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Abstract: The key objective of this analysis is to examine the flow of hydromagnetic dissipative
and radiative graphene Maxwell nanofluid over a linearly stretched sheet considering momentum
and thermal slip conditions. The appropriate similarity variables are chosen to transform highly
nonlinear partial differential equations (PDE) of mathematical model in the form of nonlinear ordinary
differential equations (ODE). Further, these transformed equations are numerically solved by making
use of Runge-Kutta-Fehlberg algorithm along with the shooting scheme. The significance of pertinent
physical parameters on the flow of graphene Maxwell nanofluid velocity and temperature are
enumerated via different graphs whereas skin friction coefficients and Nusselt numbers are illustrated
in numeric data form and are reported in different tables. In addition, a statistical approach is used
for multiple quadratic regression analysis on the numerical figures of wall velocity gradient and local
Nusselt number to demonstrate the relationship amongst heat transfer rate and physical parameters.
Our results reveal that the magnetic field, unsteadiness, inclination angle of magnetic field and
porosity parameters boost the graphene Maxwell nanofluid velocity while Maxwell parameter has a
reversal impact on it. Finally, we have compared our numerical results with those of earlier published
articles under the restricted conditions to validate our solution. The comparison of results shows an
excellent conformity among the results.

Keywords: graphene maxwell nanofluid; magnetic field; thermal radiation; joule dissipation;
viscous dissipation

1. Introduction

In recent years, the nanofluids problems are attracting noteworthy attention of researchers owing
to promising significance in industry and public endeavour as nanofluids possess the noble heat
transfer characteristics to boost the conventional fluid’s performance. The nanofluid foremost termed
by Choi and Eastman [1] is a stable colloidal assortment of extremely fine non-metallic/metallic particles
(up to 50 nm in radius) in conventional fluids like oil, water, some lubricants, and ethylene glycol,
etc. Addition of extremely fine non-metallic/metallic particles in the conventional fluid influences the
fluid characteristics like heat transfer rate and thermal conductivity [2]. Nanofluids are enormously
useful in broad prospects including energy conversion, microsystem’s cooling (due to change in
heat capacity of base fluid by mixing nano-sized metal oxides/metal particles), nanomedical industry,
sensor and optical devices [3,4]. Nowadays, graphene nanoparticles are acquiring influential scientific
and technological attention with probable applications such as in batteries, miniaturized, solar or
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fuel cells, biomedical sensors and fabrication of supercapacitors. Owing to fast mobility of electrons,
high thermal conductivity, stability, cell growth capability, expanded surface area and biocompatibility
certainties the graphene nanoparticles possess the novel material, physical, electrical and chemical
characteristics [5]. Therefore, it has extensive applications including but not restricted to electronics,
energy sector, sensing outlets, medical sciences, etc. [6]. Upadhya et al. [7] performed the theoretical
investigation of magneto-Carreau fluid by adding the graphene and dust particles into it and observed
that mixture of ethylene glycol and graphene nanoparticles are noteworthy in improving the heat
transport phenomena.

In general, the dispersion of very fine nanoparticles into Newtonian conventional fluid changes
the characteristics of fluid to non-Newtonian. Numerous fluids used in various engineering and
industrial processes are non-Newtonian fluids in characteristics, for instance, molten plastics, polymers,
nuclear fuel slurries, pulps, mercury amalgams, liquid metals, lubrication by heavy oil, etc. Owing to
complex characteristics of these fluids one cannot find a single constitutive equation that reveals all
characteristics of such non-Newtonian fluids. However, several complex constitutive models for the
non-Newtonian fluids are anticipated by a number of researchers, namely, Serdar and Dokuz [8],
Haroun [9], Sajid et al. [10] and Hayat et al. [11], etc. The proposed models are concerned with the
second, third and fourth grade fluids which can estimate the impact of elasticity while these models
are shear independent and unable to envisage the significance of shear relaxation [12]. Moreover,
Maxwell model is proposed for the rate kind fluids which can estimate shear stress relaxation and
consequently developed a popular model among the researchers. These models can also depict the
significance of shear-dependent viscosity of boundary layer problems. Following this, many researchers,
namely, Fetecau and Fetecau [13], Wang and Hayat [14], Fetecau [15], Hayat et al. [16] and Heyhyat
and Khabazi [17] reported their investigations on Maxwell fluid flow problems considering different
geometrical configurations to analyze the significance of different germane parameters on the flow field.

The innovative characteristics of thermal radiation for surface heat transfer cannot be ignored
while considering the industrial processes like electrical power generation, designing of furnace,
production of glass, missiles devices, solar power technology, etc., which occur at high temperature.
In the present industrial scenario due to decrease of conventional energy resources the attention has
been focused on sustainable and renewable energy sources. The main fountain of renewable energy
is solar energy and thermal radiation acts a noteworthy part in transforming the solar energy to the
appropriate form for various applications in industry. Following this, Wang et al. [18] investigated the
significance of thermal radiation on non-Newtonian hydromagnetic stagnation point flow considering
Ohmic heating into account and observed that radiation parameter enhances the heat transfer rate of
fluid. Further, an innovative thermal conductivity model considering dynamic and static approach
was proposed by Nayak et al. [19] to illustrate the thermal radiation impact on Darcy-Forchheimer
nanofluid flow past a rotating disk. Recently, Khan and Alzahrani [20] explored the impacts of
nonlinear thermal radiation, binary chemical reaction and activation energy on stagnation point flow
of hydromagnetic Walter-B nanofluid and noticed that nanofluid temperature gets augmented owing
to enhancement in thermophoresis diffusion coefficient, thermal Biot number and activation energy
parameter. Some recent distinguished research studies mentioning the novel characteristics of thermal
radiation on different types of flow fields can be found in references [21–28].

The viscous dissipation impact is not considered in above described studies as the same is supposed
to be low but its relevance in food processing, instrumentations, lubrications, polymer manufacturing,
etc., is noteworthy as it enhances the characteristics of temperature distribution and consequently induce
the heat transfer rate. Some important studies dealing with viscous dissipative flow problems induced
by stretched sheets are reported in literature [29–32]. Further, Joule dissipation shows the characteristics
alike to volumetric heat source in magnetohydrodynamic fluid flows and the collective influence of
Joule and viscous dissipations are imperative in context of heat-treated materials. Following this,
several researchers including Daniel et al. [33], Seth and Singh [34] and Seth et al. [35] modelled their
problems considering the impacts of Joule and viscous dissipations. Abbas et al. [36] studied the
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entropy optimized, dissipative and hydromagnetic Darcy-Forchheimer flow of propylene glycol based
nanofluid past a stretched sheet and numerical results are computed using Built-in-Shooting Technique.
Wang et al. [37] worked on irreversibility characteristics in hydromagnetic entropy optimized nanofluid
flow by variable thick surface subject to viscous dissipation and Joule heating. Flow behaviour of entropy
optimized hydromagnetic micropolar Casson-nanofluid subject to Joule-heating, viscous dissipation
and nonlinear thermal radiation was scrutinized by Nayak et al. [38]. Recently, Ibrahim and Khan [39]
explored the impacts of viscous dissipation on the mixed convective flow of MWCNT and SWCNT water
driven nanofluids in a porous medium past a stretched sheet.

A meticulous review of research papers reported in literature reveals that the majority of researchers
have considered the no-slip conditions in their investigations and have ignored the slip conditions.
But, in many physical problems such as low-pressure flows, micro/nano-scale flows, flow over coated
surfaces, etc. Navier’s partial slip took place. Owing to this reason, Mukhopadhyay and Gorla [40],
Singh and Makinde [41] and Seth et al. [42,43] studied boundary layer hydromagnetic fluid flow
problems taking partial slip conditions into account. Some novel published articles dealing with the
latest advancements in aforesaid fields are listed in references [44–50].

The present study is mainly concentrated to unfold the significance of thermal radiation, Joule and
viscous dissipations on the flow of graphene Maxwell nanofluid past a linearly horizontal stretched
sheet under the momentum and thermal slip conditions. The highly complex prevailing equation
of the problem is numerically solved employing Runge-Kutta-Fehlberg algorithm along with the
shooting scheme. Further, a statistical approach is followed for multiple regression estimation analysis
on numerical figures of wall velocity gradient and local Nusselt number. A careful review of research
papers reported in literature reveals that none of the authors has attempted this problem earlier
although the thoughts, methodology and results explained in this paper can be useful in electronics,
energy sector, sensing outlets and medical sciences, etc.

2. Formulation of Problem in Mathematical Form

In this problem, we have considered flow of an incompressible, optically dense radiative,
two-dimensional stream line and electrically conductive non-Newtonian Maxwell graphene nanofluid
over a linearly stretched sheet as displayed in Figure 1. The nanofluid is prepared by dispersing
graphene nanoparticles into ethylene glycol. It is assumed that the graphene nanoparticles are having
unvarying shape and size. In addition, ethylene glycol and graphene nanoparticles are presumed in
thermal equilibrium state as well no-slip happens between them. The thermophysical properties of
ethylene glycol and graphene nanoparticles are provided in Table 1.
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Table 1. Thermophysical properties of Ethelene glycol and graphene nanoparticles [51,52].

Thermo-Physical Properties K (W/mK) cp (J/kgK) ρ (kg/m3) σ (S/m)

Ethelene glycol 0.252 2415 1114 5.5 × 10−6
Graphene 2500 2100 2250 1 × 107

The two-dimensional Cartesian coordinate system is chosen to portray the flow geometry of
nanofluid. The linear stretching sheet is aligned in x-direction while y-axis is upright to the stretching
sheet. The nanofluid is induced over a stretching sheet owing to the unsteady magnetic field
B(t) = B0(1− αt)−1/2 exerted along y- axis and flow-field is confined in the domain y > 0. Further,
following Cramer and Pai [53] the tempted magnetic field influence is presumed to be ignorable in
comparison to exerted magnetic field. The optically thick radiative Maxwell nanofluid is considered,
therefore, Rosseland approximation is taken into account to do the mathematical model of the
problem [23]. Moreover, the considered sheet is anticipated to be shrunk owing to two opposite but
equal forces with time dependent velocity Uw(x, t) = cx(1− αt)−1, where c and (1− αt)−1 (here αt < 1)
are respectively initial and notable stretching rate. The wall temperature of nanofluid is considered Tw

while the temperature outside the boundary regime is known as free stream and is denoted by T∞.
Owing to assumption made in this problem, the prevailing mathematical equations of momentum

and energy for graphene Maxwell nanofluid are reduced to (for descriptions, see Mukhopadhyay [54]):
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The allied conditions for the physical problem are:

u1(x, 0) = Uw(x, 0) + s
µn f

ρn f

∂u1

∂y
, u2 = 0, T(x, 0) = Tw + D

∂T
∂y

, (4)

u1 → 0, T→ T∞ when y→∞. (5)

In Equations (1)–(5), notations u1 and u2 represent the graphene Maxwell nanofluid
velocities along the x-direction (primary velocity) and y-direction (secondary velocity) respectively.
T, µn f , σn f , kn f , ρn f and

(
ρcp

)
n f

are respectively used to represent the temperature, dynamic viscosity,

electrical conductivity, thermal conductivity, density and specific heat capacitance of graphene Maxwell
nanofluid. The relation λ = λ0(1− αt) represents the thermal relaxation, wherein λ 0 reflects the initial
relaxation rate while K = K0(1− αt) is the porosity parameter. The angle of inclination of exerted
magnetic field in anti-clockwise sense from stretching surface is indicated by γ. The thermal radiative
heat flux of graphene Maxwell nanofluid is mentioned by qr while slipping factor is represented
by relation s = s0

√
1− α t where s0 is used to indicate the slip parameter at t = 0. The relation

D = D0(1− αt) presents the slipping factor of fluid temperature where D0 is the thermal slip parameter
at t = 0.

By making use of Rosseland approximation (for explanation, see Brewster [55]), for an optically
thick radiative graphene Maxwell nanofluid, thermal radiative heat flux qr takes the following form:

qr +
4σ∗

3k∗
∂T4

∂y
= 0. (6)
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Here, σ∗ is Stefan-Botzmann constant and k∗ signifies absorption coefficient.

3. Numerical Solution of Problem

The aforesaid physical problem consists of a set of coupled partial differential equations. So,
to analyze the solution of these equations, foremost, we have introduced the stream functions ψ
along with the similarity variable η to transform Equations (2)–(6) in the form of ordinary differential
equations as under:

u1 =
∂ψ

∂y
, u2 = −

∂ψ

∂x
, (7)

ψ =

√
cν f

1− αt
x f (η), θ =

T − T∞
Tw − T∞

and η =
√

c
(1− αt)ν f

y. (8)

By making use of above relations (7)–(8), the prevailing set of mathematical Equations (2)–(6) is
reduced to below mentioned dimensionless forms:

φa
f ′′′

φb
+ β

(
2 f f ′ f ′′ − f 2 f ′′′

)
−A

(
f ′ +

η

2
f ′′

)
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(
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)
+

{
K1 +

φe
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M sin2(γ)

}
f ′ = 0, (9)
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2
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φa

φc
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)
= 0. (10)

Associated conditions are:

A1 f ′′ (0) + f ′(0) = 1, f (0) = 0, ε θ′(0) + θ(0) = 1, (11)

asη→∞, f ′(η)→ 0, θ (η)→ 0, (12)

where
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(13)

In above expressions, ρ f is the base fluid’s density, µ f is the viscosity of Maxwell fluid (base fluid),
ks represents thermal conductivity of graphene particles, k f represents the thermal conductivity
of Maxwell fluid (base fluid), σs represents the electrical conductivity of graphene nanoparticle,
σ f represents the electrical conductivity of ethylene glycol, A = α

c is unsteadiness parameter,φ embodies

volume fraction of nanoparticle in nanofluid, β = cλ0 denotes Maxwell parameter, M =
σ f B2

0
cρ f

presents

magnetic parameter, K1 =
ν f
cK denotes the porous medium parameter, Pr =

ν f
α f

indicates the thermal

diffusivity parameter, Nr = 16
3

σ∗T3
∞

k∗ν f (ρcp) f
implies radiation parameter, Ec = U2

w

(cp) f (Tw−T∞)
is local Eckert

number demonstrations, A1 = s0

√
c
ν f

denotes velocity slip parameter and ε = D0

√
c
ν f

represents

thermal slip parameter.
From engineering applications view point, the expressions for S f characterizes skin friction

coefficient and local Nusselt number Nux are defined as:
S f =

τw
ρ f U2

w
, Nux =

xqw
k f (Tw−T∞)

, where τw and qw are respectively presented as:
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∂
∂y

(
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The dimensionless form of skin friction coefficient and Nusselt number are expressed as:

S f
√

Rex = (1− f )−2.5{ f ′′ (0) − λ1 f (0) f ′′′ (0) + λ1 f ′(0) f ′′ (0)
}
,

Nu = −(1 + Nr) fd
√

Rexθ′(0),

}
(15)

where λ1 = λ0c is the fluid relaxation parameter and Rex =
xUw(x, t)

ν f
is the local Reynolds number.

3.1. Implementation of Numerical Method

Owing to complexity and highly nonlinear nature of the equations mentioned in Section 3,
the equations cannot be solved analytically. Therefore, we have analyzed the numerical solution
by making use of one of the reliable numerical method i.e., Runge-Kutta-Fehlberg method in
combination with the shooting technique. Foremost, we have transformed the dimensionless form of
Equations (9) and (10) into the set of five first order differential equations. Furthermore, algorithm of
Runge-Kutta-Fehlberg is instigated to solve these differential equations where the initial functional
values i.e., f ′′ (0) and θ′(0) are obtained by means of shooting technique. The value of the similarity
variable η is chosen as η = 7 aimed at infinity boundary conditions whereas the step size is considered
as 0.001 during the numerical computation. To achieve precise results the tolerance error is taken as
10−6. The complete method is repeated till the anticipated correctness in the results is attained.

3.2. Validation of Numerical Solution

In this subsection, we have validated the obtained numerical solutions and correctness of
implemented algorithm of numerical method as mentioned in Section 3.1 by comparing our results
of − f ′′ (0) for varying unsteadiness parameter A and Pr = 0.1 with those of Elbashbeshy and
Bzid [56] and is shown in Table 2. An excellent conformity among both results can be seen in the
comparison which validates the correctness of obtained numerical solution and implemented algorithm
of numerical method.

Table 2. Comparison of − f ′′ (0) with Elbashbeshy and Bzid [56] when β = M = K1 = Ec = A1 = ε = 0.

Pr/A 0.1

Elbashbeshy and Bzid [56] Present Result

0.8 1.3321 1.3333
1.2 1.4691 1.4684
2 1.7087 1.7090

4. Results and Discussion

In this section, the obtained numerical solution by means of the method reported in Section 3
is presented to illustrate the significance of influencing physical parameters such as magnetic
parameter (M), porosity parameter (K1), inclination angle of magnetic field (γ), Maxwell parameter (β),
unsteadiness parameter (A), thermal radiation parameter (Nr), Eckert number (Ec) and thermal slip
parameter (ε) on the flow field. Throughout the numerical computation, values of various parameters
are chosen as: radiation parameter Nr = 0.2, Prandtl number Pr = 5, unsteadiness parameter A = 0.1,
thermal slip parameter ε = 0.1, Eckert number Ec = 0.1, angle of inclination of magnetic field
γ = π/3, magnetic parameter M = 1, Maxwell parameter β = 0.5 and porosity parameter K1 = 0.1.
These values remain unchanged throughout the analysis while varying values of parameters are
specified in respective figures. Figures 2–6 demonstrate the impact of magnetic field, porous medium,
inclination angle of magnetic field, Maxwell and unsteadiness parameters on the velocity of graphene
Maxwell nanofluid whereas Figures 7–10 describe the significance of thermal radiation, inclination angle
of magnetic field, thermal slip parameter and viscous dissipation on the temperature of graphene
Maxwell nanofluid. In depicted figures, solid lines indicate the impact of pertinent flow parameters
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under no-slip condition while dashed lines denote the impact under slip condition. Figure 2 exhibits
that graphene Maxwell fluid velocity decreases because of the increase in magnetic field parameter (M)

under both slip (A = 0.3) and no-slip (A = 0) velocity conditions. This type of behaviour happens
due to resistive Lorentz force, which gets enhanced owing to the increase of magnetic field strength.
Figure 3 portrays the porosity parameter (K1) effect on nanofluid velocity. It is seen that nanofluid fluid
velocity gets reduced due to upsurge in porosity parameter. Physically it is interpreted as the increasing
values of K1 results the enhancement in resistance of fluid and as a consequence the nanofluid velocity
gets reduced. It is clearly manifest from Figure 4 that enhancement in angle of exerted magnetic
field (γ) from stretching sheets results in slowing down nanofluid fluid velocity. This infers that,
inclination angle of exerted magnetic tends to retard the graphene Maxwell nanofluid velocity and
when the magnetic field is imposed in the transverse direction to the stretched sheet then the strength
of resistive force is optimum. This optimum resistive force termed as Lorentz force which suppresses
the fluid motion. So, in practical situations if it is required to augment the motion of fluid velocity
then instead of exerting the magnetic field in transverse direction it may be exerted along the flow
direction. Therefore, the graphene Maxwell nanofluid can be augmented or retarded by altering the
inclination angle of exerted magnetic field. The intensification in graphene Maxwell nanofluid velocity
can be seen owing to increasing values of Maxwell parameter (β) whereas it gets diminished because
of unsteadiness parameter (A) increasing values, as revealed from Figures 5 and 6. Here, the graphene
nanofluid profiles are declined with improving values of unsteadiness parameter and consequently
reduces the momentum boundary layer thickness. This behaviour of fluid velocity is due to lessening
in fluid yield stress in the regime of boundary layer. Further, it is to be noted from Figures 2–6 that in
case of no-slip condition the graphene Maxwell nanofluid velocity is higher than that of slip condition.
Figure 7 exhibits that the graphene Maxwell nanofluid fluid temperature is getting improved due
to augmentation of radiation parameter (Nr). It is because of the physical nature of radiation that it
upsurges the conduction influence of fluid and therefore, thermal boundary layer gets more thicken and
in turn fluid temperature gets reduced. Figure 8 shows that graphene Maxwell nanofluid temperature
is improved due to increase in inclination angle of magnetic field. This tendency divulges improvement
in boundary layer thickness and reduction in the rate of heat transfer at the boundary. It is apparent
from Figure 9 that by increasing the Eckert number (Ec), the graphene Maxwell nanofluid temperature
can also be increased. The reason behind this behaviour of graphene Maxwell nanofluid is that Eckert
number relates the kinetic energy to enthalpy and the total work is done against viscosity where
the kinetic energy is converted into internal energy. Hence, viscous dissipation has a nature to raise
temperature of fluid in whole boundary layer regime. Figure 10 presents that thermal slip parameter
ε has reducing influence on the graphene Maxwell fluid temperature. Reason for this tendency of
fluid temperature is that due to increment in thermal slip parameter, a reduced amount of heat flows
from surface to the fluid and subsequently temperature is reduced. Further, it is to be noted from
Figures 7–10 that in case of no-slip condition the graphene Maxwell nanofluid temperature is higher
than that of slip condition.

Owing to engineering interest viewpoint, we have also computed the numerical date of coefficient
of skin friction and Nusselt number for various values of related flow parameters and have presented
in tabular form via Tables 3 and 4 respectively. During the computation, we have chosen radiation
parameter Nr = 0.2, Prandtl number Pr = 5, unsteadiness parameter A = 0.1, thermal slip parameter
ε = 0.1, Eckert number Ec = 0.1, inclination angle of magnetic field γ = π/3, magnetic parameter
M = 1, Maxwell parameter β = 0.5, and porosity parameter K1 = 0.1. These mentioned values are
considered unchanged during the computation while other varying values are shown in tables. It is
apparent from Table 3 that skin friction coefficient is augmented at the stretched sheet under both slip
and non-slip conditions due to upsurge in magnetic effect, porosity of nanofluid, inclination angle
of magnetic field and unsteadiness parameters while Maxwell parameter has adverse impact on it.
Table 4 discloses that heat transfer rate gets enhanced owing to increase in radiation, inclination angle
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of magnetic field and thermal slip parameters whereas it gets reduced due to increase in viscous
dissipation and unsteadiness parameters.
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Table 3. Skin friction coefficient under both no-slip (A1 = 0) and slip (A1 = 0.3) conditions.

M K1 γ β A
−Sf (Skin Friction Coefficient)

A1 = 0 A1 = 0.3

0.5 0.1 π/3 0.5 0.1 0.787368 0.570581
1.0 0.882124 0.625921
1.5 0.967012 0.673289

0.1 0.882131 0.625924
0.5 0.972382 0.676269
0.9 1.054564 0.719928

π/4 0.820281 0.590109
π/3 0.882134 0.625925
π/2 0.939652 0.658243

0.3 0.882143 0.625921
0.4 0.876278 0.624838
0.5 0.866132 0.623478

0.1 0.889234 0.629462
0.5 0.955132 0.666434
0.9 1.017879 0.700464

Table 4. Heat transfer rate at the stretched sheet under both no-slip (A1 = 0) and slip (A1 = 0.3) conditions.

Nr γ Ec ε A
−Nu (Nusselt Number)

A1 = 0 A1 = 0.3

0.1 π/3 0.1 0.1 0.1 1.793821 1.782463
0.3 1.609543 1.569712
0.5 1.352834 1.286441

π/4 1.595722 1.519971
π/3 1.493398 1.439751
π/2 1.396055 1.366131

0.10 1.493372 1.439730
0.25 0.680023 0.656432
0.40 0.580083 0.473145

0.10 1.493371 1.439731
0.25 1.215083 1.201544
0.40 1.024223 1.030946

0.1 1.493362 1.439734
0.4 1.341263 1.253533
0.7 1.157033 0.995855
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5. Multiple Regression Analysis: Estimation of Nusselt Number and Skin Friction Coefficients

In this section, we have used a statistical method for the multiple quadratic regression analysis
to estimate the relationship between two or more variables. Generally, regression analysis is useful
to know how a precise value of a dependent variable behaves because of the modification of an
independent variable while other independent variables are kept fixed. Here, quadratic regression
estimation analysis for skin friction coefficients and Nusselt number are reported. The model of
multiple quadratic regression estimation for coefficient of skin friction is mentioned for 125 different
values of M and K1, obtained arbitrarily from intervals [1, 7] and [0.1, 0.5] respectively for two different
values of β = 0.1 and β = 0.5. Apart from this, a model of multiple quadratic regression estimation for
Nusselt number is provided for 125 different values of Ec and Nr, analyzed arbitrarily from intervals
[0.1, 0.3] and [0.2, 0.6] for two different values of Pr = 5 and Pr = 10. During the estimation process,
other parameters are considered constant as stated in above Section 4.

The estimated quadratic regression model for C fxRe1/2
x corresponding to M and K1 is given as follows:

C fest = C f + b1M + b2K1 + b3M2 + b4K2
1 + b5M K1. (16)

While the regression formula for NuRe1/2
x corresponding to Eckert number Ec and thermal

radiation parameter Nr is given as

Nuest = Nu + c1Ec + c2Nr + c3(Ec)2 + c4(Nr)2 + c5Ec Nr. (17)

Tables 5 and 6 present the coefficients of multiple quadratic regression estimated values of skin friction
coefficients and Nusselt number corresponding to different parameters. The maximum relative error
bound for skin friction i.e., ε =

∣∣∣C fest −C f
∣∣∣/C f and for Nusselt number i.e., ε1 = |Nuest −Nu|/Nu are also

obtained and presented in Tables 5 and 6, respectively. From the tabulated values, we noticed that the
coefficient of permeability of porous medium parameter is higher than that of magnetic field parameter.
This suggests that the variation in skin friction coefficient is more sensitive to permeability parameter K1

than that of magnetic field parameter M for both values of β. Correspondingly, we can observe that the
Nusselt number is more prone to radiation parameter Nr as compared to Eckert number Ec.

Table 5. The values of error bound ε and coefficients of multiple quadratic regression for estimated
C fxRe1/2

x due to variations in M and K1 are obtained as.

β Cf b1 b2 b3 b4 b5 ε

0.1 −0.9221 −0.2183 −0.3291 0.0072 0.0373 0.0228 0.0057
0.5 −0.9154 −0.2181 −0.3192 0.0069 0.0475 0.0182 0.0062

Table 6. The values of error bound ε and coefficients of multiple quadratic regression for estimated
Nu Re1/2

x due to variations in Ec and Nr are analyzed as.

Pr Nu c1 c2 c3 c4 c5 ε1

5 −3.0414 1.2812 −2.6633 −0.1794 1.0632 1.1211 0.000001061
10 −4.0872 1.9613 −4.0411 0.0701 2.0577 1.5837 0.000026912

6. Conclusions

Owing to noteworthy applications in electronics, energy sector, sensing outlets and medical
sciences, in this study, we have investigated the significance of thermal radiation and viscous dissipations
on the flow of hydromagnetic graphene Maxwell nanofluid past a linearly horizontal stretched sheet
taking momentum and thermal slip conditions into account. Some significant conclusions of the study
are summarized as follows:
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• The graphene Maxwell nanofluid velocity gets reduced owing to enhancement in magnetic field,
inclination angle of magnetic field, porosity and unsteadiness parameters whereas behaviour of
fluid velocity gets reversed due to Maxwell parameter.

• The slip parameter, thermal radiation and viscous dissipation play a significant role to control the
temperature of nanofluid.

• The shear stress at the stretched sheet is more sensitive to permeability of the porous medium as
compared to magnetic field effect whereas rate of heat transfer is more prone to thermal radiation
parameter as compared to viscous dissipation.

• By controlling the thermal radiation, unsteadiness and thermal slip parameters the heat transfer
rate can be maintained, which is very useful in manufacturing industries.
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