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Abstract: The article presents the study of the pedalling rates obtained by minimizing a cost function
based on a kinetic approach and which can be estimated with more easily achievable experimental
data as input than other cost functions. Simulations based on data available in the literature were
used to compare the cadences obtained by minimizing well-known joint moment-based cost functions
and the proposed cost function. The influence of the power output and of the body mass index on
the pedalling rates that minimize the cost function was investigated. Experimental tests performed
by four competitive cyclists in the field were used as comparison for the results based on simulations.
From simulations emerged that results obtained with the cost function proposed in this work were
similar to those based on the absolute average joint moments. We found that the upper limit of
the more convenient pedalling rate range decreases linearly with the body mass index, while it
increases non-linearly with power output. Furthermore, a polynomial regression of the correlation
of the pedalling rate obtained through the method and body mass index and power was found.
Experimental results confirmed that the proposed model, finding an approximation of the minimum
of muscular effort (not including negative muscular work), is able to estimate the upper limit of
an optimal range of cadence. All tested cyclists freely choose to pedal at a cadence under this limit.

Keywords: cycling biomechanics; pedalling rate; kinetic model; mathematical modelling of
dynamic systems

1. Introduction

The identification and the analysis of correlations between human movement performance and
motion parameters is of a considerable importance for both scientists and athletes and is the issue of
a huge number of biomechanical studies [1–3].

In cycling, pedalling rate significantly affects rider energy expenditure and consequently the
overall performance. The metabolic energy cost (oxygen consumption), the muscular efforts, the leg
joints torques, the negative muscle work, at a given power output, are all influenced by the pedalling
cadence, typically with different optimal ranges. Several studies in the literature searched for an
optimum criterion and most of them are based on the minimization of a specific cost function. The use
of a cost function [1,4,5] allows to quantify the movement cost by a single value obtained by substituting
the values of several variables in a mathematical expression. Most common cost functions used in
the biomechanics of cycling are based on the energy consumption [6–9], the muscle electrical activity
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(with electromyography, EMG) [10], the leg joint moments (which bear some relation to the muscular
effort) [11–13], the negative muscle work [14], neuromuscular fatigue-related quantities [15] and the
rating of perceived exertion (RPE) during cycling [16,17]. Seabury [6] and Marsh [7] founded that
the oxygen consumption for power outputs less than 200 W is minimized for cadences between 40
and 65 rpm; for power outputs of about 300 W the optimal range for oxygen consumption is between
70 and 80 rpm [15,18]. Furthermore, gross muscular efficiency (the oxygen consumption divided by
the power output) for low/moderate effort intensities decreases with increasing pedalling rates [19],
while during high intensity cycling it remains almost constant with increasing pedalling rates. In [20]
Neptune et al. founded, for most of the tested subjects, a minimum in the summed iEMG across all
muscles at the cadence of 90 rpm. A further analysis [15], based on simulations, showed that at 90 rpm
occurred the minimum of all nine neuromuscular quantities applied to the sum across muscles of
individual activations (average, integrated and peak activation, average and peak force, average and
peak stress, average and peak endurance). Redfield and Hull [11] and Marsh et al. [13] examined
in detail the relation between cadence and leg joint moments at constant power. A cost function
based on the average of the absolute leg joint moments during a pedalling cycle was proposed and
validated by experimental data. The optimum resulting from these studies corresponds to cadences
in the neighbourhood of 90-100 rpm increasing with the power output. From the study of Neptune
in [14] emerged that at pedalling cadences higher than 90 rpm the negative muscle work increases,
with the consequent decreasing of muscular efficiency. In [17], Jameson obtained that cadence does not
affect significantly central sensations and a minimum in the muscle pain ratings at about 70 rpm.

Therefore, optimal cadence actually depends on which criterion is considered. Furthermore, each
cyclist freely chooses a cadence depending on a series of peculiar physiological and environmental
factors that makes the problem even more complex [21]. As a consequence, it is not possible to
determine an exact optimal rate of pedalling, whereas it can be defined a range of compromise between
energy cost and muscular work optimum, within which each rider self-regulates his cadence [22].
A confirmation of this is the well-known experimental evidence that pedalling rates freely chosen by
cyclists (85-100 rpm) are higher than metabolically optimum cadences (50–70 rpm), while the cadences
that minimize the joint moments can be even higher (90–110 rpm) [23]. In other words, the optimal
cadence for a cyclist can be identified in a compromise between a minimum peripheral muscular force
and a minimum metabolic cost.

In this work, it is analysed an alternative easy to evaluate cost function, based on an approximate
maximum peak of muscular power exerted during a cycle, that can be converted in an equivalent
global moment generated by the leg joints. To this aim, a kinetic method is used: the inverse dynamics
problem is solved by an energetic formulation in order to find an approximate trend of the power law
generated by the muscles. The advantage of the energetic approach, with respect to a Newton–Euler
formulation, is due to the limited set of experimental data required, namely the power law applied
to the crank during a cycle. In [24], Neptune and Van den Bogert demonstrated that kinetic methods
underestimate the mechanical energy expenditure of muscles, with errors of 24% in a simulation and
of the 5% in a second simulation, due to the inability of such methods to account for co-contraction of
antagonistic muscles during movement. In [14] a quantification of the amount of negative muscular
crank torque at different pedalling rate is investigated. From the study, performed at a power output
of 260 W, it emerged that no negative muscle work was present at 60 rpm, a negligible amount at
75 and 90 rpm and substantial negative muscular crank torque was generated at 105 and 120 rpm.
On the basis of these findings, it could be supposed that a kinetic approach at low pedalling rates can
substantially allow to obtain muscular effort values close to the real ones, whereas at high pedalling
frequencies it could underestimate the effective efforts. Therefore, it can provide optimal cadence
values higher than those that minimize muscle effort, providing an upper limitation for the most
convenient cadence range.

Biomechanical analysis of cycling movements can be carried out with two approaches: a standard
inverse dynamics approach with simplified planar skeletal models [11,25] or musculoskeletal
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modelling combined with optimal control analysis by means of multibody biomechanical analysis
software (OpenSim, Anybody, SIMM etc . . . ) [15,26–28]. In the comparison, the first is characterized by
a greater simplicity, a smaller number of parameters and input data to be identified, but a more limited
number of quantities that can be calculated and a greater approximation. The second is a powerful
method to study multi-joints movements with respect to individual muscle mechanics and energetics,
providing considerable information on system individual muscle kinetics and kinematics, but the
number of parameters that have to be identified and the complexity are significantly higher. With the
aim of studying a methodology that allows to identify the limits of the most convenient pedalling
cadences with a method that is simple to implement, we have chosen to follow the first approach.

Two formulations of the dynamic problem (the first based on Newton–Euler equations, the second
on the power flow balance) are implemented in order to define two different cost functions: the first,
called Moment based Cost Function (MCF), is the one inherited from [11,13]; the second, proposed by
the authors, is the Equivalent Moment based Cost Function (EMCF). A series of simulations on six
hypothetical athletes confirm that the model based on EMCF gives similar results with the MCF
method, which is considered to be a term of comparison well established in literature and supported
by experimental evidence. Data from simulations are also used for a polynomial regression that allows
to obtain an easy approximated formula. Then, a series of tests have been performed in the field,
collecting data that confirms the validity of the proposed model. The novel EMCF cost function is able
to identify the upper limit of the range of more convenient cadences (henceforth Clim), similarly to
other established methods based on the average of the absolute leg joint moments, but with the
advantage of a simpler formulation and an easier calculation method. A comparison is made between
the values of the cost function (MCF) obtained with the kinetic method and those of the EMCF cost
function to verify the validity of the proposed approach. Subsequently an analysis of the dependence
between Clim and power and body mass index is carried out, identifying an approximate polynomial
form relationship of this dependence. Finally, experimental tests are conducted to compare the Clim
obtained with the EMCF cost function and the cadences chosen by competitive cyclists for different
power levels.

Focusing on the general approach and methodology, this paper offers an example on how
mathematical models and numerical methods can be exploited to perform a model-based study
of a biomechanical problem. Thus, the paper is in line with the aim of this Special Issue (Mathematical
Modeling in Biomechanics and Mechanobiology), where similar papers can be found [29]. The article
is structured as follows. Section 2 is devoted to Methods and Materials, with a detailed description of
the planar model used to formulate the kinematics and the dynamics of the pedalling, the equations of
kinematics for position, velocity and acceleration, the equations of dynamics, the formulation of the
cost functions MCF and EMCF and the experimental tests. Results, discussion and conclusions are
provided in Sections 3–5, respectively.

2. Methods and Materials

2.1. Kinematic Model

By means of a biomechanical multibody model, quantities not directly measurable, like joint
moments, can be estimated indirectly. In particular, the solution of the inverse dynamics problem,
once the motion is assigned to the model and external forces are known, allows to determine the
joint moments and the internal forces laws [26,30]. A detailed description of the planar model used
to formulate the kinematics and dynamics of the pedalling is given in Section 2.1, where also the
equations of kinematics for position, velocity and acceleration are given. Then, the equations of
dynamics are derived in Section 2.2 and then exploited to formulate the cost functions MCF and EMCF.
Finally, methods used for tests are described in Section 2.3.
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Inspired to [11,31], the bicycle–leg system has been modelled as a planar five bar linkage
characterized on the basis of anthropometric scale factors [32,33]. Figure 1 shows the skeletal model
adopted and gives the basic nomenclature used to describe the kinematics of the system. The vector
θ = [θ1 θ2 θ3 θ4]

T contains the absolute orientation from the vertical axis of the four moving segments of
the system, assuming as positive an anticlockwise rotation. The subscripts i (i = 1:4) refers in the order
to: thigh, shank, foot and crank. The length of the ith link is indicated by li. Lengths pi and di indicate
the proximal and distal position of the center of mass Gi with respect to the extremities of the ith body
segment, so that pi + di = li. The length l3 has been determined, as shown in Figure 1, assuming that
the pedal spindle is fixed at two thirds of the total length of the foot; as a result, the segment (C− B)
forms with the pedal a constant angle equal to 21◦. The seat tube angle is set to an average value
between road and triathlon, i.e., α = 75◦. Based on the 109% saddle height method [34,35], the OD
constant distance s is determined by the following formula:

s = 1.09 hins − lc = 1.09 (0.48 h)− lc (1)

where hins is the inseam height, estimated as the 48% of the total height h; lc represents the length of
the pedal crank (lc = l4 in the scheme of Figure 1) and it is fixed to a typical value for road bicycles
(lc = 170 mm).
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Figure 1. Planar kinematic model.

To solve the position problem, a closed loop can be defined along the path O−A− B− C−D−O,
resulting in the following system of equations:

3
∑

i=1
li sin θi − l4 sin θ4 − s sin α = 0

3
∑

i=1
li cos θi − l4 cos θ4 − s cos α = 0

(2)

All length variables in Equation (2) are known, as the angle α. As shown in Figure 1, the crank
angle ϕ increases clockwise from the top dead center (TDC). Thus, θ4 is related to ϕ by the relation:

θ4 (ϕ) = π − ϕ (3)
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The foot angle θ3 must be related to the crank angle, with a relation θ3 = θ3 (ϕ). To this aim,
experimental data extracted from [31] have been used. A good fitting of such data, shown in Figure 2a,
was found using a law of the form:

θ3 (ϕ) = γa + γb sin (ϕ− γc) (4)
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Figure 2. (a) foot angle θ3 vs. crank angle ϕ: data from [31] and fitting obtained by Equation (4);
(b,c) force components Fe and Fr vs. crank angle ϕ; data from [36] and fitting obtained by Equation (11);
ϕ̇ = 90 rpm, P̄r = 385 W.

After an optimization procedure (fminsearch function in MATLAB, based on a derivative-free
optimization method), γa = 26.25◦, γb = 27.55◦ and γc = 26.56◦ resulted the best fit values for
constants in Equation (4). A similar trend for the foot angle vs. the crank angle was also found in [36],
validating the adopted fitting law.

Once the relations θ3(ϕ) and θ4(ϕ) are defined, the two remaining unknowns of the problem, i.e.,
θ1 and θ2, can be found as functions of ϕ solving the system (2) in combination with Equations (3)
and (4).

A linear form for the velocity problem can be found by derivation of the position equations:

J1

[
θ̇1 θ̇2

]T
+ J2

[
θ̇3 θ̇4

]T
= 0 (5)

[
θ̇1 θ̇2

]T
= −J−1

1 J2

[
θ̇3 θ̇4

]T
(6)
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Jacobian matrices in the previous equations are defined as:

J1 =

[
l1 sin θ1 l2 sin θ2

l1 cos θ1 l2 cos θ1

]
J2 =

[
l3 sin θ3 −l4 sin θ4

l3 cos θ3 −l4 cos θ4

]
(7)

A further derivation of Equation (6) brings to the expression of the accelerations:[
θ̈1 θ̈2

]T
= −J−1

1

(
J2

[
θ̈3 θ̈4

]T
+ J3

[
θ̇2

1 θ̇2
2 θ̇2

3 θ̇2
4

]T
)

(8)

where the Jacobian related to the centrifugal terms is defined as:

J3 =

[
l1 cos θ1 l2 cos θ2 l3 cos θ3 −l4 cos θ4

−l1 sin θ1 −l2 sin θ2 −l3 sin θ3 l4 sin θ4

]
(9)

2.2. Dynamic Model

For the dynamic modelling of the system, two different formulations have been considered.
Basically, the first follows the Newton–Euler method, whereas the second is based on energy and
power flow principles. The first formulation allows to calculate the Moment-Based Cost Function
(MCF) already presented in [11,13], while the second formulation is used to determine an Equivalent
Moment-Based Cost Function (EMCF), defined by the authors in the present work.

2.2.1. Moment-Based Cost Function (MCF)

External forces applied to the system are required for the Newton–Euler method, in particular the
force applied to the foot by the pedal. Experimental data, given as average trend between different
subjects and conditions, are available from [36]. Effective and radial components of the force (Fe and
Fr, respectively) are given versus the crank angle, as shown in Figure 2b,c. Data refers to a pedalling
cadence of ϕ̇∗ = 90 rpm and an average net power, hereafter called resistant power, of P̄∗r = 385 W.
Once the cadence ϕ̇ and the power P̄r of a different pedalling regimen are defined, the forces must be
scaled by the ratio τ as follows:

F = τF∗ τ =
ϕ̇∗

P̄∗r

P̄r

ϕ̇
(10)

where F∗ indicates the experimental force data given in [36], that refers to ϕ̇∗ and P̄∗r .
The above mentioned scaling procedure represents a source of error since the shape of force curves

will remain the same even at different cadences and power outputs; this is in contrast, for example,
with the study presented in [37], where a certain variability is shown. Nevertheless, a simple scaling
method is justified once an optimization problem based on pedalling cadence and power output must
be formulated, and the choice of an average trend, as obtained in [36], is reasonable. Furthermore, if the
error in the scaling of the force curves could be appreciable, it results much less significant if the global
torque at the crank is scaled (Figure 3a). In this case, the contribution of the two legs, acting with
a shift of a half cycle, gives a curve shape that is fully similar to a sinusoidal function whose average
value must be equal to the average power P̄r; thus the only variability is about the amplitude, with the
further limitation that the curve must be always positive. Definitely, it is reasonable to expect that
a proportional scaling of Pr starting from the experimental data set P∗r will result on a faithful trend
even at conditions different from experiments.
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Figure 3. (a) resistant power Pr vs. crank angle ϕ; data from [36] and fitting obtained by Equation (15);
ϕ̇ = 90 rpm, P̄r = 385 W; (b) components and total power output Pm vs. crank angle ϕ; ϕ̇ = 90 rpm,
P̄r = 385 W, m = 70 kg, h = 1.75 m.
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Figure 4. Free body diagram for the Newton–Euler formulation.

Besides the scaling procedure, a fitting of experimental force curves has been adopted in order to
obtain smooth curves. To this aim, a three terms Fourier series has shown a good capability to fit the
data; thus, the effective component (and analogously the radial component) of the pedal force can be
approximated by:

Fe = F0 +
3

∑
i=1

Fi sin(ϕ + βi) (11)

Coefficients Fi, i = 0, 1, . . . , 3 and βi, i = 1, . . . , 3 can be found by a minimization procedure
where the cost function is defined as the deviation between fitted and experimental data. The result
of such operation is shown in Figure 2b,c, where the fitted and experimental curves of Fe and Fr are
compared; the corresponding best fit parameters are collected in Table 1.

Table 1. Best fit coefficients for Equation (11).

Fe

F0 [N] F1 [N] β1 [
◦] F2 [N] β2 [

◦] F3 [N] β3 [
◦]

121.89 189.03 107.11 33.10 1.42 −41.41 184.50

Fr

F0 [N] F1 [N] β1 [
◦] F2 [N] β2 [

◦] F3 [N] β3 [
◦]

49.49 155.02 −116.72 −21.02 −73.62 −0.78 −26.09



Mathematics 2020, 8, 1947 8 of 16

The scheme of Figure 4 shows the free body diagram of the leg used to formulate the dynamic
model by means of the Newton–Euler method. The horizontal and vertical components of the pedal
force, Fh and Fv respectively, are calculated starting from the fitting law (11) of Fe and Fr, as expressed
by the first two equations of the system (12):

Fh = Fr sin ϕ + Fe cos ϕ

Fv = Fr cos ϕ− Fe sin ϕ

HB = m3aG3x + Fh

VB = m3
(

g + aG3y
)
+ Fv

HA = m2aG2x + HB

VA = m2
(

g + aG2y
)
+ VB

Ma = −IG3 θ̈3 − (Fv sin θ3 + Fh cos θ3) l3 −m3
(

g sin θ3 − aG3x cos θ3 − aG3y sin θ3
)

p3

Mk = Ma + IG2 θ̈2 + (VB sin θ2 + HB cos θ2) l2 + m2
(

g sin θ2 − aG2x cos θ2 − aG2y sin θ2
)

p2

Mh = −Mk − IG1 θ̈1 − (VA sin θ1 + HA cos θ1) l1 −m1
(

g sin θ1 − aG1x cos θ1 − aG1y sin θ1
)

p1

(12)

The following four equations relate to the internal forces at the ankle and knee joints, while the
last three equations are the expressions of Ma, Mk, and Mh, namely the joint moments at the ankle,
the knee and the hip.

Deriving from [13], the MCF cost function, based on the average absolute lower extremity joint
moments, can now be defined as:

MCF =
1

2π

2π∫
0

(
|Ma|+ |Mk|+ |Mh|

3

)
dϕ (13)

2.2.2. Equivalent Moment-Based Cost Function (EMCF)

A power balance formulation has been exploited to obtain an approximate trend of the overall
muscular power law, resulting from the sum of the resistant power at the crank and the derivative of
the mechanical energy of the system. The approximation in this estimation is due to the impossibility
of the method to take into account the action of the antagonist muscles [24].

Starting from data relative to the effective force given in [36] and assuming a perfect symmetry
between the left and the right leg during the pedalling, the power applied to the central axis of the
crankset can be determined as:

Pr = [Fe (ϕ) + Fe (ϕ + π)] lc ϕ̇ (14)

The plot of the previous expression is shown by the solid line in Figure 3a. The dashed line refers
to the fitting of such curve, that is possible by means of the following simplified expression:

Pr = P̄r [1− k cos (2ϕ + β)] (15)

with k = 0.89 and β = 6.18◦. Thus, the resistant power is easily scalable, keeping constant the factors k
and β, whereas the average resistant power P̄r must be set to the desired value.

During the pedalling a certain amount of mechanical energy, defined as the sum of the potential
V and kinetic T energy, is stored or released by the leg. Even if the mechanical energy of the system
is periodically constant (at a constant pedalling cadence), the oscillation of such energy inside the
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revolute affects the shape of the instantaneous power curve that must be exerted by the muscles.
The power balance law, in fact, can be expressed as:

Pm = Pr +
dT
dt

+
dV
dt

(16)

where Pm is the approximated power generated by the muscular apparatus, Pr is the power delivered
to the crankset, T and V are the kinetic and potential energy of the leg respectively. While Pr in the
previous equation is provided by Equation (15), the potential and kinetic energy of the system must be
determined by the expressions:

T =
4

∑
i=1

[
1
2

mi

(
ẋ2

Gi
+ ẏ2

Gi

)
+

1
2

IGi θ̇
2
i

]
V =

4

∑
i=1

mi g yGi (17)

Coordinates
(

xGi , yGi

)
and their derivatives express the position and the velocity of the center of

mass of the ith segment with respect to the conventional axes system (x sagittal, y vertical); they can be
determined as a function of ϕ and ϕ̇ using the Equations (2) and (6) of the kinematic model.

Expressions (17) refers to a single leg, thus the global energy of the system can be obtained
considering both legs, with an angular shift of π between left and right. Furthermore, the mechanical
energy stored in the pedals and in the crank is neglected, being their mass much lower than the leg
mass. Moreover, the crank kinetic energy is constant since the angular velocity ϕ̇ is considered constant;
also its gravitational potential energy is constant, since the height of the center of mass (corresponding
to the spindle of the crank) is fixed. Thus, when Equation (16) is expanded, the derivative of the kinetic
and potential energy of the crank is null.

As an example, Figure 3b shows the approximated muscular power curve (Pm, solid line) obtained
by Equation (16) and the contribution of each single term (dashed lines) for a cyclist with 70 kg mass
and 1.75 m height exerting an average power of 385 W at a cadence of 90 rpm.

Exploiting the formulation described in this section, a novel cost function can be introduced as
an equivalent global moment defined as:

EMCF =
max (Pm)

ϕ̇
(18)

where the angular velocity ϕ̇ of the crank is supposed constant and expressed in rad/s. The equivalent
moment, that is the ratio Pm/ϕ̇, represents an approximate global estimate of the muscular effort.
Thus, the minimum of the function EMCF represents an upper limit for the range of cadences that is
most convenient from an energetic point of view (Clim).

The similarity between MCF and EMCF results evident, since the first one is correlated to the
average absolute value of the joint torques, which is conceptually near to the definition of the equivalent
moment given in this section. The same kinematic experimental data, i.e., the angle of the pedal vs.
crank rotation, are necessary in both cases to define the cost functions; nevertheless, dynamic data
required to define MCF include force components at pedals, that are complex measurements,
whereas the definition of EMCF requires only the estimation of the resistant power Pr, that is equivalent
to measure the torque applied to the crank. In this sense, once the similarity of the two functions is
assessed, an advantage can be found in the EMCF.

2.3. Experimental Method

Four competitive cyclists have been tested in the field (mass 66.3± 7.8 kg, height 174.3± 6.8 cm,
age 27.5± 2.4 years). Table 2 collects anthropometric data of each subject. Informed consent was
obtained before the experiment. All the subjects rode their own racing bicycle along an uphill road
with an average gradient of 5%. Five different levels of power normalized with respect to the mass
of the cyclist have been tested, ranging from 1.63 W/kg to 5.44 W/kg. It was asked to each subject to
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perform five trials of 2’ at increasing levels of constant power, with rest intervals of 2’ between each
exercise. In all cases the cadence was free. Data were collected from commercial cycling computers
and power meter installed on the bicycles; average cadence and power during each trial were then
calculated. To verify that fatigue did not influence the tests, two of the subjects repeated the trials with
a random sequence of power, showing results comparable with the increasing sequence.

Table 2. Anthropometric data of tested competitive cyclists.

Cyclist Age m [kg] h [m] BMI [kg/m2] I = m h [kg m]

CS 25 55 1.65 20.2 90.8
GM 26 67 1.77 21.4 118.6
FF 29 72 1.74 23.8 125.3
FC 30 71 1.81 21.7 128.5

3. Results

In this section it is firstly given the comparison between MCF and EMCF when they are involved in
the minimization problem; the comparison is done at increasing average power outputs, corresponding
to increasing values of upper limit cadences. Figure 5 shows the comparison between MCF and EMCF,
plotted versus the pedalling cadence. Both cost functions have been normalized by their minimum
value, so that Clim occurs when the CF is equal to 1. Plots, based on simulations, refers to a cyclist
with m = 70 kg and h = 1.75 m exerting a power output from 100 W to 400 W. Values of Clim are
comparable in all cases, with greater values at increasing powers, as evidenced by experiments in
literature [23]. Therefore, it can be said that the minimization of the equivalent moment gives similar
results with respect to the minimization of the approximated average muscular stress.
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Figure 5. MCF and EMCF at different power outputs for a cyclist with 70 kg mass and 1.75 m height.

The study can be extended to different body characteristics: once the mass and the height are
given, all the geometric and inertial properties of the kinematic and dynamic models can be obtained
by means of a scaling procedure based on anthropocentric average factors [32,33]. As explained in
Section 2.2.2, also the power Pr applied to the crankset can be scaled on the basis of the imposed
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average power output. Thus, the upper limit of most convenient cadence rate has been investigated for
a series of cases, ranging the mass from 50 to 100 kg, the body mass index (BMI) from 19 to 25 kg/m2

and the power output from 100 to 400 W. Results are plotted in Figure 6. Solid black lines are iso-height
curves, while markers refer to six different professional riders considered for simulations; the three
white markers, in particular refer to sprinters (sp), whereas black markers correspond to climbers (cl).
It results clear from plots, as confirmed by the facts, that climbers have higher optimal cadences than
sprinters. Furthermore, for all cyclists Clim increases for increasing powers. Anthropometric data of
the six the simulated cyclists are collected in Table 3, whereas Clim obtained with each one of the cost
functions are reported in Table 4. Results are comparable in all cases; the average error between the
two methods is 5%, exceeding this value in few cases related to low power outputs (100 W).

19 20 21 22 23 24 25
50

60

70

80

90

100

60

65

70

75

80

19 20 21 22 23 24 25
50

60

70

80

90

100

75

80

85

90

95

100

19 20 21 22 23 24 25
50

60

70

80

90

100

85

90

95

100

105

110

115

19 20 21 22 23 24 25
50

60

70

80

90

100

95

100

105
110

115

120
125

BMI [kg/m2] BMI [kg/m2]

BMI [kg/m2] BMI [kg/m2]

Clim [rpm] Clim [rpm]

Clim [rpm] Clim [rpm]

m
[k

g]

m
[k

g]

m
[k

g]

m
[k

g]

P=100 W

P=300 W

P=200 W

P=400 W

2.1

2
1.9

1.8
1.7

1.6
h=1.5 m

2.1

2
1.9

1.8
1.7

1.6
h=1.5 m

2.1

2
1.9

1.8
1.7

1.6
h=1.5 m

2.1

2
1.9

1.8
1.7

1.6
h=1.5 m

E (cl)B (sp)A (sp) D (sp) F (cl)C (cl)

Figure 6. Diagrams of the upper limit cadence Clim (obtained by minimizing EMCF) versus
anthropometric properties for different power outputs.

Table 3. Anthropometric data of six professional cyclists considered for simulations (sp: sprinter,
cl: climber).

Cyclist m [kg] h [m] BMI [kg/m2] I = m h [kg m]

A sp 85 1.86 24.6 158.1
B sp 82 1.88 23.2 154.2
C cl 67 1.86 19.4 124.6
D sp 70 1.75 22.9 122.5
E cl 64 1.82 19.3 116.5
F cl 56 1.67 20.1 93.5
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Table 4. Upper limit cadences (Clim [rpm]) obtained with EMCF and MCF at different power outputs
for the group of six cyclists considered for simulations.

Power A B C

[W] EMCF MCF ∆% EMCF MCF ∆% EMCF MCF ∆%

100 66 59 11 66 60 9 71 68 4
200 83 85 2 84 86 2 90 95 5
300 95 101 6 96 102 6 103 109 6
400 105 110 5 106 111 5 113 119 5

Power D E F

[W] EMCF MCF ∆% EMCF MCF ∆% EMCF MCF ∆%

100 71 68 4 73 70 4 78 77 1
200 90 95 5 92 97 5 98 102 4
300 103 108 5 105 110 5 112 117 4
400 113 119 5 116 122 5 124 129 4

Riders in Tables 3 and 4 are listed with a descending order of the index I, defined as I = m h,
that it was found to correspond to an ascending ordering of Clim values. The correlation between
Clim (hereafter always determined minimizing the EMCF) and the anthopometric index I becomes
even more evident in Figure 7a: data obtained varying the index I while keeping fixed a specified
power P substantially align on a straight line. Therefore, we can expect that a polynomial regression of
Clim = Clim (I, P) is possible. A satisfying approximation has been found using a polynomial form of
the 1st order with respect to I and of the 2nd order with respect to P:

Clim = a + b I + c P + d IP + e P2 (19)
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Figure 7. (a) Fitting by Equation (19) of data obtained by minimizing EMCF: Clim versus I for different
power outputs; (b) Diagram of the optimal cadence Clim from Equation (19).

Table 5. Best fit coefficients for Equation (19).

I = m h Clim = a + b I + c P + d IP + e P2

a [rpm] b [rpm (kg m)−1] c [rpm W−1] d [rpm (kg m W)−1] e [rpm W−2]
64.97 −1.26× 10−1 2.81× 10−1 −3.01× 10−4 −2.04× 10−4

Values of coefficients a, b, c, d, e that give the best fit (least-square fitting) are collected in Table 5,
while a further graphical representation of Equation (19) is given in Figure 7b: the diagram provides the
optimal cadence versus the power output P for a discrete series of indexes I. This result is of a certain
interest since it becomes immediate for a cyclist to obtain an approximate estimate of the upper limit
of the most convenient range of cadence in terms of muscular effort at a given power output.
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As discussed in Section 2.3, a series of tests have been performed on four competitive cyclist (Table 2).
Experimental data are collected in Figure 8a. All subjects confirm the tendency of an increase in
cadence due to an increase in power. A global view of the data is given in Figure 8b, where trends and
variation’s ranges of experimental data are shown; the average of the experimental data trend goes
approximately from 70 rpm at 100 W to 90 rpm at 450 W, with a decreasing dispersion moving toward
high power outputs. On the same figure it is plotted the range of cadence estimated by the EMCF
minimization method applied to the tested subjects; values are higher than experimental data for all
power outputs. Furthermore, experimental data obtained by [6] are reported; such data represent
cadences that minimize the oxygen uptake, i.e., the energy expenditure, calculated as the average of
the three subjects tested by Seabury.
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Figure 8. Results of tests: (a) linear fit of data for each cyclist; (b) trend of aggregate data versus EMCF
and Seabury data.

4. Discussion

The cost function proposed in this work resulted to be similar to those based on the absolute
average joint moments, as presented in [11]. In the same work it is shown how the joint moments
can be divided into two parts, the first one called quasistatic moment, that produces positive work
in order to counteract the resistant forces, the second one called kinematic moment, that is due to
inertial terms and generates a null work in a cycle. The quasistatic moment decreases at high cadences,
while the kinematic moment does the opposite. As a result, being the total moment the sum of the two
components, an optimum can be found in the minimization of the MCF cost function.

The EMCF cost function is based on the peak of an equivalent moment obtained from the muscular
power curve; such peak increases at high cadences due to a larger influence of the kinematic moments
related to the inertial terms, whereas the peak increases at low cadences due to larger quasistatic
moment components, in agreement to the analysis of Redfield and Hull [11].

The approach followed in [13] is similar: it is experimentally evaluated the absolute average
joint moment (comparable to the MCF) during a cycle; different groups of participants pedalling at
increasing imposed frequencies and powers are analysed. Basically, it emerges that the minimum of
the average moment occurs at cadences that are comparable to those obtained with the minimization
of EMCF. Furthermore, the values of the optimal cadences increase with the power, as evidenced in
the present study. The same paper shows how the pedalling rate freely chosen by the participants
is in general similar but different from the cost function minimum. Moreover, cadences preferred
by participants are nearly constant varying the power, exhibiting also a significantly large variance.
This aspect confirm the considerations made by [21,22], i.e., that the preferred cadence is determined by
a very complex combination of factors. Among them, however, the minimization of the muscular effort
can be considered one of the most influencing. This minimization, by approximating the muscular
effort through a kinematic approach, can can be used to estimate the upper limit of the optimal range
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of cadence for a cyclist, whereas the lower limit can be found considering the minimization of the
energy consumption.

With the increase of the pedalling frequency the negative muscular work increases [14]. On the other
hand as the output power increases the most convenient cadence increases; consequently, considering the
combined effect of these two behaviours, it is expected that the difference between the value of Clim and
the cadence chosen by cyclists increases with power.

Experimental data obtained in this work, notwithstanding a certain dispersion and variability,
give evidence to previous considerations. The analysis of data shows that the dispersion is mainly
attributable to subjects FF and FC. A reason can be found in a change of gear ratio between low and
high power exercises, resulting in a discontinuity that gives an “S” shape to the plot. Subjects CS and
GM do not show such trend: in these cases data fit with high accuracy with a linear law. Aggregate data
are well represented by the linear fit of Figure 8b; as supposed, cadences adopted by cyclists are placed
in the central area, between cadences that minimize the muscular effort (EMCF minimization) and
cadences that minimize the energy expenditure (data from Seabury [6]).

5. Conclusions

Far from the claim of finding the cadence corresponding to the one freely chosen by a cyclist,
the ambition of the present study was definitely to create a model that can be easily identified and
verified in laboratory and that can offer practical indications also in field activities. Through the model
it is possible to obtain an upper limitation of the range of cadences which are most convenient from
the point of view of muscular effort. The optimum pedalling rate for a cyclist in a certain condition
can be influenced by other factors (e.g., the metabolic cost or the maximum speed), the muscular work
criterion returns a useful indication that the rider can consider at any rate to monitor his exercise.

The advantages of the approach proposed in this work is due to a simple mathematical formulation
that requires few experimental data as input. The validity of the method is proved referring to data
and methods available from other studies. A series of experimental tests confirmed that the EMCF
method can be used to identify the upper limit of the optimal cadence range, whereas the lower limit
can be obtained by other methods based on the minimization of the energy consumption.

In order to give more strength to the evidences outlined in this study future works will concern
the project of a dedicated test bench that will be used to give a deeper experimental validation of the
EMCF by means of a wide campaign of tests, varying both the characteristics of the participants and the
setup or the type of bicycle. Furthermore, on the basis of a validation procedure based on a significant
number of experimental measurements, it could be possible to think of introducing a correction term
within the proposed model, in order to obtain in a simple way an estimate of the optimal cadence from
the point of view of muscular effort.
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