. mathematics ﬁw\o\w

Article
On the Sharp Garding Inequality for Operators with
Polynomially Bounded and Gevrey Regular Symbols

1

Alexandre Arias Junior ¥ and Marco Cappiello %*

1 Department of Mathematics, Federal University of Parana, Curitiba 81531-980, Brazil; arias@ufpr.br
2 Department of Mathematics, University of Turin, Via Carlo Alberto 10, 10123 Turin, Italy

*  Correspondence: marco.cappiello@unito.it

check for
Received: 29 September 2020; Accepted: 29 October 2020; Published: 3 November 2020 updates

Abstract: In this paper, we analyze the Friedrichs part of an operator with polynomially bounded
symbol. Namely, we derive a precise expression of its asymptotic expansion. In the case of symbols
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1. Introduction

The sharp Garding inequality for a pseudodifferential operator was first proved by Hormander [1]
and by Lax and Nirenberg [2] for symbols in the Kohn-Nirenberg class S™ (R?"), namely satisfying the
following estimates

0508 p(x, )| < Cap(@)™ ", w,p e NG,

for some positive constant C,p, where (&) := /1 +|¢|? for every ¢ € R" and Nj stands for the set of
all multi-indices of length 7. In its original form, this result states that, if p € S™(R?"), for some m € R,
is such that Re p(x, &) > 0, then the corresponding operator p(x, D) satisfies the following estimate

Re(p(x, D)u,u);2 > —C||u\|?nT,1, ue SR, (1)
for some C € R, where || - || »_1 denotes the standard norm in the Sobolev space H e (R™). Later on,
several different proofs and ezxtensions of this result have been provided by many authors (cf. [3-6]).
In particular, the inequality has been extended to symbols defined in terms of a general metric (cf. [4],
Theorem 18.6.7) and to matrix valued pseudo-differential operators (cf. [4], Lemma 18.6.13, and [5],
Theorem 4.4 page 134). In all the proofs of the sharp Garding inequality, the operator p(x, D) is
decomposed as the sum of a positive definite part and a remainder term providing the inequality (1).
In the approach proposed in [5], this positive definite part pr is called Friedrichs part and satisfies the
following conditions:

(i)  (pru,v)12 = (u, pro)p2 if p(x, &) is real;
(i) (ppu,u);2 > 0if p(x,&) > 0; and
(iii) Re(pru,u);» > 0if Rep(x,¢) > 0.

Although the results in [4] are extremely general and sharp, in some applications, more detailed
information on the remainder term is needed. In particular, it is important to state not only the order
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but also the asymptotic expansion of p — pr. This is needed in particular in the analysis of the so called
p-evolution equations, namely equations of the form

p—1 4
Diu+ap(t)DY + Y aj(t,x)Dhu = f(t,x),  t€[0,T], 2)
j=0

where p is a positive integer and a,(t) is a real valued function (cf. [7,8]). This large class of equations
includes for instance strictly hyperbolic equations (p = 1) and Schrodinger-type equations (p = 2).
The classical approach to study the Cauchy problem for these equations is based on a reduction
to an auxiliary problem via a suitable change of variable and on a repeated application of sharp
Garding inequality which needs at every step to understand the precise form of all the remainder
terms (cf. [9]). When the coefficients a;(t, x) are uniformly bounded with respect to x, this is possible
using Theorem 4.2 in [5], where the asymptotic expansion of pr — p is given in the frame of classical
Kohn-Nirenberg classes. In this way, under suitable assumptions on the behavior of the coefficients
aj(t, x),j =0,...,p—1, for |[x|] — oo, well posedness with loss of derivatives has been proved in
H® =N,,crH™ (see [9]).

In fact, for equations of the form (2), the loss of derivatives can be avoided by choosing the data
of the Cauchy problem with a certain decay at infinity (cf. [10]). This motivated us to study the initial
value problem for (2) in a weighted functional setting admitting also polynomially bounded coefficients,
which cannot be treated in the theory of standard Kohn—Nirenberg classes but are included in the
so-called SG classes (see the definition below). For this purpose we need a variant of [5] (Theorem 4.2)
for SG operators with a precise information on the asymptotic expansion of p — pr.

Another challenging issue is to study Equation (2) on Gelfand-Shilov spaces of type S (cf. [11]).
A first step in this direction has been done in the case p = 2, that is for Schrodinger-type equations
(see [12]), and for p = 3 (see [13]). In both cases, it is sufficient to apply the sharp Garding inequality
only once. To treat p-evolution equations for p > 3, however, we need to apply the iterative procedure
described above. In addition, a precise estimate of the Gevrey regularity of the terms in the asymptotic
expansion of p — pr is also needed.

In this paper, we provide appropriate tools for both the aforementioned issues. This is achieved by
defining in a suitable way the Friedrichs part of our operators and by studying in detail its asymptotic
expansion and its regularity. With this purpose, we prove two separate results for the following classes
of symbols. Fixing m = (my,m,) € R?, we denote by SG™ (R?") the space of all functions p € C®(R?")
satisfying for any «, B € N{j the following condition

9898p(x,0)| < Cup(@)™ Iz, x g e R, )

for some positive constant C, g. These symbols have been treated by a large number of authors along
the years (see [14-21]). We are moreover interested in the subclass of SG™ (R?") given by the SG
symbols possessing a Gevrey-type regularity. Namely, for 1, v > 1, we say that a symbol p(x, &)
belongs to the class SGE’;W) (R?") if there are constants C, C; > 0 satisfying

[9838p(x,&)| < CoCleIBlat gy (gymlel (zyma=le, )

forevery o, f € NI, x,¢ € R™.

This work is organized as follows. In Section 2, we recall some results concerning SG
pseudodifferential operators. In Section 3, we discuss the concepts of oscillatory integrals and double
symbols, which are fundamental tools in the present work. Finally, in Section 4, we study the Friedrichs
part of symbols belonging to the classes SG™ and SG’Z:W) and we prove the main results of this paper,
namely Theorems 4 and 6.
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2. SG Pseudodifferential Operators

In this section, we recall some basic facts about SG pseudodifferential operators which are used
in the sequel. Although for our applications we are interested to prove the main results for the classes
defined by inequalities (3) and (4), in order to prove them, we need to consider more general classes of
symbols which are defined as follows.

Definition 1. Given m = (my,my) € R%,p = (p1,02) € (0,126 = (6,8,) € [0,1)?,
with 6; < pj, j = 1,2, we denote by SGJ's the space of all functions p € C*®(R?") such that

sup |aga§p(x,§)|<§>—ml+m\a|—51\ﬁ\<x>—Mz+Pz\ﬁ|—5z|v<\ < oo. (5)
(x,8) R

We recall that SGZf 5 is a Fréchet space endowed with the seminorms

lpl;:= sup |aga§p(x, ) [(&)~mterlal=a1lBl () —matp2|Bl—calal
(x)eR2n
la+p<t
for ¢ € Ny. The class SGZ 5 is included in the general theory by Hormander [4]. A specific calculus
for this class can be found in [22]. Pseudodifferential operators with symbols in SGZ% 5 are linear and
continuous from .#(R") to . (R") and extend to linear and continuous maps from .’ (R") to ./ (R").
Moreover, denoting by H*(R") with s = (sq,s,) € R? the weighted Sobolev space

HS(R") := {u € &' (R") : (x)%2(Dy)"u € L2(R™)},

we know that an operator with symbol in SGZf 5 extends to a linear and continuous map from H*(R")
to H5~™(R") for every s € R2.

(1my,5,m3,7)
Jr2

Definition 2. Let, for j € Ny, p; € SGp, 5
my,j — —oo, when j — co. We say that p € C*® (R2") has the asymptotic expansion

p(x,z;") ~ Z pj(xlg)

j€Np

, where ml,j, mzr]' are nonincreasing sequernces and mlrj — —09,

if for any N € N we have

N-1
p(x,&)— Y pi(x,@) € scgfj;l,w,mz,m_
j=0

(my,j,my ;)
jrM2,j

Given p; € SGM
p ~ L pj. Furthermore, if there is g such that g ~ Y pj, then p — g € SG™ := N,,cp2SG5 = S (R?M)
(cf. [22], Theorem 2). The class SGZf 5 is closed under adjoints. Namely, given p € SGZf 5 and denoting

as in the previous definition, we can find p € SG%l’O’mz’O) such that

by P* the L? adjoint of p(x,D), we can write P* = p*(x, D) + R, where p* is a symbol in SGy;
admitting the asymptotic expansion

pr(x,) ~ ), al"oEDEp(x,8)

n
aeNj
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and R : /' (R") — ./ (R"). The class SGs := Uyer2SGy 5 possesses algebra properties with respect

ml

to composition. Namely, given p € SGJ; and g € SG;, there exists a symbol s € SGZ}’”, such that
p(x,D)q(x, D) = s(x, D) + R’ where R’ is a smoothing operator .7/ (R") — . (R"). Moreover,

s(x,6) ~ ) al7'0Ep(x,¢)Dgq(x,0)

n
aeNj

(cf. [22], Theorem 3).
We now consider Gevrey regular symbols.

DeZir;;ltiton 3. Fixing C > 0, we denote by SG;. ., ) (R2"; C) the space of all smooth functions p(x,&)
such tha

Iplc:= sup Cl=IPla1=#Bg1I—" sup <§>fm1+,01|0é\*51\l3|<x>fmz+.02|ﬁ\*5z\ﬂc||agafp(xlg)| < +oo0.
a,BeN] x,GER"

Weset SGy's ) (R?") = Ucs0 SGls, (1) (R¥ C).

m

Equipping SG (R?";C) with the norm | - |c we obtain a Banach space and we can endow

05 (v
SGZZ&(W) (]RZ”)p V\f:lth) the topology of inductive limit of Banach spaces. A complete calculus for
operators with symbols in this class can be found in [23]. Here, we recall only the main results.
Since SGZT siuw) © SGZf{;, the previous mapping properties on the Schwartz and weighted Sobolev
spaces hold true for operators with symbols in SGZT Si)” By the way, the most natural functional setting
for these operators is given by the Gelfand—Shilov spaces of type S. We recall that, fixing 4 > 0,v > 0,
the Gelfand-Shilov space S} (R") is defined as the space of all functions f € C®(R") such that for some

constant C > 0
sup CIHP(a1) = (B1) T sup |x*9Pf(x)]| < +eo. ©)

a,BEN] x€R?

For every u' > u/(1—6,),v/ > v/(1 — é1), an operator with symbol in SGZlJ'(ZA ) 18 linear and
continuous from S;j: (R™) to itself and extends to a linear continuous map from the dual space
(S;:)’ (R™) into itself (see [23], Theorem A.4).

The notion of asymptotic expansion for symbols in SG’T 5i(p,) CAN be defined in terms of formal
sums (cf. [23]). Here, to obtain our results, we need to use a refined notion of formal sum introduced
in [13] for the case p = (1,1),6 = (0,0). All the next statements can be transferred to the case of general
p and  without changing the argument, thus we refer to [13] for the proofs.

For t1,tp > 0, set
Qup, = {(x,0) € R : {x) <t and (§) < ta}

and Qf , = R2"\ Q4 1,- When t; = t, = t, we simply write Q; and Q.

Definition 4. Let 5; = (kj,{;) be a sequence such that kg = ly = 0, k;, {; are strictly increasing,
kivn > ki +kn, ljxn = £+ N, for j, N € No, and k; > Aqj, £; > Aoj for j > 1, for some Ay, Ay > 0.

We say that ) p; € FﬁSG;”(S,(V »ifrj€ C*(R?") and there are C,c, B > 0 satisfying
j=0 o

|aga§p].(x, )| < ClalHIBIF2H gy gy jrutv =1 gym=prla+ 01 BI=Kj () ma—p2|Bl+2]a| =

1
fora, p € Ny, j > 0and (x,8) € Qp, i) (), where B(j) = (Bjrtv—1)Ai i =1,2.,
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Definition 5. Given }_ p;, ¥ q; € F5SG},, we say that '} p; ~ Y q; in FUSG’"MW
jz0 " j=0 j=0 j=0 prot

if there are
C,c, B > 0 satisfying
|aga§ Y (pj—a)(x,0)| < Clal+IBIF2N+1 yy giv N1 =1 zym=prlal+01|Bl=kn () ma—pa|Bl+oalal ~Ey
j<N

fora,p € NI, N> 1and (x,¢) € QEBQ(N),Bl(N)'

Remark 1. Ifk; = (p1 — 61)j,¢; = (p2 — 02)j and A; = p; — 6,1 = 1,2, we simply write FSGZ%,(H v) and
we recover the usual definitions presented under different notation in [23]. If moreover p = (1,1),6 = (0,0),
we use the notation FSGZ’; V)

Remark 2. Ifjg0 p; € FUSG;”J () then pg € SG 55uv)" Given p € SGp(5 () and setting po = p, pj =0,
. m m
j > 1, we have p = jgo p;. Hence, we can consider SGP Si() 984 subset ongSGp Siu)”

Proposition 1. Given ), p; € FUSG 6 ()7 there exists p € SGP

suchthatp ~ y p;in FUSG ()’
j>0

5 (pv) =

. (0,0) . (0,0) 2 1
Proposition 2. Let p € S(z'p,d;(y,v) such that p ~ 0 in F(—TSGP/(S;(W). Then, p € S,(R™") forr > max{X(y +
v—1),u+v—1}, where A = min{A, Ay }.

Proposmon 3. Let p € SG”
symbol p* € SG

1
> L
"2 minfor—o1,00-02]

05510 and let P* be the L2 adjoint of p(x,D). Then, there exists a

65 (0) such that P* = p*(x,D) + R, where R is a S,-regularizing operator for any

. Moreover,

Proposition 4. Let p € SG” Then, there exists a symbol s € SG"”ZZ ”) such that

pt+v—1
min{g;—d1,00—02}

poiuv) 1 € SGP5(I4V)

p(x,D)q(x, D) = s(x, D) + R where R is a S,-regularizing operator for any r > . Moreover,

08~ Y ¥ alap(x, D, 8) in FSGIA

20 af=j

3. Oscillatory Integrals and Operators with Double Symbols

To define the Friedrichs part of an operator, it is necessary to extend the notion of
pseudodifferential operator as in [5] by considering more general symbols called double symbols.
Quantizations of these symbols are defined as oscillatory integrals.

3.1. Amplitudes and Oscillatory Integrals

Definition 6 (Amplitudes). For m € R? and 6 € [0,1)?, we define AT (R>") as the space of all smooth
functions a(n,y) such that

0800 a (g, y)| < Coop )™ HOIBl (yymatizlal -y y e R,
For ¢ € Ny and a € A¥(R?"), the seminorms

ale = max sup {1950a(y,y) ()48 y) =Dy,
= 17y6 R
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turn A" (R?") into a Fréchet space.

Remark 3. In [5] (Chapter 1, Section 6), the special case AEZ%T)) (R™), wherem € R, T > 0and 6 € [0,1),

is treated.

Definition 7 (Oscillatory Integral). Fora € AJ'_, we define

5,7/

Os — [e"™a(n,y)] = Os — / / e Wa(n,y)dydy

— lim / / e x.(n,y)a(y, y)dydy,

e—0

where x¢(11,y) = x(en, ey) and x is a Schwartz function on R?" such that x(0,0) = 1.
Theorem 1. Let a € AT(R?"). If ¢, {' € Ny satisfy
—20(1—=61) +my < —n, —20(1=38)+my < —n,

then |(y) =2 <D,7>2€,{ (n)~2/(Dy)?“a(n7,y)}| belongs to L' (R?") and we have

Os = [~ a(n,y)) = [[ e y) 2 (Dy)> L) 2 (Dy)*a(n,v) eyt

Furthermore, there is Cy ¢ > 0 independent of a € AY_(R*") such that

0s — [e™a(n, )| < Coolalase-

Proof. Integration by parts gives

Os — [e~a] = lim // =iy (yy =20 (D, V2 () 2Dy (axe) Ydyddy,

e—0

where x.(17,y) = x(en, ey). Since

/ o' / 0!
20 2L 20 _ 2L
<D77> = Z g/vL/vD’? ’ <Dy> - Z / |L|Dy ’
D= F0T fotlLl=e 707

where L' = (¢},...,0;) and L = (¢4,...,{,), we have

(D)2 {(n) 2Dy (xea)} = Y ,g,/!,,D%L’{<17>’”<Dy>”(xsa)}
O+l |= _o B!
o (2L)!

Dy (11) 2" - Dy (Dy)* (xen)

= Z 7N Z

Loy+|L =0 70" " aytap=2L
o (2L 4
= Y o Dy ()~
7 Z n \1
o+ |=t EO!L/! a1+ =21 aqlag!
1
£o!L!
o' (2L)!

|

- o] —20 E

- Z VAT Z 0(1!062!D}7 <77> Z go!L!
G+ L= 70 aq+ap=2L" Lo+|L|=¢

,oqlan!

X D;? DzL (Xea)

lo+|L|=¢

0(2! (2L) o B A B
< ¥ ¥ oo ol
W +ah=ay prt+po=2L "1

6 of 23

@)
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Hence, we obtain the following estimates, for ¢ in [0, 1],

, o (2L')!
(D) L) D (xe)} < Y. 7775 ——
+|L’|:€’ 56![/! &y +ag=2L 1X1!0é2!

| | |
« C(|)"<1|+1a1!<77>72€7\oc1\ Z €£~ Z Z ax! (2L)!

11 1 641
lo+|L|=¢ o!L! o +ahy=ay P1+P2=2L aplay! Brlpo!

% S\a1+ﬁ1\c\“1\+\ﬁ1\+1 1By <17>m1+51\/32| <y>mz+52\“§|

laljuy+p,)

< Cf,@’ |a|2(g+g/) <17>m_2€(1 41) <y>m2+2£ 152’

and

()2 Dy) ¥ { () 72Dy ) (xea) }

< Crlalyeqen ()™ 2000

y>m2—2€’(1—62).

Finally, by Lemma 6.3 on Page 47 of [5] and Lebesgue dominated convergence theorem, we obtain
Os — mya // *lr]y 2/’ ;7>2Z/{(17>72£<Dy>2£a}dyd?],

|0s — [e"a]| < Cyprlalaie / / (ig)ym=2A=0) (yym2=20(1=02) gy
O

Following the ideas in the proofs of Theorems 6.7 and 6.8 of [5] (Chapter 1, Section 6), one can
obtain the following result.

Proposition 5. Let a € A (R*"), a, B € No and 19,y € R™. Then,

(i) Os—[e""Wya] = Os — [(—Dy)*e "a] = Os — [e~ " D}al;

(i) Os—[e""VyPa] = Os — [(—D,)Pe~"¥a] = Os — [e’i”nya]; and

(iii) Os —[e~"Ma(y,y)] = Os — e~/ 1= ¥0)a(y — 1o,y — yo)].

3.2. Operators with Double Symbols

Definition 8. Let m = (my,my),m' = (m},mh) € R? and p = (p1,02), 6 = (61,62) such that 0 < §; <
pj < 1,j = 1,2. We denote by SGZZ;” (R*") the space of all functions p € C*(R*") such that for any
a0, B, B € Nj there is Czrgg >0 for which

'l

P (2,6, &) < Cod (@ymerlal @ ymi=enle’l @ oy ulB Bl yma=palfl (o yms=eal ;] (g)

for every x,x', ¢, &' € R", where Pﬁﬁ/ = 8“8g:D§Dﬁ,p and (z;Z') = \/1+ |z|2 + |Z/|? for z,2' € R™.

Denoting by |p|™} /3 g the supremum over x, g, ¥, & € R" of

w0’

P (., &)](8) el (@) el g 2y BB ) palBl(31) i oalB | (1) ke,

the space SGZ’;SmI is a Fréchet space whose topology is defined by the family of seminorms

! !
Pl = sup
latpra+pl<e
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Definition 9. Let m = (my,mp),m’ = (m},mb) € R? p = (p1,02), 6 = (61,62) such that
0<6;<p;j<1,j=1,2 and let y,v > 1. We denote by SGZZ;”(;[,U) (R*") the space of all functions
p € C®(R*) such that for some C > 0:

P55 (5,0, 2] < CHB A8 (ata/ 1y (B gyl gy 2y lBH8 (o)
x (x)m2=P2lBl (3 ymy=p2lB'l (o, y\O2lea’]
For C > 0, the space SG™™ (R, C) of all smooth functions p(x, &, x', &), such that (9) holds

p.0;(1v)
for a fixed C > 0, is a Banach space with norm

ple = sup  Co B o) R (BB pl
ar“’,ﬁ,ﬁleNS &Py
After that, we define sG™" U sGmm (R*"; C) as an inductive limit of Banach spaces.

PO (Hy) T 02" Poi(Y)
Definition 10. For p € SGgg",, we define

p(x’ Dx/ xl[ Dx/)u(x) = /eié(x—x/)eig/(x/_x//)p(x, (:, x/, é”)u(x”)dx”ﬁé’ldxld@'
= [ (8, &) E ) A
for every u € &/ (R").

m,m’

Lemma 1. Let p € SGP,(O,(SZ

define

)(R4”). For any multi-indices o, o', B, B/, set g = p;‘;’/, and, for 0 € [—1,1],

79(x,¢) = Os — //E’i”yq(x,CJer,x+y,€)dy5ﬁ7, x,§ R

Then, {qg}g)<1 is bounded in SG;,(O,éz)(RZn), where T = (1, 0), 1 = my +m) —pila +a'|, o =
my +mh — pa|B + B'| + 62|« + &'|. Furthermore, for any £ € Ny, there are !’ := {'(¢) € Ngand Cyp > 0
independent of 0 such that

19017 < Corlplp™ -

Proof. First, notice thatq(x,¢+0n,x+y,¢) € AES";;"IZHZIHMD (R%f‘y), therefore gg(x, ¢) is well defined

for any fixed ¢, x, 0. Given v, i € Nf}, we may write, omitting the variables (x,¢ + 61, x + v, &),

Yl p! 7! (atp o' +p—pt')
08 = ;«/[E W — )Ly 1y — )T B+ 477 {10
Y <y

To prove that {q }|p<; is bounded in SG ¢ 5 ) (R?"), it is sufficient to show that

90 (x,€)] < Calply™ (&)™ (x) (11)
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for some C; > 0 and ¢; € Ny depending on &, 8, &/, . Indeed, if (11) holds, then we can estimate the
derivatives of g4 as follows:

970%g0(, |—‘Os—// ’Wlma”qxc+9n,x+y,g)dyd;7’

< () (0 los ol n on v

<y
W<u

Ve ”
< ¥ () (7)) e g mipl
yey \H Y
W<p
x (@ymtmprlatpl et | ey motmy —palpy + By = [+ Oplackp ol |

< C|p|z,m’<§>m1+mifp1\zx+zx’+y| <x>m2+m’27pz|ﬁ+ﬁ’+'y|+§2|o<+oc’+;4\

where C and ¢; depend of «, «, B, B, 7, u and does not depend of 6.
Now, we show that (11) holds true. Observe that

e = (14 ()22 P) (1= ()2 e,

therefore

q0(x,¢) = Os — / / e Wrg(x, &, y)dydny,

where )
ro(x, &, y) = (1+ ()22 |13~ (1 — ()220, q(x, &+ 0y, x +1,8).

If we take ¢ satisfying 2¢ > |m1| + n, then ry is integrable with respect to 7. Now, consider a cutoff
function x(y) such that x(y) = 1 for |y| <47 !(x) and x(y) = 0 for |y| > 27!(x). Then, we can write

Os — / / e Wlrg(x, &, y)dydn = I + I + I,

where

I:// ey , G, dydn,
1 i |y\§4fl<x)éze ro(x, &1, y) x (y)dydn

I :/ / —iyy L, dydn,
27 Joy hrpr << © re(x, 8511, y)x (y)dydiy

Iy = Os — [e” g (x, &1,9) (1 — x(v))]-

Let us obtain a useful inequality when |y| < 271(x). Since

X+t
) = 1< [ 1 ekl < [l <

for |y| <271(x), we have

(W) < (x4y) S 200, (mrty) < @) +xbyl < 2 (),

N| =
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Now, we proceed to estimate Iy, I, I3. We begin with I;. With aid of Petree’s inequality and using
the fact that p, > d,, we obtain, for |y| <47 1(x)% and |0| < 1,

0! /
. 205 1,,12\—¢ : 25, |L| 1, (')
R S R M L)

_ L! /
< W P P 8 E I g
ot+ILi=

x (& + )Ml <§>m/1—P1|a'| (x)ym2—p2lBl (x4 y>m/2—p2|ﬁ’+2L\ (x;x + y>52\“+0¢/\
< CHp™ ()T ()R (1 + ()22 ) () ek,

where k = |a + B+ &’ + B'| + 2(. Therefore, for 20 > |m| + p1|a| + 7,

|| =

/ ; /Iy\<471< )02 e Wro(x, &, y)X (y)dyidy
n >~ X

< CHp @™ ™ [+ ) o) ey [ dy

4

< CEpIP @7 () [ ) ey [ )7y

4

f n
< Cplp @ [ embeka T [ )~y
j=1"lyjl<

4

< [ manlpl (@) ).
To estimate I, and I3, it is useful to study |A£1 rg|. We have
' /! 20)! -
sl ¥ B %) - (0%, o)
Q=61 =~ Q1+Q2=2Q

f! 2Q)! e
< o él'QZ'CQ1+Z+1<x>5zQ1Ql!(1+ (x)22]y7)2)~ ¢~ 1Qil | 9|12l
[Ql=t1 =" Q1+Qp=2Q ~*"==

% ‘(1 _ <x>2(52Ay)€ (at+Qom )|

Plg.p)
Noticing that
/26 0 (a+Qan') ¢! 26, |L| 1, (&+Qaa)
’(1 <x> ZA}’) p(ﬁ,‘g’) ‘ S €0+%:e e()'L' <x> 2 |P(‘3/ﬁ/+2L)|
€' / _ ! /
< L @M (e + oyymoeibe Qal gy mien e
bo+IL|=0 07

X <x>m2_p2‘ﬁ| <x + y>mé_p2‘ﬁ/+2]“ <x’ x _|_ y>52‘a+‘x,+Q2|,

where k = |« + &’ + B+ p/| +2(¢1 + £), we obtain

¢ 4! (2Q)! ,
AR Ty P Y oo, C T R
={ 1+Q2=

X (14 ()oY
Co+|L|=¢
% <§>ml1*91|“'\ <x>m2*92|/3| (x + y>mlz*Pz|/3'+2L| (x;x + y>52|'x+“'+Qz\‘

! ) .
m(x)”zm |P|Z1m (& + 06y)™ p1la+Q|



Mathematics 2020, 8, 1938 11 of 23

Now, we proceed with the estimate for L. If |[y| < 271(x), we get
l k ' Y 5 —L
|Ayrel < CHF Pl () ()220 (L4 ()22 2) = ) Il el
therefore, using integration by parts and assuming 2¢ > |mq| + p1|a| 4 2n,

|12| < Cﬁ+1|p|;{n,m’<§>l’1 <x>'f2+(52(2f771)/ .

(%2

For |y| > 471(x)%, we may write

_ L x)%2
12 < 2Tyl + 55,
]:

and then

1 SMSL

2, 2T 1 0% S YA Ty
o W7y < 20T [yl + 25 —) " dy; < CH{x) :
=1

After that, .
|l < CF p I (6)™ ()™,

Finally, we take care of I3. If [y| > 47 !(x), we have (x +y) < 5|y| and (x;x +y) < 9Jy|.
Hence, for |y| > 471 (x), we may write

|Af]17’9| < C%+1|p Em'ml (&) () Imlenlal () ma—palBl |y Im |+ Sz leta’ |+ 205 (¢+-)

and therefore, choosing ¢, {1 € Ny satisfying 2¢ > |my| + p1|a| 4+ 2n and 2¢1(1 — &) > |mh| + d2|a +
| + 26,0 + 2n,

13| < C*p

;{n,m’<€>1—1 <x>m2—p2\ﬁ\—(52n /<n>\m1|+p1\a|—2€d17

% / |y| 7l o2l 202026 (1-82) gy
ly|>4-1(x)
Setting r = 201(1 — &) — |mb| — b2|a + & | — 26,4, we obtain

|I3] < C**p

p @y (e ralBl [ )2y ()1t
Choosing ¢1 such that ¥ > —m + p2|B'| — da|a + a'| +n(1 — &), we get

13| < C*p

@ (0 [ )2,
Gathering all the previous computations and choosing ¢, {1 € Ny satisfying 2¢ > |mq| + p1|a| +2n,
201(1 = &) > 2|mh| + pa| B'| + do|a + &| + 26, + 21,

we have

10 (x, §)| < CElpI7™ (6)™ ()™,
where k = |« + 8+ &’ + p'| +2(¢ + £1). This concludes the proof. [
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Remark 4. Let a € C®(R") such that |8§a(x)| < C5<x>m2"ﬁ|,for B € Nj. For each fixed x, we can look at

a(x + -) as an amplitude in .AE%’;ZD(RZ”) and, for x € /(R"), x(0) =1,

05— e~ Ma(x + )] = O [e 16 o

= lim / / )x(ey)aly)dyiy
=lim [ a(y)x(ey)e ™" F () (e (x —y))dy
= lim [ a(x —ey)x(e(x —ey)) F~ (x) (v)dy

—a(x) [ Fx(w)dy = al).

Theorem 2. Let p(x,& ¥, &) € SG™"

0,(0,6) and set

pr(x,&) = Os — //e*"”yp(x,é—i- n,x+y &dydy, x,¢eR™M

Then, p; € SG;%’E;), p(x,Dy,x',Dy) = pr(x, Dy) and
P~ ¥ Y - (@0D%p) (58 0)
JENg [af=j 7

Furthermore, given £ € Ny, there is £y := o (£) € Ny such that

!
pLlpt < Cz,/z0|P|Z)n'm)

Proof. First, we notice that, repeating the ideas in the proof of [5] (Lemma 2.3, Page 65), we can
conclude that p;, = p as operators.
Applying Lemma 1 for « = &/ = B’ = B = 0, we obtain that p; € SGZf(JBZ;;).
Now, by Taylor formula, we may write

pitnrtyd) = ¥ L@ bxtyd)

tX|<N

N ) ,/ ONTN @ p)(x,C + 6, x +y,8)d6
(=

Integration by parts and Remark 4 give

Os — [e~ "y (3%p) (x,&,x + )] = Os — [~ DL (3p) (x,&, % + 9,8
= (DY) (x,8,%,0)

and
Os—le g [[\(1 = 0N @2p) (5,8 + 0, x-+,£)d6] =
Os — [e™ MY /01(1 — Q)N_l(agDz,p)(x,ff + 65, x+y,8)do).
Hence

P = L @D (080 8) + ra(x,)

la|<N °
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m+ml_N(P_(Or(52))'

/(Oréz) D

and Lemma 1 implies ry € SG

To obtain the same kind of result for the classes SG™ i

0,(062); () W need an analog of Lemma 1
with a precise estimate of the Gevrey regularity.

Lemma 2. Let p € SG™"
0 (0 52) (mv
and for 6 € [—1,1], consider qq as in Lemma 1. Then,

R4 A) for some A > 0. For any multi-indices «, o', B, B/ set g = p™™,
) y 9= Pgp

1989370 (x, )| < [pI4™ (CAT) (alatot)  (BIB/1y) () B2l el gy mipalr (12)

wherek = o +B+o' +p +o+|, ji = (1+pl+2)y+p1v v = 12y +v, 1 and T are as in Lemma 1
and C, r are positive constants depending only on p,5 m,m’, u,vand n.

Proof. Following the ideas presented in the proof of Lemma 1 and using standard factorial inequalities,
we obtain

130(x,&)] < |pIm™ (CAYRO2 0112 (ata 1) (BIB'Y)Y (&)™ (x)2,

where C > 0 depends only of y1,v,n,my, k = |a + B+ &’ + p'| + 2(¢ + £1) and ¢, {; are positive integers
satisfying 2¢ > |mq| + p1|a| + 2n, and

201(1 = 63) > 2|my| + p2|B| + S2|la + &’ | + 2624 + 2n.
In particular, if we choose

(= {'mzlJr 1|oc|J Fn+1,

_ 1 / P2 1 @ /
0= {152 <|m2|+52£+ 5 1B’ + 2\a+zx| +n+1,

where |- | stands for the floor function, then we obtain

g0 (x, )] < |l (CAT) P +F] qufiy/t (% LB (BB (6) (1)
From the last estimate and (10), we get (12). O

As a consequence of Lemma 2, we have the following result.

Theorem 3. Let p € SG™"

4n m+m
0,(0,62); (1 )(]R ). Then, py, belongs to SG o0(0.62); (7,7) and

~ i [ m+m’
¢) jeZN” pi(x,¢) in FSGPr(0,52);(;I,17)’
0

where

pi(x,¢) = ) a7 0Dy p) (%, x,8)

la|=j

and ji and ¥ are as in Lemma 2.

Theorem 3 states that p; has a lower Gevrey regularity than p since ji > y and 7 > v.

However, we observe that, if p € SG‘O o, 52) () then e, pj € FSG’”(JBVZZ) () Thus, by Proposition
m+ ~ m—+m'
1, there exists g € SG 0,(0, 52) (1) such that g ~ Y p; in FSG 0,(0,62): (1) On the other hand, we have

pL ~ L p;inFS" (05 V(i) Hence, pp —q ~ 0in FSG™ ! 0(0.6 ) (ﬁlﬁ),whlch implies that p; = q +r, where r

belongs to the Gelfand Shilov space S;45-1 (R2m). ThlS means that we can write p, as the sum of a
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symbol with the same orders and regularity as p plus a remainder term which has a lower Gevrey
regularity but with orders small as we want. This is a crucial in the applications to the Cauchy problem
for p-evolution equations because in the energy estimates the remainder terms can be neglected and
does not affect the regularity of the solution (cf. [12]).

4. The Friedrichs Part
Fix g € C3(R";R) supported on Q = {o € R" : |o| < 1}, such that g is even, [ g(¢c)?do =1 and

|05q(0)| < CL“‘HMS, where 1 < s < min{y, v}. In this section, we consider y, v > 1.

Lemma 3. For 7,7’ € (0,1), set F : R3 — R given by

T,n

F(x,86,0) = q((x)" (&) (= ONE 2 ()7, (13)
forx,¢,¢ € R". Then, for any a, B € NJ}, we have

agaﬁP(x,C,é) = <x>T;J<§>J7n ) l%ﬁﬁ’mw(‘f)‘f’ﬁhvl(x)
[vI<]al [5]<]B
M=y

X((2)7(E) TTE =M@ ()@ TTE - 0),

where Yoy, and Ppso, satisfy the following estimates:
|ag%7% @) < CW<§>*\a|+(177)\%wlflull (14)

[Okpory, ()] < Cpy () IPHTITm =, (15)
for every p,v € N.
The lemma can be proved by induction on |« + B| following the same argument as in the proof

of [5] [Lemma 4.1 page 129]. Observing that |y — 1| < [y| < [a] we have Yuyy, (§)Ppsyy, (X) €
SG(~Tlel—pl+7ll) (R27)  Finally, we remark that, for « = g = 0, we have Yuym = Ppoyyy = 1.

Definition 11. Let p € SG™. Moreover, let F(x,¢,{) be defined by (13) with T = T = 1. We define the
Friedrichs part of p by

pe(e,,8) = [ (8, Op(+, OF(,E,0)dl, ¥,8,¢ €R"
The following properties can be proved as in [5]. We leave the details to the reader.

Proposition 6. Let p € SG™ and let pr be its Friedrichs part. For u,v € ./ (R"), the following conditions
hold:

(i) Ifp(x, &) is real, then (ppu,v);2 = (4, pro) 2.

(i) Ifp(x,&) >0, then (ppu,u)2 > 0.

(iii) If p(x, &) is purely imaginary, then (ppu,v);2 = —(u, ppv) 2.
(iv) IfRep(x,&) >0, then Re (pru,u);2 > 0.

Theorem 4. Let p € SG™(R?") and let pr be its Friedrichs part. Then, pr; € SG™(R?") and pr —p €
SG"~ (LD (R21). Moreover,

PF,L(X,(;() - p(x,g’,‘) ~ Z qO,,B(xlg) + Z th,ﬁ(xf‘:)r

|Bl=1 la+B|>2
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where, for || =1,

gop(x8) = Y DPpxe) Y W (E)Pps0y (%)

B1+B2+ps=p lyI<IBl1]<Ipl
< Y fpon(x) [ o7 @) (0) (07 ) (0)do,
[6'1<|Bal

With Pgo Pp, 59y € SGUTIBTIBID(RZ) ¢ 5100 € SGOIP2D(R2M) and, for |a + B| > 2:
((2)2 (x)~2)lal

s WP

XY Y Ve (¢ (Y)Y, Ppyro0(x)

1<l [3]<|Bn| |6"|<|Ba]
1=y

qa,ﬁ(xf §) =

< [ I 51) (0) (0 ) (o) dor- DR (x, )
Q

, —1i|,— 1 -
With Ygoy, Pproyy, sG(—zIBl—1Bl+21B]) (R21), Ppr5100 € sG0—IB2l) (R2).
We need the following technical lemma whose proof follows by a compactness argument.

Lemma 4. For T € (0,1), there is C > 0 such that

CHE) < (E+(0)T) < Cle),

forevery § € R" and || < 1.

Proof of Theorem 4. From Leibniz formula and Cauchy-Schwartz inequality, we get
0%0% 08 pr (2, ', &)
1
< an B 2 B "By 2l 2 2
L i | [ g0 " | [ e ol E (e, ¢ ) P
B1+By+Bs=p' 2
Now, by changing variables, we obtain
0%0% a0 pr (2, ', &)

1(x\"2(F)1 agPi —3(x\% 2
<@t T T L R e ) @ P

<| [ 1@getin) <x'>-%<c’>%a+§'><af%p><x’,<x’>-%<5’>%a+¢’>Zda}
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Applying Lemma 3, we obtain
%006 pr (2, ', &)
2
"t
< rae / L L [t @, )@ ) 0] do
Bi+py+py=p T2 M<W 191<IB4
. 2 ! 2
N[ T L [ @0, (o @) @) o () H @ e + )| do
< l6]<185|
1<

We now observe that by Lemma 4

p(, (¢) () o + &)

< Cﬁ,3<§/>m1<x/>mz—\ﬁ’3\‘

Since Payn P oy, € SG(f ~ 11 1+) and Paryy Pphoyy, € SG(J'XT‘fWZH#) we obtain

!
Jac| |a]

' — _ ] _|p )+ el
|aga%’af/p1:(§fx/f€/)|SCM’,B’<€> 2 <€,>m1 2 <xl>m2 B+ ’

my,m;)

(0,0),(
thatis pr € SG(l/2 1,(0,172)° Then, by Theorem 2, pr 1 € SG%/Z,l),(O,l/Z) and

PEL(X,G) ~ Zﬁ,(aﬁDerP (6, x,8) =) Pp
B

N
which implies that prr — Y pp € SGZZ /221() (0)1 /2

|BI<N
study more carefully the above asymptotic expansion. Note that

) for every N € N. To improve this result,

p B b1 B3 B2
prd= L ﬁﬁ1,52,ﬁ3 [ DL g, 0)DE p(x, 0 DEF (x, 8,00
1
= FETRTNI] lP 1( )(P 1 1 lP 20! )
pr+pa po=p P1'B2'P3! \;li@ |5|§X\381I o puém \5’\;\/32\ pasool*

. /Q<D£3p><x, ()2 (x) 20 + &)oY (1) () (37 ) (0)do.

By Taylor formula, we can write

vl

16 of 23

NI

let us
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Then, we get
ﬁl+ﬁ§ﬁ3:ﬁ\a\<N a!Bi!B2!Bs!
x Y Y 0 (O () Y dps00(x)

I8l [6]<]B1 ] [6]<|B2]
1<y

pp(x,¢) =

x /Q PN 04 ()30 g(0) do - 9D p(x, €) + P (%, )
where

% X _% N
() =) Y g% Yo Y U (Dpiorn (X)) Y. dpsoo(x)

B1+Ba+Bs=p |a|=N Iv<IBl |8]<|B1] [6'1<|Ba]
<y

x (/Q NI+ ()97 g (o) /O a — N1 (@DEp) (x,0(0) (x) to + &) dodo.  (16)

Using Lemma 4, we get that r y belongs to SG(m—3(NFIB)m=3(IBHN))  whereas

P1+Bat+Bs=p a!py!Bo!Bs!
XY Y Y (OPpionn () Y Ppasoo(x)

II<IBl |6]<]|B1] [6[<]B2]
1<y

x [T (o) g (o) do - 03D p(x, )

qa,p (x, g) =

belongs to §G "~ 3(al+/8m~31B+a)) Hence,
Y Gup € SG"— 1)
|oc+Bl=j

Then, we can find a symbol #(x, &) such that

H )~ ), Y dup(x?).

J€No [a+p[=/

Since, for every N € N,

- m— % (N+|B|,N "
pp(x,8) — Ialqua,,g(x,g) €SG (%,12),((0,?)’5‘ IED (2ny,

we obtain that pr; — t € . (R?"), and therefore

pEL(XE) ~ Y Y. qup(x0)

jeNo |a+B|=j

To finish the proof, let us analyze more carefully the functions g, 4(x,&) when |« + g| < 1.
First, we notice thatif &« = p = 0, we have gg(x,¢) = p(x, ). If |a| =1 and p =0,

(@) ()%

o!

a0(x,8) = /U"‘q(cr)zda =0,
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because ¢*g?(c) is an odd function. In the case |¢| = 0 and |B| = 1, we have

gop(x &)= Y DPpxd) L $pr (€)Pp50m ()

B1+P2+P3=p [vI<lgl |6]<|B1l
Ir1l<1v]
< o) [ o1 @70g)(0)(0g) (@) do
9/|<1pa|

If [y1| < || in the above formula, we have y; = 0 and |y| = 1, and, since q is even,
@ @)@ ) 0)dr =0, =1,
Therefore,

gp(x &)= Y DPpxd) Y ¥ (©)Ppe0y (%)

Br+B2+B3=p [7I<IBl 16]<|pl
<Y dpsnl®) [ 07 (@79)(0) (07 g) (0)do,
[6"1<[B2|

and by Lemma 3 go 5 € SG™~ (') (R?"). Hence

PF,L(er) - P(X,C) ~ Z QO,ﬁ(xlg) + Z %t,ﬁ(xlg)

BI=1 la+p[>2
and in particular that pp; — p € SG"~(1)(R2"), O
Proposition 6 and Theorem 4 imply the well known sharp Garding inequality.
Theorem 5. Let p € SG™(R?"). If Rep(x, &) > 0, then

Re (p(x,D)u,u);2 > —C||u||2%( ue SR,

m—(1,1))

for some positive constant C.

Proof. Setting g = p — pr. € SG"~ (1) (R2") and recalling that pr and pr; define the same operator,
we may write, by (iv) of Proposition 6:

Re (p(x,D)u,u);2 = Re (q(x,D)u,u);2 + Re (pru,u);2 > Re (q(x, D)u, u);2.
Now, observe that for any s = (s1,s5) € R?

[(q(x, D)u, u) 2| = [((x)" (Dx)q(x, D), (x)"(Dx)""'ut) 2|
< [lg(x, D)ullgs lull - < Cllutll gsm-om el -

Choosing s = 3[(1,1) — m], we conclude that

Re (p(x, D)u,u)p2 = =Clul ,

m—(1,1))"
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To study the Friedrichs part of symbols satisfying Gevrey estimates, we need the Faa di Bruno
formula. Given smooth functions ¢ : R" — R, ¢ = (g1,...,8p), f : R¥ — Rand v € Nj — {0},
we have

ki
{ p 1 ) Jt
a( =L @ N6 TTTT l&,,a&fgxx)] : (17)
j=1i=1 "]
where the sum is taken over all ¢ € N, all sets {d1,...,d,} of £ distinct elements of Nj — {0} and all

(k, ..., k) € (N} —{0})%, such that
4

T= Z |ks|s.

s=1

It is possible to show that there is a constant C > 0 such that

k14 ...+ kp)!
p btk ceni, yen o)

and |k1 + ...+ k¢|! < |y|!, where the summation and ky, ..., k; are as in (17). For a proof of these
assertions, we refer to Proposition 4.3 (Page 9), Corollary 4.5 (Page 11) and Lemma 4.8 (Page 12) of [24].

Letp € SGE’; - We already know that pr € SGE1 )) ((’gl ';12) Now, we want to obtain a precise
information about the Gevrey regularity of pr. By Faa di Bruno formula,

Para((e) bt o) = o T
akatg((8) "2 (1) (¢ é))—axmgk kil k!
Kotk 1 RN I I S ! v
x @) ()2 EC - o) [T F [(5]-'85{<€>‘2<5f@‘>}

B! B1 (k1+...+k, ! x% B
H Lm0 @ il o)

= Z kl
1 5 &

xaﬁzl_[ 2’]—[[5!% (€)2(8i - Cz)}]

_ B! pi!

= Z T ol ﬁﬁ—% 5 B1lpa! M,Zk, AR

% (a(k1+...+kg) (k1+“'+ké’)q)(<§>_%<x>7(€*g))
Ky
X HH Ls" HO TG - Ci,)]

j'=1i'=1
y Ba! 1£I s Wilom [1 5 ) ki
X I a]<x>T 7al{<§>—§(§‘7€')} ,
U’1+...+0'[:‘52 al!"‘gflj_l * -1 5]' ¢ 1 1
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hence
P N P P!
W@ C-D) = L gy kfﬁJ%ﬁﬁl'ﬁz
< ) %<a<"1+~~+"“+(kl+~“«e/>q>(<c> 3(x)2(¢—¢))
T e A
{0 n 1 / 1 1 k//l/ 1 1 K,
X H H |“5l[ M <x>2<x>_2] (&) 2(x)2 (g 751’)} "
j=1i'=1L"j""

(Tl+...+t7[:‘32 Ul
Noticing that (x) 2 (&) -3 |C — &| <1 on the support of g, we have

8% (&) ()30 — )] < ClPI (iprys () 7 1Bl ()~

We now apply the above inequality to estimate the derivatives of F. We have

AR LDl L b @il () daafg((©) 0 - )

o w!Brlag!Bol
B1+B1=B

< G P (atprys(2) 4% () R 1AL
Finally we proceed with the estimates for pr. Denoting
1 _1
Que ={CeR": ()2(5) 2|0 ¢l <1}, x{eRY,
we obtain

1
2
aaaa:aﬁ: ér, xl, 6/
| s P I= /51+ﬁ22+52 ﬁ‘Bl"Bz"B3
<\
Q

</5 Ba+pB ,BMCJ;XS KR 2( ! /'B/'B”) < > "i2|<(:/> =
1 2 =

% (x) Bla+al| =161 +Bh| /
Q
L]

B! lata+p1+B5 [ +2 Ial1al 1\S —‘ﬂzl r— 1l
<ﬁ1+ﬁ§ﬁz ﬁﬁl'ﬁz'ﬁa'cqs (a1 !Bt)*(6)™ 2 (&)

x (x) el [/Igldd@]% e e @+¢>|2d@]

Using Lemma 4 and recalling that s < min{yu, v},

[ %8 F(E, @)ch]

x’,é‘/

(e, )y o (¥,8,0) 2d@]

<c>—3<x’>5d§]

X! &

g

05998, pp| < b+ 41 (a1 ) o B+ A o )

. (0,0),(m1,m7) 4n
which means pr € SG(%J),(O,%);(#W) (R*).

(&) ) (!, @)ng]

20 of 23

(18)
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Now, we discuss the asymptotic expansion of pr, when p € SG’& y)- In the following, we use the
notation of the proof of Theorem 4. We have

peL(x,€) ~ ZPﬁmePSG< 1),0,1):(7,0)"

and, by Lemma 2 and Taylor formula, we may write

ol N
2

|agaZ(PF,L _ Z ﬁﬂ)(xréﬂ < C\9+U|+2N+19!ﬁ0!ﬁN!ﬁ+071<€>m17f,
IBl<N

N

()l 3-8 (19)

forevery 0,0 € Njj, x,¢ € R" and N € N, where fi = 3u + %1/ and 7 = v + 2u. We also have, for every
B€Njand N €N,

— Y dup(x,8) =rgn(x,0).

la| <N
where rg \ is given as in (16).
Changing variables and setting o = ({ — &) (x) 2 <§>’%, we obtain

1

o (38) — N (@3Hx) )V
P pdarsepen @ PilBalfl
XYY sy () Pgioyn (X)), Ppyeroo(x)
\771\<_Il$\ 0] <1B1] |6"|<|B2]
x /Q g((@—¢><x>%<¢>*%>%+"‘+5’+“a'*+5q<<@—¢><x>%<a>*%>a‘5 (T - O (X)) 72)

[ a0 @D ) (60 + (1 0)6) dota) (@) .

By Lemma 3, we get

= ¥ x NG Y
' Bi+BatBs=P |a|= val BilBa!Ba!

x /Qx/g (950 F) (x,8,0) (082 F) (x, £, 0) /0 "1 6)N T @D ) (x, 60 + (1 6)C) 6L,
Now, there exists K > 0 such that

K™Hg) < (00+ (1-0)8) <K(Z), 6] <1,{ € Quex,§ R
Then, using (18), since s < min{y, v}, we obtain
|aga§fﬁ,w(x, oI < C"Y‘HS\+2(N+|,B\)+1,y!;45!1/‘3!s+v—1N!y—l

=yl 258 yma— o= NEE [ ey < g
x (g)ymh=S5E () Jo, @ Hwtao

=Jioj<1 40
N-+|B]

< C\'H—é\+2(N+|ﬁ\)+1,y!;45!v‘315+v—1N!y—l <§>m1—\7\—T (x)m2

(20)

for every 7,5 € Nij, x,& € R" and N € N. Now, by (19) and (20), we get

prL(x,&) ~ 2 Z %5 x,¢) in FSG( 1010
jeNo |a+p|=j
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To improve the above asymptotic expansion, note that, for j > 2,

0288 X qup(x,8)| < CIrHol i lqpugjuetv = (ymaldl=b gyl =4,
|a+B[=j

and
|agai Z qos (x, €)| < C|9+U\+2j+1,),!;45!1/]-!;4+v71 <x>m27\5\71 <€>m17\'y|71,
IBl=1

for every 7,5 € Njj, x,¢ € R", hence

Y Y qup(x8) € Fup)SGLL
j€No |a+pB|=]

whereko = lo =0,k; =y =1, kj = ;= % Then, there exists g € SGE';W) (R?") such that

q(x,8) ~ ) _qup(x,&) in Fy,1)SGP, -
®p

Repeating the argument at the end of Section 3, we can write pr 1 (x,&) = q(x, &) + r(x, ), where r
belongs to the Gelfand-Shilov space S 51 (R?"). Summing up, we obtain the following result.

Theorem 6. Let p € SG’& ”) and pr be its Friedrichs part. Then, we can write pr; = q +r, with
re Sﬁ+g,1<R2n> and

q(x,¢) ~p(x,0)+ Y qop(x, &)+ Y qup(x,8) in Fy,0)SGl,
|B]=1 |la+p|>2

wherekg = g = 0, ky = 61 = 1, kj = {; = % Moreover, the symbols qo5 € SGE';/()LU(RZ”) and

|a+p]
m—=—

Jap € SG an (R?") are the same as in Theorem 4.

Author Contributions: Conceptualization, A.A.J. and M.C.; methodology, A.A.]. and M.C.; formal analysis, A.A.].
and M.C,; investigation, A.A.J. and M.C.; writing—original draft preparation, A.A.J. and M.C.; writing-review and
editing, A.A.J. and M.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The first author would like to thank Fundagdo Araucaria for the financial support during the
development of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Hoérmander, L. Pseudo-differential operators and non-elliptic noundary problems. Ann. Math. 1966, 83, 129-209.
[CrossRef]

2. Lax, PD.; Nirenberg, L. On stability for difference scheme: A sharp form of Garding inequality. Commun. Pure
Appl. Math. 1966, 19, 473-492. [CrossRef]

3. Friedrichs, K.O. Pseudo-Differential Operators; Lecture Note; Courant Inst. Math. Sci. New York Univ.:

New York, NY, USA, 1968.

Hormander, L. The Analysis of Linear Partial Differential Operators III; Springer: Berlin/Heidelberg, Germany, 1985.

Kumano-Go, H. Pseudo-Differential Operators; The MIT Press: Cambridge, UK; London, UK, 1982.

Nagase, M. A new proof of sharp Gérding inequality. Funkc. Ekvacioj 1977, 20, 259-271.

N o U

Cicognani, M.; Colombini, F. The Cauchy problem for p—evolution equations. Trans. Am. Math. Soc.
2010, 362, 4853-4869. [CrossRef]


http://dx.doi.org/10.2307/1970473
http://dx.doi.org/10.1002/cpa.3160190409
http://dx.doi.org/10.1090/S0002-9947-10-05171-8

Mathematics 2020, 8, 1938 23 of 23

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

Cicognani, M.; Reissig, M. Well-posedness for degenerate Schrodinger equations. Evol. Equ. Control Theory
2014, 3, 15-33. [CrossRef]

Ascanelli, A.; Boiti, C.; Zanghirati, L. Well-posedness of the Cauchy problem for p-evolution equations.
J. Differ. Equ. 2012, 253 2765-2795. [CrossRef]

Ascanelli, A.; Cappiello, M. Weighted energy estimates for p-evolution equations in SGclasses. J. Evol. Equ.
2015, 15, 583-607. [CrossRef]

Gelfand, I.M.; Shilov, G.E. Generalized Functions; Academic Press: New York, NY, USA; London, UK, 1967;
Volume 2.

Ascanelli, A.; Cappiello, M. Schrodinger-type equations in Gefand-Shilov spaces. J. Math. Pures Appl.
2019, 132, 207-250. [CrossRef]

Arias, A., Jr.; Ascanelli, A.; Cappiello, M. The Cauchy problem for 3-evolutions equations with data in
Gelfand-Shilov spaces. arXiv 2020, arXiv:2009.10366.

Cappiello, M.; Rodino, L. SG-pseudodifferential operators and Gelfand-Shilov spaces. Rocky Mt. |. Math.
2006, 36, 1118-1148. [CrossRef]

Cordes, H.O. The Technique of Pseudo-Differential Operators; Cambridge Univ. Press: Cambridge, UK, 1995.
Coriasco, S. Fourier integral operators in SG classes.l. Composition theorems and action on SG-Sobolev
spaces. Rend. Sem. Mat. Univ. Pol. Torino 1999, 57, 249-302.

Coriasco, S. Fourier integral operators in SG classes.II. Application to SG hyperbolic Cauchy problems. Ann.
Univ. Ferrara Sez VII 1998, 44, 81-122.

Egorov, Y.V.; Schulze, B.-W. Pseudo-Differential Operators, Singularities, Applications; Operator Theory:
Advances and Applications 93; Birkhduser Verlag: Basel, Switzerland, 1997.

Nicola, F; Rodino, L. Global Pseudo-Differential Calculus on Euclidean Spaces; Birkhauser: Basel, Switzerland,
2010; Volume 4.

Parenti, C. Operatori pseudodifferenziali in R” e applicazioni. Ann. Mat. Pura Appl. 1972, 93, 359-389.
[CrossRef]

Schrohe, E. Spaces of weighted symbols and weighted Sobolev spaces on manifolds. In Proceedings,
Oberwolfach, 1256; Cordes, H.O., Gramsch, B., Widom, H., Eds.; Springer: New York, NY, USA, 1986;
pp- 360-377.

Camperi, I. Global hypoellipticity and Sobolev estimates for generalized SG-pseudo-differential operators.
Rend. Sem. Mat. Univ. Pol. Torino 2008, 66, 99-112.

Cappiello, M.; Gramcheyv, T.; Rodino, L. Sub-exponential decay and uniform holomorphic extensions for
semilinear pseudodifferential equations. Commun. Partial Differ. Equ. 2010, 35, 846-877. [CrossRef]
Bierstone, E.; Milman, P.D. Resolution of singularities in Denjoy-Carleman classes. Sel. Math. 2004, 10, 1.
[CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.3934/eect.2014.3.15
http://dx.doi.org/10.1016/j.jde.2012.08.005
http://dx.doi.org/10.1007/s00028-015-0274-6
http://dx.doi.org/10.1016/j.matpur.2019.04.010
http://dx.doi.org/10.1216/rmjm/1181069407
http://dx.doi.org/10.1007/BF02412028
http://dx.doi.org/10.1080/03605300903509120
http://dx.doi.org/10.1007/s00029-004-0327-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	SG Pseudodifferential Operators
	Oscillatory Integrals and Operators with Double Symbols
	Amplitudes and Oscillatory Integrals
	Operators with Double Symbols

	The Friedrichs Part
	References

