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Abstract: Using the generalized stationary renewal distribution (also called the equilibrium
transform) for arbitrary distributions with a finite non-zero first moment, we prove moment-type
error-bounds in the Kantorovich distance for the exponential approximation to random sums of
possibly dependent random variables with positive finite expectations, in particular, to geometric
random sums, generalizing the previous results to alternating and dependent random summands.
We also extend the notions of new better than used in expectation (NBUE) and new worse than used
in expectation (NWUE) distributions to alternating random variables in terms of the corresponding
distribution functions and provide a criteria in terms of conditional expectations similar to the classical
one. As corollary, we provide simplified error-bounds in the case of NBUE/NWUE conditional
distributions of random summands.

Keywords: Rényi theorem; Kantorovich distance; zeta-metrics; Stein’s method; stationary
renewal distribution; equilibrium transform; geometric random sum; characteristic function; NBUE,
NWUE distributions

1. Introduction

According to the generalized Rényi theorem, a geometric random sum of independent identically
distributed (i.i.d.) nonnegative random variables (r.v.’s), normalized by its mean, converges in
distribution to the exponential law when the expectation of the geometric number of summands
tends to infinity. Some numerical bounds for the exponential approximation to geometric random
sums, as well as their various applications, can be found in the classical monograph of Kalashnikov [1].
Peköz and Röllin [2] developed Stein’s method for the exponential distribution and obtained
moment-type estimates for the exponential approximation to geometric and non-geometric random
sums with non-negative summands completing Kalashnikov’s bounds in the Kantorovich distance.
Their method was substantially based on the equilibrium transform (stationary renewal distribution)
of non-negative random variables, hence yielding the technical restriction on the support of the
random summands under consideration. Moreover, Peköz and Röllin considered dependent
random summands with constant conditional expectations and presented some error-bounds in
this case. The present authors extended Stein’s method to alternating (i.e., taking values of both
signs) random summands by generalizing the equilibrium transform to distributions with arbitrary
support, and obtained moment-type estimates of the accuracy of the exponential approximation for
geometric and non-geometric random sums of independent alternating random variables. The same
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paper [3] contains a detailed overview of the estimates of the exponential approximation to geometric
random sums.

The aim of the present work is to extend the results of [3] to dependent random summands with
constant conditional expectations, also generalizing the results of [2] to alternating random summands.

Recall that the Kantorovich distance ζ1 between probability distributions of r.v.’s X and Y with
distribution functions (d.f.’s) F and G is defined as a simple probability metric with ζ-structure
(see [1,4]) as

ζ1 (F, G) ≡ ζ1 (L (X) , L (Y)) ≡ ζ1 (X, Y) := sup
h∈Lip∞

1

∣∣∣∣∫R h dF−
∫
R

h dG
∣∣∣∣ , (1)

where Lip∞
c =

{
h ∈ Lipc | h is bounded

}
and

Lipc :=
{

h : R→ R
∣∣∣ |h(x)− h(y)| ≤ c |x− y| ∀x, y ∈ R

}
, c > 0.

If both X and Y are integrable, then ζ1 (X, Y) < ∞ and the supremum in (1) can be taken over
a wider class Lip1 of Lipschitz functions. In this case, according to the Kantorovich–Rubinshtein
theorem, ζ1 allows several alternative representations

ζ1 (F, G) = min
L (X′ ,Y′) : X′ d

=X, Y′ d
=Y

E|X′ −Y′| =
∫ 1

0

∣∣∣F−1(u)− G−1(u)
∣∣∣ du =

∫ ∞

−∞
|F(x)− G(x)| dx, (2)

where F−1 and G−1 are generalized inverse functions of F and G, respectively.
We will use a generalized equilibrium transform that was introduced and studied in [3]. Given a

probability distribution of a r.v. X with d.f. F and finite a := EX 6= 0, its equilibrium transform is
defined as a (signed) measure L e(X) on (R,B) with the d.f.

Fe(x) :=


−1

a

∫ x

−∞
F(y) dy, if x ≤ 0,

−EX−

a
+

1
a

∫ x

0
(1− F(y)) dy, if x > 0.

(3)

Observe that L e(X) is absolutely continuous (a.c.) with respect to (w.r.t.) the Lebesgue measure
with the density

pe(x) =

{
− 1

a F(x), if x ≤ 0,
1
a (1− F(x)), if x > 0.

(4)

The characteristic function (ch.f.) of L e(X) can be expressed in terms of the original ch.f. f of r.v.
X as

f e(t) :=
∫
R

eitxdFe(x) =
f (t)− 1
t f ′(0)

=
f (t)− 1

ita
, if t 6= 0, and f e(0) = 1. (5)

If X is nonnegative or nonpositive almost surely (a.s.), then L e(X) is a probability distribution
and it is possible to construct a r.v. Xe ∼ L e(X).

Below, we list some other properties of the equilibrium transform (see ([3], Theorem 1) for details
and proofs) which will be used in the present work:

Homogeneity. For any r.v. X with finite EX 6= 0 and d.f. FX we have

(FcX)
e(x) = Fe

X(x/c), for all c ∈ R \ {0}, x ∈ R. (6)
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Moments. If E|X|r+1 < ∞ for some r > 0, then for all k ∈ N∩ [1, r] we have

∫
R

xk dFe(x) =
EXk+1

(k + 1)EX
,

∫
R
|x|r dFe(x) =

EX|X|r
(r + 1)EX

. (7)

We will also use the following inequality from ([3], Theorem 3), which states that the Kantorovich
distance to the exponential law is no more than twice greater than distance to the equilibrium transform.

Lemma 1. Let X be a square integrable r.v. with EX = 1 and E ∼ Exp(1). Then,

ζ1(X, E ) ≤ 2 ζ1
(
L (X) , L e(X)

)
, (8)

where L e(X) is the equilibrium transform of L (X).

The r.-h.s.’s of (8), in turn, can be bounded from above by the second moment EX2 in the following
way.

Lemma 2 (see Theorem 2 and Remark 2 in [3]). For any square-integrable r.v. X with EX 6= 0,

ζ1
(
L (X) , L e(X)

)
≤ 1

2
· EX2

|EX| − |EX| · P (X · sign EX ≤ 0) . (9)

Note the presence of the Kantorovich distance between L (X) and possibly signed measure
L e(X) on the r.-h.s.’s of (8) and (9), which requires some extra explanation. As described in [3], it is
defined in terms of d.f.’s in the same way as for probability measures in (1) and allows an alternative
representation as an area between d.f.’s of its arguments (similar to the last expression in (2)). Moreover,
this generalization retains the property of the homogeneity of order 1 (see ([3], Lemma 1)). Namely,
if F and G are d.f.’s of (signed) Borel measures on R with F(+∞) = G(+∞) and Fc(x) := F(cx),
Gc(x) := G(cx), x ∈ R, c > 0, then

ζ1(Fc, Gc) =
1
c

ζ1(F, G). (10)

Using the above notation and techniques, we prove moment-type error bounds in the Kantorovich
distance for the exponential approximation to random sums of possibly dependent r.v.’s with positive
finite expectations (Theorem 1), which generalize the results of [2] to alternating random summands
and results of [3] to dependent random summands.

Moreover, we extend the definitions of new better than used in expectation (NBUE) and new worse than
used in expectation (NWUE) distributions to alternating random variables in terms of the corresponding
d.f.’s and provide a criteria in terms of conditional expectations similar to the classical one (Theorem 2).
Finally, we provide simplified error-bounds in cases of NBUE/NWUE conditional distributions of
random summands, generalizing those obtained in [2].

2. Main Results

Lemma 3. Let X1, X2, . . . be a sequence of random variables, such that for every n ≥ 2 there exists
a regular conditional probability L (Xn | X1, . . . , Xn−1) with the constant conditional expectation an :=
E (Xn | X1, . . . , Xn−1) ∈ (0,+∞). Let Sn := ∑n

i=1 Xn for n ∈ N, S0 := 0 and N be a N0 ≡ N∪ {0}-valued
r.v., independent of {X1, X2, . . .}, with

A := ESN =
∞

∑
n=1

an P(N ≥ n) < +∞.
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Then the characteristic function of L e(SN) is

f e
SN

(t) =
∞

∑
m=1

P(M = m) E
(

eitSm−1 · f e
m (t | X1, . . . , Xm−1)

)
, t ∈ R, (11)

where M is an N-valued r.v. with

P(M = m) =
am

A
P(N ≥ m), m ∈ N,

and f e
n (t | x1, . . . , xn−1) is the characteristic function of the equilibrium transform

L e(Xn | X1 = x1, . . . , Xn−1 = xn−1) of the conditional distribution L (Xn | X1 = x1, . . . , Xn−1 = xn−1).
Or, in terms of (conditional) distribution functions,

Fe
SN

(x) =
∞

∑
m=1

P(M = m)
∫
Rm−1

Fe
m(x− x1 − . . .− xm−1 | x1, . . . , xm−1) dF(x1, . . . , xm−1), (12)

where F(x1, . . . , xm) denotes the joint d.f. of X1, . . . , Xm and Fe
m(x | x1, . . . , xm−1) denotes the conditional

d.f. of L e(Xm | X1 = x1, . . . , Xm−1 = xm−1), m ∈ N. Here, and in what follows, we assume that
f e
m (t | X1, . . . , Xm−1) and Fe

m(x | x1, . . . , xm−1) for m = 1 denote unconditional ch.f. and d.f. of L e(X1). A
similar notation will be used for other characteristics of distributions.

Remark 1. If X1, X2, . . . are independent, then (11)–(12) reduces to the single summand property of the
equilibrium transform (see (Equation (30), [3]).

Remark 2. If all Xn ≥ 0 a.e. and M is independent of {X1, X2, . . .}, then (11)–(12) can be expressed in terms
of random variables as

Se
N

d
= SM−1 + ZM,

where the sequence {Z1, Z2, . . .} is independent of M and the conditional distribution of Zn given X1, . . . , Xn−1

coincides with L e(Xn | X1, . . . , Xn−1).

Proof. According to ([3], Lemma 2), for every t ∈ R and n ∈ N we have

n

∏
k=1

eitXk − 1 =
n

∑
k=1

(
eitXk − 1

) k−1

∏
j=1

eitXj ,

where ∏0
j=1 . . . ≡ 1. By applying (5) twice, we obtain for t 6= 0

f e
SN

(t) =
fSN (t)− 1
t f ′SN

(0)
=

1
itA

∞

∑
n=1

P(N = n) E
( n

∏
k=1

eitXk − 1
)
=

=
∞

∑
n=1

P(N = n)
n

∑
k=1

E

(
eitXk − 1

itA

k−1

∏
j=1

eitXj

)
=

=
∞

∑
k=1

ak
A

P(N ≥ k) E

(
eitXk − 1

itak

k−1

∏
j=1

eitXj

)
=

=
∞

∑
k=1

P(M = k) E
(

eitSk−1 E
(

eitXk − 1
itak

∣∣∣∣ X1, . . . , Xk−1

))
=

=
∞

∑
k=1

P(M = k) E
(

eitSk−1 f e
k (t | X1, . . . , Xk−1)

)
.
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Theorem 1. Let X1, X2, . . . be a sequence of random variables, such that for every n ≥ 2 there exists
a regular conditional probability L (Xn | X1, . . . , Xn−1) with the constant conditional expectation an :=
E (Xn | X1, . . . , Xn−1) ∈ (0,+∞). Let Sn := ∑n

i=1 Xn for n ∈ N, S0 := 0 and N be a N0-valued r.v.,
independent of {X1, X2, . . .}, with

A := ESN =
∞

∑
n=1

an P(N ≥ n) < +∞.

Let E ∼ Exp(1), W := SN/ESN = SN/A, and M be a N-valued r.v. with

P(M = m) =
am

A
P(N ≥ m), m ∈ N.

Then, for any joint distribution of N and M we have

ζ1(W, E ) ≤ 2A−1
(

sup
n

E|Xn| · E|N −M|+ D
)

, (13)

where the first term vanishes in case of N d
= M and

D = ∑
m∈N

P(M = m)
∫

Rm−1

ζ1
(
L (Xm | x1, . . . , xm−1) , L e(Xm|x1, . . . , xm−1)

)
dF(x1, . . . , xm−1),

and both notations L (Xm | x1, . . . , xm−1), L e(Xm|x1, . . . , xm−1) stand for the short forms of
L (Xm | X1 = x1, . . . , Xm−1 = xm−1), L e(Xm|X1 = x1, . . . , Xm−1 = xm−1), respectively.

Proof. By Lemma 1 and homogeneity of both the Kantorovich distance and the equilibrium transform
(see (6) and (10)), we have

ζ1(W, E ) ≤ 2 ζ1
(
L (W) , L (We)

)
= 2A−1ζ1

(
L (SN) , L e(SN)

)
. (14)

Let us bound ζ1
(
L (SN) , L e(SN)

)
from above.

For a given joint distribution L (N, M), let pnm := P(N = n, M = m), n ∈ N0,
m ∈ N. Denoting Sj,k := ∑k

i=j Xi for j ≤ k, designating Fm(x | x1, . . . , xm−1) and Fe
m(x |

x1, . . . , xm−1) the short forms of the conditional d.f.’s of L (Xm | X1 = x1, . . . , Xm−1 = xm−1) and
L e(Xm | X1 = x1, . . . , Xm−1 = xm−1), respectively, m ∈ N, and using Lemma 3 together with the
representation of the Kantorovich distance between (signed) measures as an area between their
distribution functions, we obtain

ζ1
(
L (SN) , L e(SN)

)
=
∫
R

∣∣∣FSN (x)− Fe
SN

(x)
∣∣∣ dx =

=
∫
R

∣∣∣∣FSN (x)−
∞

∑
m=1

P(M=m)
∫
Rm−1

Fe
m(x− x1 − . . .− xm−1 | x1, . . . , xm−1) dF(x1, . . . , xm−1)

∣∣∣∣dx =

=
∫
R

∣∣∣∣ ∑
n∈N0
m∈N

pnm

(
FSn(x)−

∫
Rm−1

Fe
m(x− x1 − . . .− xm−1 | x1, . . . , xm−1) dF(x1, . . . , xm−1)

)∣∣∣∣dx ≤

≤ ∑
n∈N0
m∈N

Inm,

where

Inm =
∫
R

∣∣∣∣FSn(x)−
∫
Rm−1

Fe
m(x− x1 − . . .− xm−1 | x1, . . . , xm−1) dF(x1, . . . , xm−1)

∣∣∣∣ dx.
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For the summands with n < m by Tonelli’s theorem we have

Inm ≤
∫
Rn

∫
R

∣∣∣∣1{x1+...+xn<x} −
∫
Rm−1−n

Fe
m(x− x1 − . . .− xm−1 | x1, . . . , xm−1)×

× dF(xn+1, . . . , xm−1 | x1, . . . , xn)

∣∣∣∣dx dF(x1, . . . , xn) =

=
∫
Rn

∫
R

∣∣∣∣1{0<x} −
∫
Rm−1−n

Fe
m(x− xn+1 − . . .− xm−1 | x1, . . . , xm−1)×

× dF(xn+1, . . . , xm−1 | x1, . . . , xn)

∣∣∣∣dx dF(x1, . . . , xn),

where F(xn+1, . . . , xm−1 | x1, . . . , xn) stands for the conditional joint d.f. of (Xn+1, . . . , Xm−1) given
that X1 = x1, . . . , Xn = xn. By adding and subtracting∫

Rm−1−n
Fm(x− xn+1 − . . .− xm−1 | x1, . . . , xm−1) dF(xn+1, . . . , xm−1 | x1, . . . , xn)

under the modulus sign and using further the triangle inequality, we obtain

Inm ≤
∫
Rn

ζ1
(
δ0, L (Sn+1,m | x1, . . . , xn)

)
dF(x1, . . . , xn) +

+
∫
Rm−1

ζ1
(
L (Xm | x1, . . . , xm−1) , L e(Xm | x1, . . . , xm−1)

)
dF(x1, . . . , xm−1),

where δ0 is the Dirac measure concentrated in zero.
For the case of n ≥ m by Tonelli’s theorem, we have

Inm ≤
∫

Rm−1

∫
R

∣∣FSm,n(x | x1, . . . , xm−1)− Fe
m(x | x1, . . . , xm−1)

∣∣ dx dF(x1, . . . , xm−1),

where FSm,n(x | x1, . . . , xm−1) stands for the conditional d.f. FSm,n(x | X1 = x1, . . . , Xm−1 = xm−1).
By adding and subtracting Fm(x | x1, . . . , xm−1) in the integrand under the modulus sign and

using further the triangle inequality, we obtain

Inm ≤
∫
Rm

ζ1
(
δ0, L (Sm+1,n | x1, . . . , xm)

)
dF(x1, . . . , xm) +

+
∫
Rm−1

ζ1
(
L (Xm | x1, . . . , xm−1) , L e(Xm | x1, . . . , xm−1)

)
dF(x1, . . . , xm−1).

Combining both n < m and n ≥ m cases and using the fact that ζ1(δ0, L (X)) = E|X|, we get

ζ1
(
L (SN) , L e(SN)

)
≤ ∑

n∈N0,m∈N
pnmE

∣∣∣∣ n∨m

∑
i=(n∧m)+1

Xi

∣∣∣∣ +

+ ∑
m∈N

P(M=m)
∫
Rm−1

ζ1
(
L (Xm | x1, . . . , xm−1) , L e(Xm | x1, . . . , xm−1)

)
dF(x1, . . . , xm−1), (15)

where the first sum can be bounded from above by

sup
i

E|Xi| · ∑
n∈N0,m∈N

pnm|n−m| = sup
i

E|Xi| · E |N −M| .

Substituting the latter bound into (14) yields (13). If N d
= M, then we take a comonotonic pair

(N, N) as (N, M), which eliminates the first term on the r.-h.s. of (15).
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Remark 3. Theorem 1 reduces to ([2], Theorem 3.1) in case of nonnegative {Xn} and to ([3], Theorem 6) in
case of independent {Xn}.

If both expectations EN and EM are finite, then E|N −M| in (13) can be replaced with ζ1(N, M)

due to the dual representation of the ζ1-metric as

ζ1(N, M) = inf
L(N′ ,M′) : N′ d

=N,M′ d
=M

E|N′ −M′|.

Moreover, if N and M are stochastically ordered (that is, FN(x) ≤ FM(x) for all x ∈ R or vice
versa), then

ζ1(N, M) =
∫
R
|FN(x)− FM(x)| dx =

∣∣∣∣∫R FN(x)− FM(x) dx
∣∣∣∣ = |EN − EM| .

If, in addition, all EXn = a, then

EM =
∞

∑
m=1

m
EN

P(N ≥ m) =
1

EN

∞

∑
n=1

n

∑
m=1

m P(N = n) =
1

EN
E

N(N + 1)
2

=
1
2

(
EN2

EN
+ 1
)

,

and the first term on the r.-h.s of (13) can be bounded from above as

2A−1 sup
n

E|Xn| · |EN − EM| ≤ 2
a EN

sup
n

E|Xn| ·
∣∣∣∣12
(

EN2

EN
+ 1
)
− EN

∣∣∣∣ =
=

1
a

sup
n

E|Xn| ·
∣∣∣∣ EN2

(EN)2 +
1

EN
− 2
∣∣∣∣ .

Hence, we arrive at the following.

Corollary 1. Let, in addition to the conditions of Theorem 1, EXn = a for all n ∈ N and the r.v.’s N and M be
stochastically ordered with finite expectations. Then

ζ1(W, E ) ≤ 1
a

sup
n

E|Xn| ·
∣∣∣∣ EN2

(EN)2 +
1

EN
− 2
∣∣∣∣+ 2D

aEN
.

Remark 4. If N ∼ Geom(p), p ∈ (0, 1), that is P(N = n) = (1− p)n−1 p, n ∈ N, then

A = ESN =
∞

∑
n=1

anP(N ≥ n) =
∞

∑
n=1

an(1− p)n−1 =
1
p

EaN .

In this case, for every h ∈ Lip1 with E|h(M)| < ∞ we have

Eh(M) =
∞

∑
m=1

h(m)
am

A
(1− p)m−1 =

Eh(N)aN
EaN

.

Therefore, by the Cauchy–Bunyakovsky–Schwarz inequality, we have

ζ1(N, M) = sup
h∈Lip1
h(0)=0

|Eh(M)− Eh(N)| ≤ sup
h∈Lip1
h(0)=0

E
∣∣∣∣( aN

EaN
− 1
)

h(N)

∣∣∣∣ ≤ E
∣∣∣∣( aN

EaN
− 1
)

N
∣∣∣∣ ≤

≤
√

Var aN · EN2

EaN
=

√
(2− p)Var aN

p EaN
<

√
2Var aN
p EaN

.
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Thus, the first term on the r.-h.s of (13) can be bounded from above as

2A−1 sup
n

E|Xn| · ζ1(N, M) ≤ 2
√

2 sup
n

E|Xn| ·
√

Var aN

(EaN)2 .

This means that in case of supn E|Xn| < ∞ and infn an > 0, the first term on the r.-h.s. of (13) is, at most,
of order O

(√
Var aN

)
as p→ +0.

If N ∼ Geom(p), p ∈ (0, 1) and EXn = a for all n ∈ N, then M ∼ Geom(p), and thus, ζ1(N, M) = 0.
Therefore, if supn E|Xn| < ∞, then the first term on the r.-h.s. of (13) vanishes.

If N + 1 ∼ Geom(p), p ∈ (0, 1) and EXn = a for all n ∈ N, then M ∼ Geom(p) as well, and thus,
ζ1(N, M) = 1.

Next, let us simplify the second term D in (13).

Corollary 2. Let, in addition to the conditions of Theorem 1, bn = EX2
n < ∞ for every n ∈ N and the r.v. M

be independent of {X1, X2, . . .}. Then

ζ1(W, E ) ≤ A−1
[

2 sup
n

E|Xn| · E|N −M|+ E
(

bM
aM
− 2aMP(XM ≤ 0|M)

) ]
.

Proof. By Lemma 2, we have

D ≤ ∑
m∈N

P(M=m)
∫

Rm−1

(
E
(
X2

m | x1, . . . , xm−1
)

2am
− amP(Xm ≤ 0|x1, . . . , xm−1)

)
dF(x1, . . . , xm−1) =

= ∑
m∈N

P(M=m)

(
EX2

m
2am

− amP(Xm ≤ 0)
)
=

1
2

E
(

bM
aM
− 2aMP(XM ≤ 0|M)

)
,

which proves the statement of the corollary.

Recall that a nonnegative r.v. X with finite EX > 0 is said to be new better than used in expectation
(NBUE), if

EX ≥ E (X− t | X > t) for all t ≥ 0,

and new worse than used in expectation (NWUE), if

EX ≤ E (X− t | X > t) for all t ≥ 0.

Using Tonelli’s theorem, it can be ascertained that X is NBUE if and only if X stochastically
dominates its equilibrium transform Xe, that is, F(x) ≤ Fe(x) for all x ≥ 0. Similarly, X is NWUE if
and only if Xe stochastically dominates X. We will show that the same results hold true if we extend
both NBUE and NWUE notions to the case of r.v.s without support constraints.

Definition 1. We say that a (possibly alternating) r.v. X with d.f. F and EX ∈ (0,+∞) is NBUE, if F(x) ≤
Fe(x) for all x ∈ R, where Fe is the equilibrium transform w.r.t. F. Similarly, we say that the r.v. X with d.f. F
and EX ∈ (0,+∞) is NWUE (new worse than used in expectation), if F(x) ≥ Fe(x) for all x ∈ R.

Theorem 2. A r.v. X with finite EX > 0 is NBUE if and only if

EX ≥ E (X− t | X > t) for all t ∈ [0, ess sup X). (16)

Moreover, (16) implies that X > 0 a.s. The r.v. X with finite EX > 0 is NWUE if and only if

EX ≤ E (X− t | X > t) for all t ∈ [0, ess sup X). (17)
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Proof. By Tonelli’s theorem, for every t < ess sup X, we have

E (X− t | X > t) =
1

P(X > t)

∫
(t,+∞)

(x− t) dF(x) =

=
1

P(X > t)

∫
(t,+∞)

(∫
(t,+∞)

1{x > y} dy
)

dF(x) =

=
1

P(X > t)

∫
(t,+∞)

(∫
(t,+∞)

1{x > y} dF(x)
)

dy =

=
1

P(X > t)

∫
(t,+∞)

(1− F(y)) dy. (18)

Note that the same chain of equalities holds true with the event {X ≥ t} in place of {X > t}.
If t ∈ [0, ess sup X), then

∫
(t,+∞) (1− F(y)) dy = EX · (1− Fe(t)) and (18) turns into

E (X− t | X > t) =
EX (1− Fe(t))

1− F(t + 0)
for all t ∈ [0, ess sup X). (19)

Let X be NBUE, i.e., F(x) ≤ Fe(x) for all x ∈ R. This implies that 1− F(t + 0) ≥ 1− Fe(t) due to
the absolute continuity of Fe, and hence, with the account of (19), we obtain (16).

Conversely, let (16) hold true. For t = 0, we have

EX+ ≥ EX ≥ E (X | X > 0) =
1

P(X > 0)
EX+,

which is possible if and only if P(X > 0) = 1, i.e., X > 0 a.s. Hence, F(t) = Fe(t) = 0 for t ≤ 0.
For positive t, inequality (16) together with Equation (19) yields 1− F(t) ≥ 1− Fe(t). Therefore, X is
NBUE.

Let X be NWUE, i.e., F(x) ≥ Fe(x) for all x ∈ R. This yields 1− F(t + 0) ≤ 1− Fe(t), and hence,
with the account of (19), we obtain (17).

Conversely, let (17) hold true. For t ≤ 0 we have F(t) ≥ 0 ≥ Fe(t), since L e(X) has negative
density on the negative half-line. Finally, (17) and (19) yield F(t) ≥ Fe(t) for positive t.

If X is NBUE or NWUE with EX > 0 and EX2 < ∞, then

ζ1
(
L (X) , L e(X)

)
=
∫
R
|F(x)− Fe(x)| dx =

∣∣∣∣∫R (F(x)− Fe(x)) dx
∣∣∣∣ =

=

∣∣∣∣∫R x dFe(x)− EX
∣∣∣∣ = ∣∣∣∣ EX2

2 EX
− EX

∣∣∣∣ ,

where the last equality follows from (7). Hence, if for all m ∈ N and x1, x2 . . . ∈ R the conditional
distribution L (Xm | x1, . . . , xm−1) is NBUE or NWUE, then the second term on the r.-h.s. of (13) takes
the form

D = ∑
m∈N

P(M=m)
∫
Rm−1

∣∣∣∣∣E
(
X2

m | x1, . . . , xm−1
)

2am
− am

∣∣∣∣∣ dF(x1, . . . , xm−1). (20)

If M is independent of {X1, X2, . . .}, then the latter expression can be bounded from above with
the help of the conditional Jensen’s inequality

D ≤ ∑
m∈N

P(M=m) E
∣∣∣∣ X2

m
2am
− am

∣∣∣∣ = ∑
m∈N

P(M=m)
E
∣∣X2

m − 2a2
m
∣∣

2am
= E

∣∣X2
M − 2a2

M
∣∣

2aM
≤ E

bM + 2a2
M

2aM
,
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where we used the notation bm = EX2
m as before. If all the r.v.’s {M, X1, X2, . . .} are independent,

then (20) may be simplified as

D = ∑
m∈N

P(M=m)

∣∣∣∣EX2
m

2am
− am

∣∣∣∣ = E
|bM − 2a2

M|
2aM

.

Hence, we get the following

Corollary 3. Let, in addition to the conditions of Theorem 1, bn = EX2
n < ∞ for every n ∈ N, the conditional

distributions L (Xn | x1, . . . , xn−1) be NBUE or NWUE for all n ∈ N and x1, x2 . . . ∈ R, and the r.v. M be
independent of {X1, X2, . . .}. Then

ζ1(W, E ) ≤ A−1
(

2 sup
n

E|Xn| · E|N −M|+ E

∣∣X2
M − 2a2

M
∣∣

aM

)
≤

≤ A−1
(

2 sup
n

E|Xn| · E|N −M|+ E
bM + 2a2

M
aM

)
.

Moreover, if all the r.v.’s {M, X1, X2, . . .} are independent, then

ζ1(W, E ) ≤ A−1
(

2 sup
n

E|Xn| · E|N −M|+ E

∣∣bM − 2a2
M
∣∣

aM

)
.

Corollary 3 reduces to ([2], Corollary 3.1) in the case of all Xn ≥ 0 being independent, all EXn = 1
and the r.v.s. N, M being stochastically ordered (cf. Corollary 1).
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Abbreviations

The following abbreviations are used in this manuscript:
r.v. random variable
i.i.d. independent identically distributed
d.f. distribution function
ch.f. characteristic function
a.s. almost sure
a.c. absolute continuity, absolutely continuous
w.r.t. with respect to
r.-h.s. right-hand side
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