sequential operator SO and Strang–Marchuk SM, for different
number of spatial steps.

• Balanced decomposition

We decompose into:

A(u)u = (1− ε) (−1/2u∂xu− 1/2∂xu + µ∂xxu) + ε
(
−1/2u∂yu− 1/2∂yu + µ∂yyu

)
+ ε f (x, y, t), (138)

B(u)u = ε (−1/2u∂xu− 1/2∂xu + µ∂xxu) + (1− ε)
(
−1/2u∂yu− 1/2∂yu + µ∂yyu

)
+ (1− ε) f (x, y, t).

where ε is an arbitrary parameter that can be tuned in order to achieve the maximum efficiency.
We first examine the influence of parameter ε on the convergence of the different splitting schemes,

see Table 15, The method has the same behavior for parameter values symmetric with respect to 0.5.
The results are quite uniform for ε in the range [−0.1, 1.1], whereas, for other parameter values, the

Mathematics 2020, 8, 1950 32 of 42

method may diverge. The classical parallel algorithm yields results for ε = 2, whereas the serial and
the modern parallel iterative methods fail for ε = 2.

Table 15. Mixed convection-diffusion and Burgers’ equation, balanced decomposition. Results for the
balanced decomposition using the second order scheme for the spatial discretization with 640 temporal
subintervals and different values of parameter ε.

Splitting Algorithm ε emax emean δmax δmean Average Iterations Time(s)

Sequential operator
0.5 4.5184× 10−3 2.1168× 10−4 7.8771× 10−3 5.6809× 10−4 1.0000 6.6720
1 4.5508× 10−3 2.1796× 10−4 7.9207× 10−3 5.7747× 10−4 1.0000 7.5672
2 4.8177× 10−3 2.7309× 10−4 8.2784× 10−3 6.6081× 10−4 1.0000 7.8492

Strang-Marchuk
0.5 1.8701× 10−3 3.3767× 10−4 4.8778× 10−3 1.0211× 10−3 1.0000 9.7979
1 1.8260× 10−3 3.3699× 10−4 4.8191× 10−3 1.0202× 10−3 1.0000 12.8640
2 1.4965× 10−3 3.3155× 10−4 4.3586× 10−3 1.0130× 10−3 1.0000 13.6113

Serial Iterative
0.5 2.0353× 10−3 3.7750× 10−4 5.2893× 10−3 1.1017× 10−3 2.8812 20.1360
1 1.8680× 10−3 3.7128× 10−4 5.4439× 10−3 1.1173× 10−3 2.0031 20.5409
2 8.3539× 1029 NaN Inf NaN 1.3125 10.5239

Classical Parallel
0.5 2.0337× 10−3 3.7747× 10−4 5.2887× 10−3 1.1017× 10−3 3.9859 15.0469
1 1.9713× 10−3 3.7521× 10−4 5.2081× 10−3 1.0988× 10−3 3.9859 21.0260
2 1.9719× 10−3 3.4606× 10−4 5.2186× 10−3 1.0635× 10−3 3.9875 19.8748

Modern Parallel
0.5 2.0337× 10−3 3.7747× 10−4 5.2887× 10−3 1.1017× 10−3 3.9859 15.9368
1 1.9721× 10−3 3.7521× 10−4 5.2139× 10−3 1.0990× 10−3 4.0062 19.0337
2 2.0550× 1011 NaN 2.0550× 1011 NaN 2.7375 12.0642

The dependence on the time and space steps of the algorithms with the convection-diffusion
decomposition is similar to that of the previously analyzed decompositions. Table 16 compares the
behavior of the considered methods with different decompositions.

Table 16. Mixed convection-diffusion and Burgers’ equation with 10 spatial intervals and 640 temporal
steps. Results of the different splitting methods with directional decomposition, D, convection-diffusion
decomposition, CD, and ε-balanced decomposition, ε B.

Splitting Algorithm Decomposition emax emean δmax δmean Average Iterations Time

Sequential operator
D 1.1412× 10−1 9.7183× 10−4 1.0181× 10−1 6.0435× 10−4 1.0000 3.4686

CD 1.4194× 10−2 9.9398× 10−4 1.3220× 10−2 6.5429× 10−4 1.0000 12.5035
ε D 4.5184× 10−3 2.1168× 10−4 3.3769× 10−3 4.1340× 10−4 1.0000 12.5689

Strang-Marchuk
D 1.0966× 10−1 6.9728× 10−4 1.0038× 10−1 5.9598× 10−4 1.0000 5.1649

CD 2.6780× 10−3 4.3354× 10−4 3.8023× 10−3 7.7212× 10−4 1.0000 19.4012
ε B 1.8701× 10−3 3.3767× 10−4 3.0078× 10−3 6.8387× 10−4 1.0000 20.3991

Serial Iterative
D 5.1944× 10−3 5.5729× 10−4 2.2505× 10−3 4.2699× 10−4 2.0008 8.1039

CD 2.1637× 10−3 3.3484× 10−4 3.1179× 10−3 6.7675× 10−4 2.0008 29.1385
ε B 2.0353× 10−3 3.7750× 10−4 3.2541× 10−3 7.2469× 10−4 2.0008 30.3495

Classical Parallel
D 4.0117× 10−3 4.0302× 10−4 2.2581× 10−3 3.5285× 10−4 3.0016 6.8251

CD 2.1597× 10−3 3.5723× 10−4 3.2100× 10−3 7.0114× 10−4 3.0016 24.2979
ε B 2.0337× 10−3 3.7747× 10−4 3.2550× 10−3 7.2471× 10−4 3.0016 24.4019

Modern Parallel
D 4.2148× 10−3 4.3094× 10−4 2.2857× 10−3 3.5492× 10−4 3.0023 6.3850

CD 2.1612× 10−3 3.5716× 10−4 3.2137× 10−3 7.0116× 10−4 3.0047 24.3399
ε B 2.0337× 10−3 3.7747× 10−4 3.2550× 10−3 7.2471× 10−4 3.0016 24.6888

Figure 13 shows that the non-iterative splitting methods give better results with the ε-balanced
decomposition, whereas the iterative methods give similar results with all of the decompositions,
being slightly better for the directional decomposition.

Figure 14 compares the temporal costs that are shown in Table 16. The results indicate that the
directional decomposition is better than the convection-diffusion decomposition and the ε-balanced
decomposition for all the considered splitting algorithms.

Mathematics 2020, 8, 1950 33 of 42

Directional Convection-Diffusion ǫ-Balanced
10

-3

10
-2

10
-1

δ
m

a
x

SO

SM

SI

CP

MP

Figure 13. Mixed convection-diffusion and Burgers’ equation with 10 spatial intervals and 1280
temporal steps. Precision of the proposed methods: sequential iterative SI, classical parallel CP,
and modern parallel MP, compared with the classical ones: sequential operator SO and Strang–Marchuk
SM, for different decomposition methods.

Directional Convection-Diffusion ǫ-Balanced
0

10

20

30

40

T
im

e
 (

s
)

SO

SM

SI

CP

MP

Figure 14. Mixed convection-diffusion and Burgers’ equation with 10 spatial intervals and 640 time
steps. Temporal cost in seconds of the proposed methods: sequential iterative SI, classical parallel CP,
and modern parallel MP, compared with the classical ones: sequential operator SO and Strang–Marchuk
SM, for different decomposition methods.

5.4. Fourth Example: Fractional Diffusion Problem

We deal with the following fractional diffusion problem, see also [27]:

u′(x, t) = d(x)
∂1.8u(x, t)

∂x1.8 + e(x)
∂1.6u(x, t)

∂y1.6 + q(x, t), (x, t) ∈ Ω× [0, T], (139)

u(x, 0) = x3 y3.6, x ∈ Ω, (140)

u(x, t) = exp(−t) x3 y3,6, (x, t) ∈ ∂Ω× [0, T], (141)

where we have the analytical solution uan(x, t) = exp(−t) x3 y3.6, with x = (x, y)t and Ω = [0, 1]×
[0, 1] and t ∈ [0, T] with T = 1.0. q(x, t) = −(1 + 2xy) exp(−t) x3 y3.6 and d(x) = Γ(2.2)x2.8y/6,
e(x) = 2xy2.6/Γ(4.6).

In operator notation, we write:

A = A1 + A2, (142)

where A1 = d(x) ∂α

∂xα , A2 = e(x) ∂β

∂yβ + q(x, t) and we assume that the Dirichlet boundary conditions
are embedded into the operators.

Mathematics 2020, 8, 1950 34 of 42

We apply the normalized Grünwald weights by:

gα,k =
Γ(k− α)

Γ(−α) Γ(k + 1)
= (−1)k

(
α

k

)
, (143)

for the right-shifted Grünwald formula, see [32].
We apply:

d(xi, yj)
∂αu(xi, yj, t)

∂xα
'

di,j

(∆x)α

i+1

∑
k=0

gα,k ui−k+1,j, (144)

e(xi, yj)
∂βu(xi, yj, t)

∂yβ
'

ei,j

(∆y)β

j+1

∑
k=0

gβ,k ui,j−k+1. (145)

In order to establish the convergence of the algorithms, we compute the solution u(∆, h) obtained
while using spatial and temporal steps ∆ = ∆x = ∆y and h, respectively. We use different measures
to estimate the convergence. On one hand, we compare the outcome of the method u(∆, h) with the
exact solution uan for every point of the mesh, which shows the convergence of the method. On the
other hand, we can compare u(∆, h) with the result obtained halving the time or space steps, h/2, at
the final time T = 1. Denote, by ei,j(∆, h) , the difference between the results at a mesh point (xi, yj, 1),
obtained using two different time steps, h and h/2, and by δi,j(∆, h) the difference with the analytical
solution at the same point. In the tables, we will denote the maximum errors by

emax = max
i,j
|ei,j(∆x, h)|, (146)

and
δmax = max

i,j
|δi,j(∆x, h)|, (147)

and the mean errors by

emean =
1
N ∑

i,j
|ei,j(∆x, h)|, (148)

and
δmean =

1
N ∑

i,j
|δi,j(∆x, h)|, (149)

where N is the number of spatial nodes at time T.
In the following, we discuss different decompositions of the multi-operator splitting approach:

• Directional decomposition:

We decompose into the different directions:

A1 = d(x)
∂α

∂xα
, (150)

A2 = e(x)
∂β

∂yβ
+ q(x, t). (151)

The directional decomposition allows obtaining the solution solving linear systems of size nx − 1,
where nx is the number of spatial subintervals. Table 17 shows the results of the considered splitting
algorithms for 20 spatial subintervals and different time steps, allowing for a maximum of three
iterations and using tolerance 10−4. Figure 15 shows, on the left, that the parallel iterative methods
perform slightly better than the serial iterative method and, on the right, the approximation to the
analytical solution for different number of time steps.

Mathematics 2020, 8, 1950 35 of 42

Table 17. Fractional diffusion equation. Results for the directional decomposition with 20 spatial
subintervals and different number of temporal steps.

Splitting Algorithm Time Steps emax emean δmax δmean Average Iterations Time(s)

Sequential Operator

40 3.6909× 10−3 2.1918× 10−4 7.4079× 10−3 4.3302× 10−4 1.0000 0.0595
80 1.9763× 10−3 1.1228× 10−4 3.7171× 10−3 2.4365× 10−4 1.0000 0.1169

160 1.0222× 10−3 5.6858× 10−5 1.7407× 10−3 1.7337× 10−4 1.0000 0.2488
320 5.1954× 10−4 2.8614× 10−5 8.8420× 10−4 1.5956× 10−4 1.0000 0.4207

Strang-Marchuk

40 6.1536× 10−4 7.5827× 10−5 1.0176× 10−3 1.8768× 10−4 1.5000 1.1779
80 3.4782× 10−4 4.2854× 10−5 1.3636× 10−3 2.3792× 10−4 1.5000 0.1476

160 1.7770× 10−4 2.1897× 10−5 1.1561× 10−3 2.0663× 10−4 1.5000 0.3029
320 8.9844× 10−5 1.1077× 10−5 1.0605× 10−3 1.9393× 10−4 1.5000 0.6012

Serial Iterative

40 4.3494× 10−2 3.7787× 10−3 3.9615× 10−2 4.8916× 10−3 1.1625 1.1494
80 2.6689× 10−2 2.2996× 10−3 7.8003× 10−2 8.5729× 10−3 3.0000 0.3391

160 1.1493× 10−2 1.0086× 10−3 5.2376× 10−2 6.3074× 10−3 2.9625 0.6819
320 5.3112× 10−3 4.7046× 10−4 4.3672× 10−2 5.3400× 10−3 1.9625 0.9298

Classical Parallel

40 5.3373× 10−3 4.4982× 10−4 3.9545× 10−2 4.8664× 10−3 1.7414 1.6636
80 8.1666× 10−3 2.3243× 10−4 3.4634× 10−2 4.4640× 10−3 3.0000 0.3520

160 1.2229× 10−2 6.1940× 10−4 3.5694× 10−2 4.4046× 10−3 2.9750 0.6967
320 4.3711× 10−3 1.9453× 10−4 4.2061× 10−2 4.9619× 10−3 2.5344 1.2122

Modern Parallel

40 2.5500× 10−3 1.1787× 10−4 3.7503× 10−2 7.5934× 10−3 1.5680 1.5756
80 2.7226× 10−3 7.5531× 10−5 3.8166× 10−2 7.6333× 10−3 3.0000 0.3567

160 5.7234× 10−4 2.0251× 10−5 3.8201× 10−2 7.7009× 10−3 2.9937 0.7005
320 1.4722× 10−3 1.2626× 10−4 3.8233× 10−2 7.7196× 10−3 2.5500 1.2045

n
t
=40 n

t
=80 n

t
=160 n

t
=320

10
-5

10
-4

10
-3

10
-2

e
m

e
a
n

SI

CP

MP

n
t
=40 n

t
=80 n

t
=160 n

t
=320

10
-4

10
-3

10
-2

δ
m

e
a
n

SO

SM

SI

CP

MP

Figure 15. Fractional diffusion equation, directional decomposition. Precision of the proposed methods:
sequential iterative SI, classical parallel CP, and modern parallel MP, compared with the classical ones:
sequential operator SO and Strang–Marchuk SM, for different number of time steps.

Table 18 shows the results of the considered splitting algorithms for 320 time steps and different
number of spatial subintervals, allowing for a maximum of three iterations and using tolerance 10−4.
Figure 16 presents graphically the results.

Mathematics 2020, 8, 1950 36 of 42

Table 18. Fractional diffusion equation. Results for the directional decomposition with 320 time steps
and different number of spatial subintervals.

Splitting Algorithm Spatial Intervals emax emean δmax δmean Average Iterations Time(s)

Sequential Operator
10 3.1792× 10−4 2.4488× 10−5 1.7691× 10−3 3.5031× 10−4 1.0000 0.2665
20 5.1954× 10−4 2.8614× 10−5 8.8420× 10−4 1.5956× 10−4 1.0000 0.4556
40 6.7834× 10−4 3.0654× 10−5 1.2946× 10−3 8.9356× 10−5 1.0000 2.0992

Strang-Marchuk
10 6.7693× 10−5 9.4661× 10−6 1.9450× 10−3 3.9668× 10−4 1.5000 0.1661
20 8.9844× 10−5 1.1077× 10−5 1.0605× 10−3 1.9393× 10−4 1.5000 0.5920
40 1.2152× 10−4 1.1864× 10−5 5.9024× 10−4 1.0142× 10−4 1.5000 3.1666

Serial Iterative
10 9.7111× 10−4 1.0946× 10−4 2.1149× 10−2 2.6542× 10−3 1.7750 0.2555
20 5.3112× 10−3 4.7046× 10−4 4.3672× 10−2 5.3400× 10−3 1.9625 0.9364
40 2.7080× 10−2 2.2282× 10−3 8.9409× 10−2 1.0208× 10−2 1.9937 4.5270

Classical Parallel
10 7.3233× 10−4 5.9725× 10−5 2.0834× 10−2 2.6001× 10−3 1.8281 0.2669
20 4.3711× 10−3 1.9453× 10−4 4.2061× 10−2 4.9619× 10−3 2.5344 1.1800
40 4.3727× 10−2 1.6621× 10−3 4.8885× 10−2 5.8880× 10−3 2.9406 6.5080

Modern Parallel
10 4.3702× 10−4 5.3345× 10−5 4.1936× 10−2 9.1615× 10−3 2.0875 0.2990
20 1.4722× 10−3 1.2626× 10−4 3.8233× 10−2 7.7196× 10−3 2.5500 1.2041
40 4.5579× 10−3 1.1580× 10−4 3.5053× 10−2 6.3818× 10−3 2.9000 6.6945

n
x
=10 n

x
=20 n

x
=40

10
-6

10
-5

10
-4

10
-3

10
-2

e
m

e
a
n

SO

SM

SI

CP

MP

n
x
=10 n

x
=20 n

x
=40

10
-5

10
-4

10
-3

10
-2

10
-1

δ
m

e
a
n

SO

SM

SI

CP

MP

Figure 16. Fractional diffusion equation, directional decomposition. Precision of the proposed methods:
sequential iterative SI, classical parallel CP, and modern parallel MP, compared with the classical ones:
sequential operator SO and Strang–Marchuk SM, for 320 temporal steps and different number of spatial
subintervals.

• Balanced decomposition:

We decompose into:

A1 =
1
2

A, A2 =
1
2

A. (152)

Here, we have the benefit of equal load balances of the matrices, such that the exp-matrices have
the same sparse structure.

Table 19 shows the results of the considered splitting algorithms for 20 spatial subintervals and
different time steps, allowing a maximum of three iterations and using tolerance 10−4. Figure 17 shows,
on the left, that the parallel iterative methods perform slightly better than the serial iterative method
and, on the right, the approximation to the analytical solution for different number of time steps.

Mathematics 2020, 8, 1950 37 of 42

Table 19. Fractional diffusion equation. Results for the balanced decomposition with 20 spatial
subintervals and different number of temporal steps.

Splitting Algorithm Time Steps emax emean δmax δmean Average Iterations Time(s)

Sequential Operator

40 5.3158× 10−4 4.9157× 10−5 1.1895× 10−3 2.1594× 10−4 1.0000 0.9777
80 3.1002× 10−4 2.5518× 10−5 1.0759× 10−3 1.8993× 10−4 1.0000 1.8580

160 1.7340× 10−4 1.3021× 10−5 1.0190× 10−3 1.8313× 10−4 1.0000 3.6733
320 9.2152× 10−5 6.5802× 10−6 9.9049× 10−4 1.8186× 10−4 1.0000 7.4484

Strang Marchuk

40 7.5805× 10−4 5.9623× 10−5 1.3763× 10−3 1.6935× 10−4 1.5000 1.4172
80 4.2151× 10−4 3.0984× 10−5 8.6828× 10−4 1.5511× 10−4 1.5000 2.8931

160 2.3309× 10−4 1.5810× 10−5 9.1488× 10−4 1.6222× 10−4 1.5000 5.6685
320 1.2289× 10−4 7.9883× 10−6 9.3832× 10−4 1.7070× 10−4 1.5000 11.1808

Serial Iterative

40 4.9767× 10−4 6.4003× 10−5 1.3036× 10−1 7.6993× 10−3 3.0000 0.9013
80 2.4927× 10−4 3.1592× 10−5 1.3045× 10−1 7.7224× 10−3 3.0000 1.5581

160 1.2439× 10−4 1.6482× 10−5 1.3041× 10−1 7.7335× 10−3 2.5875 2.6810
320 6.2430× 10−5 8.1657× 10−6 1.3047× 10−1 7.7399× 10−3 1.6688 3.5020

Classical Parallel

40 9.3505× 10−4 7.4913× 10−5 1.2923× 10−1 7.6842× 10−3 2.0000 1.8878
80 7.2531× 10−4 5.4398× 10−5 1.3017× 10−1 7.7186× 10−3 2.0000 2.1625

160 1.9158× 10−4 2.1530× 10−5 1.3089× 10−1 7.7522× 10−3 1.8062 3.8818
320 1.0043× 10−4 6.3991× 10−6 1.3071× 10−1 7.7557× 10−3 1.3406 6.4414

Modern Parallel

40 4.9675× 10−4 6.3589× 10−5 1.3077× 10−1 7.7019× 10−3 3.0000 0.8175
80 3.8832× 10−4 5.0606× 10−5 1.3053× 10−1 7.7228× 10−3 3.0000 1.7332

160 1.9024× 10−4 2.1449× 10−5 1.3089× 10−1 7.7524× 10−3 2.6000 2.6822
320 1.0046× 10−4 6.3750× 10−6 1.3071× 10−1 7.7557× 10−3 1.6719 3.4380

n
t
=160 n

t
=320 n

t
=640 n

t
=1280

10
-6

10
-5

10
-4

e
m

e
a
n

SI

CP

MP

n
t
=160 n

t
=320 n

t
=640 n

t
=1280

10
-4

10
-3

10
-2

δ
m

e
a
n

SO

SM

SI

CP

MP

Figure 17. Fractional diffusion equation, balanced decomposition. Precision of the proposed methods:
sequential iterative SI, classical parallel CP, and modern parallel MP, compared with the classical ones:
sequential operator SO and Strang–Marchuk SM, for different number of time steps.

Table 20 shows the results of the considered splitting algorithms for 320 time steps and different
number of spatial subintervals, allowing a maximum of three iterations and using tolerance 10−4.
Figure 18 graphically presents the results.

Mathematics 2020, 8, 1950 38 of 42

Table 20. Fractional diffusion equation. Results for the balanced decomposition with 320 time steps
and different number of spatial subintervals.

Splitting Algorithm Spatial Intervals emax emean δmax δmean Average Iterations Time(s)

Sequential Operator
5 1.4662× 10−5 4.4384× 10−6 3.3195× 10−3 8.1165× 10−4 1.0000 0.1604
10 6.0500× 10−5 5.6659× 10−6 1.8656× 10−3 3.8575× 10−4 1.0000 0.6763
20 9.2152× 10−5 6.5802× 10−6 9.9049× 10−4 1.8186× 10−4 1.0000 14.9386

Strang Marchuk
5 3.9269× 10−5 4.6669× 10−6 3.2665× 10−3 8.0162× 10−4 1.5000 0.1949
10 9.0735× 10−5 6.8613× 10−6 1.8124× 10−3 3.7471× 10−4 1.5000 0.8352
20 1.2289× 10−4 7.9883× 10−6 9.3832× 10−4 1.7070× 10−4 1.5000 21.1158

Serial Iterative
5 4.4368× 10−5 7.8056× 10−6 3.0745× 10−2 3.9191× 10−3 1.2875 0.1144
10 5.7553× 10−5 8.1817× 10−6 8.9020× 10−2 6.4615× 10−3 1.6063 0.4583
20 6.2430× 10−5 8.1657× 10−6 1.3047× 10−1 7.7399× 10−3 1.6688 7.4995

Classical Parallel
5 1.4093× 10−5 3.0061× 10−6 3.0875× 10−2 3.9338× 10−3 1.1469 0.1123
10 6.3414× 10−5 5.1056× 10−6 8.9191× 10−2 6.4759× 10−3 1.3062 0.4936
20 1.0043× 10−4 6.3991× 10−6 1.3071× 10−1 7.7557× 10−3 1.3406 5.5945

Modern Parallel
5 1.4149× 10−5 3.0076× 10−6 3.0875× 10−2 3.9338× 10−3 1.2906 0.1332
10 6.3456× 10−5 5.1059× 10−6 8.9192× 10−2 6.4759× 10−3 1.6094 0.4803
20 1.0046× 10−4 6.3750× 10−6 1.3071× 10−1 7.7557× 10−3 1.6719 6.4903

n
x
=5 n

x
=10 n

x
=20

4

5

6

7

8

e
m

e
a
n

×10
-6

SO

SM

SI

CP

MP

n
x
=5 n

x
=10 n

x
=20

10
-4

10
-3

10
-2

δ
m

e
a
n

SO

SM

SI

CP

MP

Figure 18. Fractional diffusion equation, balanced decomposition. Precision of the proposed methods:
sequential iterative SI, classical parallel CP, and modern parallel MP, compared with the classical
ones: sequential operator SO and Strang–Marchuk SM, for 320 temporal steps and different number of
spatial subintervals.

• Mixed decomposition

We decompose into the different directions:

A1 = (1− ε)d(x)
∂α

∂xα
+ ε(e(x)

∂β

∂yβ
+ q(x, t)), (153)

A2 = ε d(x)
∂α

∂xα
+ (1− ε)(e(x)

∂β

∂yβ
+ q(x, t)), (154)

where ε = [0, 1/2]. For ε = 0, we have the directional decomposition, while, for ε = 1/2, we have the
balanced decomposition.

Table 21 shows the influence of ε on the convergence of the different splitting methods with mixed
decomposition for the fractional diffusion problem using 20 subintervals in each spatial direction and
320 time steps. The same information can be seen in Figure 19.

Mathematics 2020, 8, 1950 39 of 42

Table 21. Fractional diffusion equation. Results for the mixed decomposition with 20 subintervals in
each spatial direction, 320 time steps, and different values of ε.

Splitting Algorithm ε emax emean δmax δmean Average Iterations Time(s)

Sequential Operator

0.1 4.0169× 10−4 2.2303× 10−5 8.9352× 10−4 1.6047× 10−4 1.0000 11.7929
0.2 2.9957× 10−4 1.7062× 10−5 9.1842× 10−4 1.6368× 10−4 1.0000 11.6719
0.3 2.2243× 10−4 1.2715× 10−5 9.4435× 10−4 1.6863× 10−4 1.0000 11.4894
0.4 1.5449× 10−4 9.1917× 10−6 9.6838× 10−4 1.7504× 10−4 1.0000 12.7896

Strang Marchuk

0.1 1.2924× 10−4 9.3575× 10−6 9.9183× 10−4 1.8011× 10−4 1.5000 22.0758
0.2 1.0913× 10−4 7.1597× 10−6 9.7285× 10−4 1.7825× 10−4 1.5000 18.4355
0.3 9.9531× 10−5 6.6577× 10−6 9.6026× 10−4 1.7604× 10−4 1.5000 18.5075
0.4 1.0929× 10−4 7.1156× 10−6 9.5002× 10−4 1.7349× 10−4 1.5000 21.7024

Serial Iterative

0.1 8.5542× 10−3 1.5771× 10−4 1.9578× 10−1 1.3803× 10−2 1.8375 6.1359
0.2 5.8233× 10−3 1.0769× 10−4 1.7232× 10−1 1.1791× 10−2 1.8062 6.9199
0.3 3.4843× 10−3 6.5522× 10−5 1.5323× 10−1 1.0007× 10−2 1.7688 6.2609
0.4 1.5374× 10−3 3.1802× 10−5 1.4154× 10−1 8.5870× 10−3 1.7188 5.8413

Classical Parallel

0.1 1.4317× 10−3 4.2833× 10−5 1.3293× 10−1 7.8025× 10−3 1.3375 4.7969
0.2 8.3872× 10−4 2.5891× 10−5 1.3196× 10−1 7.7821× 10−3 1.3375 5.5666
0.3 4.1720× 10−4 1.4159× 10−5 1.3126× 10−1 7.7674× 10−3 1.3375 5.7738
0.4 1.6622× 10−4 8.0251× 10−6 1.3085× 10−1 7.7586× 10−3 1.3406 4.7526

Modern Parallel

0.1 6.0380× 10−4 2.1615× 10−5 1.3061× 10−1 7.7407× 10−3 3.0000 10.3976
0.2 8.3108× 10−4 2.5046× 10−5 1.3055× 10−1 7.7404× 10−3 3.0000 10.1307
0.3 1.1571× 10−3 2.8534× 10−5 1.3007× 10−1 7.7378× 10−3 2.9297 11.0316
0.4 1.6138× 10−4 1.1869× 10−5 1.3084× 10−1 7.7536× 10−3 2.3078 7.8798

ǫ=0.1 ǫ=0.2 ǫ=0.3 ǫ=0.4
10

-6

10
-5

10
-4

10
-3

e
m

e
a
n

SO

SM

SI

CP

MP

ǫ=0.1 ǫ=0.2 ǫ=0.3 ǫ=0.4
10

-4

10
-3

10
-2

10
-1

δ
m

e
a
n

SO

SM

SI

CP

MP

Figure 19. Fractional diffusion equation, mixed decomposition. Precision of the proposed methods:
sequential iterative SI, classical parallel CP, and modern parallel MP, compared with the classical
ones: sequential operator SO and Strang–Marchuk SM, for 20 temporal steps, 320 temporal steps, and
different values of ε.

Remark 8. For the fractional diffusion model, we could also obtain the same results as in the previous diffusion
and Burgers’ equation. We could stabilize the schemes with respect to ε 6= 0 and obtain a good load balance of the
matrices. Here, we could apply real-life problems with respect to the fractional differential equations, while we
developped a stable novel parallel solver scheme.

6. Conclusions

In the paper, we have discussed the extensions of the iterative splitting approaches to parallel
solver methods. Such novel methods allow for reducing the computational time. We can achieve the
same accuracy as in the serial version. The improvements are obtained with larger time-steps and
additional iterative steps, where we could reduce the computational time with the parallel methods.
The benefit is, of course, the balance to multiple processors with additional memories. Further,
we could apply the resources to improve with additional steps the accuracy of the approximations.
We circumvent the problem of the memory of the algorithm, see [38], which we have if we only apply a

Mathematics 2020, 8, 1950 40 of 42

serial method. Based on the parallel distribution, we have additional iterative steps for each processor
and we distribute such a memory to all processors. For large scale numerical experiments, we could
present the benefit of the parallel resources.

In our proposed iterative methods, we gain accuracy if we apply more iterative cycles, so that we
have to devote additional computational time. We could reduce the computational cost more than
with serial iterative methods due to the application of parallel ideas. On the other hand, it is important
to optimize the parallel amount of work with additional adaptive and distributed ideas that improve
the efficiency of the proposed parallel methods.

In summary, we optimize the reduction of computational time and the results accuracy with the
help of parallel iterative splitting methods. In the future, we will consider more real-life problems
and stochastic processes. Furthermore, we will extend the parallel iterative methods to more efficient
adaptive schemes.

Author Contributions: The theory, the formal analysis and the methodology presented in this paper were
developed by J.G. The software development and the numerical validation of the methods were done by J.L.H.
and E.M. The paper was written by J.G., J.L.H. and E.M. and was corrected and edited by J.G., J.L.H. and E.M. The
writing–review was done by J.G., J.L.H. and E.M. The supervision and project administration were done by E.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by Ministerio de Economía y Competitividad, Spain, under grant
PGC2018-095896-B-C21-C22 and German Academic Exchange Service grant number 91588469.

Acknowledgments: We acknowledge support by the DFG Open Access Publication Funds of the Ruhr-Universität
of Bochum, Germany.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Farago, I.; Geiser, J. Iterative Operator-Splitting methods for Linear Problems. Int. J. Comput. Sci. Eng. 2007,
3, 255263.

2. Geiser, J. Iterative Splitting Methods for Differential Equations; Numerical Analysis and Scientific Computing
Series; Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2011.

3. Frommer, A.; Szyld, D.B. On asynchronous iterations. J. Comput. Appl. Math. 2000, 123, 201–216.
4. O’Leary, D.P.; White, R.E. Multi-splittings of matrices and parallel solution of linear systems. Siam Algebr.

Discret. Methods 1985, 6, 630–640.
5. White, R.E. Parallel algorithms for nonlinear problems. Siam Algebr. Discret. Methods 1986, 7, 137–149 .
6. Geiser, J. Iterative Splitting Methods for Coulomb Collisions in Plasma Simulations. arXiv 2017,

arXiv:1706.06744.
7. Geiser, J. Picard’s iterative method for nonlinear multicomponent transport equations. Cogent Math. 2016,

3, 1158510.
8. Miekkala, U.; Nevanlinna, O. Convergence of dynamic iteration methods for initial value problems. SIAM J.

Sci. Stat. Comput. 1987, 8, 459–482.
9. Miekkala, U.; Nevanlinna, O. Iterative solution of systems of linear differential equations. Acta Numer.

1996, 5, 259–307.
10. Vandewalle, S. Parallel Multigrid Waveform Relaxation for Parabolic Problems; Teubner Skripten zur Numerik,

B.G. Teubner Stuttgart; Springer: Berlin/Heidelberg, Germany, 1993.
11. Geiser, J. Multicomponent and Multiscale Systems: Theory, Methods, and Applications in Engineering; Springer:

Berlin/Heidelberg, Germany, 2016.
12. Geiser, J. Multi-stage waveform Relaxation and Multisplitting Methods for Differential Algebraic Systems.

arXiv 2016, arXiv:1601.00495.
13. Geiser, J. Iterative operator-splitting methods for nonlinear differential equations and applications.

Numer. Methods Partial. Differ. Equ. 2011, 27, 1026–1054.
14. He, D.; Pan, K.; Hu, H. A spatial fourth-order maximum principle preserving operator splitting scheme for

the multi-dimensional fractional Allen-Cahn equation. Appl. Numer. Math. 2020, 151, 44–63.

Mathematics 2020, 8, 1950 41 of 42

15. Haberman, R. Mathematical Models: Mechanical Vibrations, Population Dynamics, and Traffic Flow; Society for
Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1998.

16. Orlandi, P. (Ed.) The Burgers equation. In Fluid Flow Phenomena: A Numerical Toolkit; Springer: Dordrecht,
The Netherlands, 2000; pp. 40–50.

17. Ginoa, M.; Cerbelli, S.; Roman, H.E. Fractional diffusion equation and relaxation in complex viscoelastic
materials. Physica A 1992, 191, 449–453.

18. Nigmatullin, R.R. The realization of the generalized transfer equation in a medium with fractal geometry.
Phys. Stat. Sol. B 1986, 133, 425–430.

19. Allen, S.M.; Cahn, J.W. A microscopic theory for antiphase boundary motion and its application to antiphase
domain coarsening. Acta Metall. 1979, 27, 1085–1095.

20. Yue, P.; Feng, J.; Liu, C.; Shen, J. Diffuse-interface simulations of drop coalescence and retraction in
viscoelastic fluids. J. Non-Newton. Fluid Mech. 2005, 129, 163–176.

21. Sommacal, L.; Melchior, P.; Oustaloup, A.; Cabelguen, J.-M.; Ijspeert, A.J. Fractional Multi-models of the
Frog Gastrocnemius Muscle. J. Vib. Control. 2008, 14, 1415–1430.

22. Moshrefi-Torbati, M.; Hammond, J.K. Physical and geometrical interpretation of fractional operators.
J. Frankl. Inst. 1998, 335, 1077–1086.

23. Rami Ahmad El-Nabulsi. Fractional Dirac operators and deformed field theory on Clifford algebra.
Chaos Solitons Fractals 2009, 42, 2614–2622.

24. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations.
In Mathematics Studies, 1st ed.; Elesevier: North-Holland, The Netherlands, 2006; Volume 204.

25. Kanney, J.; Miller, C.; Kelley, C.T. Convergence of iterative split-operator approaches for approximating
nonlinear reactive transport problems. Adv. Water Resour. 2003, 26, 247–261.

26. Geiser, J.; Hueso, J.L.; Martinez, E. Adaptive Iterative Splitting Methods for convection-diffusion-reaction
equations. Mathematics 2020, 8, 302.

27. Meerschaert, M.M.; Scheffler, H.P.; Tadjeran, C. Finite difference methods for two-dimensional fractional
dispersion equation. J. Comput. Phys. 2006, 211, 249–261.

28. Argyros, I.K.; Regmi, S. Undergraduate Research at Cameron University on Iterative Procedures in Banach and
Other Spaces; Nova Science Publisher: New York, NY, USA, 2019.

29. Cresson, J.; Inizan, P. Irreversibility, Least Action Principle and Causality. Preprint, HAL, 2008.
Available online: https://hal.archives-ouvertes.fr/hal-00348123v1 (accessed on 11 April 2020).

30. Cresson, J. Fractional embedding of differential operators and Lagrangian systems. J. Math. Phys. 2007,
48, 033504.

31. Gustafsson, B. High Order Difference Methods for Time Dependent PDE; Springer Series in Computational
Mathematics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 38.

32. Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for fractional advection–dispersion flow
equations. J. Comput. Appl. Math. 2003, 172, 65–77.

33. Geiser, J. Computing Exponential for Iterative Splitting Methods: Algorithms and Applications. J. Appl. Math.
2011, 2011, 193781.

34. Geiser, J. Iterative Operator-Splitting Methods with Higher Order Time-Integration Methods and
Applications for Parabolic Partial Differential Equations. J. Comput. Appl. Math. 2008, 217, 227–242.

35. Ladics, T. Error analysis of waveform relaxation method for semi-linear partial differential equations.
J. Comput. Appl. Math. 2015, 285, 15–31.

36. Kelley, C.T. Iterative Methods for Linear and Nonlinear Equations; SIAM Frontiers in Applied Mathematics,
no. 16; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1995.

37. Yuan, D.; Burrage, K. Convergence of the parallel chaotic waveform relaxation method for stiff systems.
J. Comput. Appl. Math. 2003, 151, 201–213.

38. Ladics, T.; Farago, I. Generalizations and error analysis of the iterative operator splitting method. Cent. Eur.
J. Math. 2013, 11, 1416–1428.

39. Moler, C.B.; Loan, C.F.V. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years
later. SIAM Rev. 2003, 45, 3–49.

40. Najfeld, I.; Havel, T.F. Derivatives of the matrix exponential and their computation. Adv. Appl. Math. 1995,
16, 321–375.

41. Hochbruck, M.; Ostermann, A. Exponential integrators. Acta Numer. 2010, 19, 209–286.

https://hal.archives-ouvertes.fr/hal-00348123v1

Mathematics 2020, 8, 1950 42 of 42

42. Casas, F.; Iserles, A. Explicit Magnus expansions for nonlinear equations. J. Phys. A Math. Gen. 2006, 39,
5445–5461.

43. Magnus, W. On the exponential solution of differential equations for a linear operator. Commun. Pure
Appl. Math. 1954, 7, 649–673.

44. Stoer, J.; Bulirsch, R. Introduction to Numerical Analysis; Texts in Applied Mathematics No.12; Springer:
New York, NY, USA, 2002.

45. Jeltsch, R.; Pohl, B. Waveform Relaxation with Overlapping Splittings. SIAM J. Sci.Comput. 1995, 16, 40–49.
46. Farago, I. A Modified iterated operator-splitting method. Appl. Math. Model. 2008, 32, 1542–1551.
47. Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary

Differential Equations; Springer: Berlin-Heidelberg, Germany; New York, NY, USA, 2002.
48. Li, J.; Jiang, Y.-L.; Miao, Z. A parareal approach of semi-linear parabolic equations based on general

waveform relaxation. Numer. Methods Partial. Differ. Equ. 2019, 35, 2017–2034.
49. Trotter, H.F. On the product of semi-groups of operators. Proc. Am. Math. Soc. 1959, 10, 545–551.
50. Strang, G. On the construction and comparision of difference schemes. SIAM J. Numer. Anal. 1968, 5, 506–517.
51. Geiser, J. Operator-Splitting Methods in Respect of Eigenvalue Problems for Nonlinear Equations and

Applications to Burgers Equations. J. Comput. Appl. Math. 2009, 231, 815–827.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Serial Iterative Splitting Method
	Parallel Iterative Splitting Method
	Multi-Splitting Iterative Approach
	Parallel Splitting: Classical Version (Synchronous Version)
	Asynchronous Algorithm
	Parallel Splitting: Modern Version (Asynchronous Version)

	Theoretical Results
	Stability Analysis
	A()-Stability

	Convergence Analysis

	Numerical Examples
	First Example: Matrix Problem
	Second Example: Diffusion Problem
	Third Example: Mixed Convection-Diffusion and Burgers' Equation
	Fourth Example: Fractional Diffusion Problem

	Conclusions
	References

