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Abstract: This paper studies a variation of the continuous-time mean-variance portfolio selection
where a tracking-error penalization is added to the mean-variance criterion. The tracking error
term penalizes the distance between the allocation controls and a reference portfolio with same
wealth and fixed weights. Such consideration is motivated as follows: (i) On the one hand, it is a
way to robustify the mean-variance allocation in the case of misspecified parameters, by “fitting”
it to a reference portfolio that can be agnostic to market parameters; (ii) On the other hand, it is a
procedure to track a benchmark and improve the Sharpe ratio of the resulting portfolio by considering
a mean-variance criterion in the objective function. This problem is formulated as a McKean–Vlasov
control problem. We provide explicit solutions for the optimal portfolio strategy and asymptotic
expansions of the portfolio strategy and efficient frontier for small values of the tracking error
parameter. Finally, we compare the Sharpe ratios obtained by the standard mean-variance allocation
and the penalized one for four different reference portfolios: equal-weights, minimum-variance,
equal risk contributions and shrinking portfolio. This comparison is done on a simulated misspecified
model, and on a backtest performed with historical data. Our results show that in most cases,
the penalized portfolio outperforms in terms of Sharpe ratio both the standard mean-variance and
the reference portfolio.

Keywords: continuous-time mean-variance problem; tracking error; robustified allocation; parameter
misspecification

1. Introduction

The Markowitz mean-variance portfolio selection problem has been initially considered in [1]
in a single-period model. In this framework, investement decision rules are made according to the
objective of maximizing the expected return of the portfolio for a given financial risk quantified by
its variance. The Markowitz portfolio is widely used in the financial industry due to its intuitive
formulation and the fact that it produces, by construction, portfolios with high Sharpe ratios (defined
as the ratio of the average of portfolio returns over their volatility), which is a key metric used to
compare investment strategies.

The mean-variance criterion involves the expected terminal wealth in a nonlinear way due to the
presence of the variance term. In a continuous-time dynamic setting, this induces the so-called time
inconsistency problem and prevents the direct use of the dynamic programming technique. A first
approach, from [2], consists of embedding the mean-variance problem into an auxiliary standard
control problem that can be solved by using stochastic linear-quadratic theory. Some more recent
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approaches rely on the development of stochastic control techniques for McKean–Vlasov (MKV) type
control problems. MKV control problems are problems in which the equation of the state process
and the cost function involve the law of this process and/or the law of the control, possibly in
a non-linear way. The mean-variance portfolio problem in continuous-time is a McKean–Vlasov
control problem of the linear-quadratic type. The state diffusion, which represents the wealth of the
portfolio, involves the state process and the control in a linear way while the cost involves the terminal
value of the state and the square of its expectation due to the variance criterion. In [3], the authors
solved the mean-variance problem as a McKean–Vlasov control problem by deriving a version of
the Pontryagin maximum principle. More recently, [4] developed a general dynamic programming
approach for the control of MKV dynamics and applied it for the resolution of the mean-variance
portfolio selection problem. In [5], the mean-variance problem is viewed as the MKV limit of a family
of controlled many-component weakly interacting systems. These prelimit problems are solved by
standard dynamic programming, and the solution to the original problem is obtained by passage
to the limit.

A frequent criticism addressed to the mean-variance allocation is its sensitivity to the estimation
of expected returns and covariance of the stocks and the risk of a poor out-of-sample performance.
Several solutions to these issues have been considered. An approach consists of using a more
sophisticated model than the Black–Scholes model, in which the parameters are stochastic or
ambiguous and to take decisions under the worst-case scenario over all conceivable models.
Robust mean-variance problems have thus been considered in the economic and engineering literature,
mostly on single-period or multi- period models; see, e.g., [6–8]. In a continuous-time setting, ref. [9]
have developed a robust approach by studying the mean-variance allocation with a market model
where the model uncertainty affects the covariance matrix of multiple risky assets. In [10], the authors
study the problem of utility maximization under uncertain parameters in a model where the parameters
of the model do not evolve freely within a given range, but are constrained via a penalty function.
Let us also mention uncertain volatility models in [11,12] for robust portfolio optimization with
expected utility criterion. Another approach is to rely on the shrinking of the portfolio weights or of
the wealth invested in each risky asset in order to obtain a more sparse or more stable portfolio. In [13],
the authors find single-period portfolios that perform well out-of-sample in the presence of estimation
error. Their framework deals with the resolution of the traditional minimum-variance problem with
the additional constraint that the norm of the portfolio-weight vector must be smaller than a given
threshold. In [14], the authors study a one-period mean-variance problem in which the mean-variance
objective function is regularized with a weighted elastic net penalty. They show that the use of this
penalty can be justified by a robust reformulation of the mean-variance criterion that directly accounts
for parameter uncertainty. In the same spirit, in [15], lp-norm regularized models are used to seek
near-optimal sparse portfolios.

In this paper, we investigate the mean-variance portfolio selection in continuous time with a
tracking error penalization. This penalization represents the distance between the optimized portfolio
composition and the composition of a reference portfolio with the same wealth but fixed weights that
have been chosen in advance. Typical reference portfolios widely used in the financial industry are
the equal weights, the minimum variance and the equal risk contribution (ERC) portfolios. The equal
weights portfolio studied, e.g., in [16], is a portfolio where all the wealth of the investor is invested in
risky assets and divided equally between the different assets. The minimum variance portfolio is a
portfolio where all the wealth is invested in risky assets and portfolio weights are optimized in order to
attain the minimal portfolio volatility. The ERC portfolio, presented in [17] and in the monography [18],
is totally invested in risky assets and optimized such that the contributions of each asset to the total
volatility of the portfolio are equal. The mix of the mean-variance and of this tracking error criterion
can be interpreted in two different ways: (i) From a first viewpoint, it is a procedure to regularize and
robustify the mean-variance allocation. By choosing reference portfolio weights which are not based
on the estimation of market parameters, or which are less sensible to estimation error, the allocation
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obtained is more robust to parameters estimation error than the standard mean-variance one. (ii) From
a second viewpoint, this optimization permits to mimic an allocation corresponding to the reference
portfolio weights while improving its Sharpe ratio via the consideration of the mean-variance criterion.

We tackle this problem as a McKean–Vlasov linear-quadratic control problem and adopt the
approach developed in [19], where the authors give a general method to solve this type of problems
by means of a weak martingale optimality principle. We obtain explicit solutions for the optimal
portfolio strategy and value function, and provide asymptotic expansions of the portfolio strategy
and efficient frontier for small values of the portfolio tracking error penalization parameter. We then
compare the Sharpe ratios obtained by the standard mean-variance portfolio, the penalized one and the
reference portfolio in two different ways. First, we compare these performances on simulated market
data with misspecified market parameters. Different magnitudes of parameter misspecifications are
used to illustrate the impact of the parameter estimation error on the performance of the different
portfolios. In a second time, we compare the performances of these portfolios on a backtest based on
historical market data. In these tests, we shall consider three reference portfolios cited above: the equal
weights, the minimum variance and the equal risk contribution (ERC) portfolios. Finally, we will also
consider the case where the reference portfolio weights are all equal to zero. This case corresponds to a
shrinking of the wealth invested in the different risky assets along the investment horizon.

The rest of the paper is organized as follows. Section 2 formulates the mean-variance problem
with tracking error. In Section 3, we derive explicit solutions for this control problem and provide
expansion of this solution for small values of the tracking error penalization parameter. Section 4 is
devoted to the applications of those results and to the comparison of the mean-variance, penalized
and reference portfolio for the different reference portfolios presented above. We show the benefit of
the penalized portfolio compared to the standard mean-variance portfolio and the different reference
portfolios on simulated and historical data in terms of Sharpe ratio and the lower sensitivity of the
penalized portfolio to parameter estimation error.

2. Results

Throughout this paper, we fix a finite horizon T ∈ (0, ∞), and a complete probability
space

(
Ω,F ,P,F = {Ft}0≤t≤T

)
on which a standard F-adapted d-dimensional Brownian motion

W = (W1, ..., Wd) is defined. We denote by L2
F(0, T;Rd) the set of all Rd-valued, measurable stochastic

processes ( ft)t∈[0,T] adapted to F such that E
[ ∫ T

0 | ft|2dt
]
< ∞. We consider a financial market with

price process P := (Pt)t∈[0,T], composed of one risk-free asset, assumed to be constant equal to one,
i.e., P0 ≡ 1, and d risky assets on a finite investment horizon [0, T]. These assets price processes
Pi

t , i = 1, ..., d satisfy the following stochastic differential equation:{
dPi

t = Pi
t

(
bi dt + ∑n

j=1 σijdW j
t

)
, t ∈ [0, T]

Pi
0 > 0

where bi > 0 is the appreciation rate, and σ := (σij)i,j=1,...,d ∈ Rd×d is the volatility matrix of the d
stocks. We denote by Σ := σσ> the covariance matrix. Throughout this paper, we will assume that the
following nondegeneracy condition holds

Σ ≥ δId,

for some δ > 0, where Id is the d× d identity matrix.
Let us consider an investor with total wealth at time t ≥ 0 denoted by Xt, starting from some initial

capital x0 > 0. It is assumed that the trading of shares takes place continuously and transaction cost and
consumptions are not considered. We define the set of admissible portfolio strategies α = (α1, . . . , αd) as

A :=
{

α : Ω× [0, T]→ Rd s.t α is F− adapted and
∫ T

0
E[|αt|2]dt < ∞

}
,
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where αi
t, i = 1, ..., d represents the total market value of the investor’s wealth invested in the ith asset

at time t. The dynamics of the self-financed wealth process X = Xα associated to a portfolio strategy
α ∈ A is then driven by

dXt = α>t b dt + α>t σdWt. (1)

Given a risk aversion parameter µ > 0, and a reference weight wr ∈ Rd, the objective of the
investor is to minimize over admissible portfolio strategies a mean-variance functional to which is
added a running cost:

J(α) = µVar(XT)−E[XT ] +E
[ ∫ T

0
(αt − wrXt)

> Γ (αt − wrXt) dt
]
. (2)

This running cost represents a running tracking error between the portfolio composition αt of the
investor and the reference composition wrXt of a portfolio of same wealth Xt and constant weights
wr. The matrix Γ ∈ Rd×d is symmetric positive definite and is used to introduce an anisotropy in
the portfolio composition penalization. The penalization

∫ T
0 (αt − wrXt)

> Γ (αt − wrXt), which we
will call “tracking error penalization”, is introduced in order to ensure that the portfolio of the
investor does not move away too much from this reference portfolio with respect to the distance
|M| := M>ΓM, M ∈ Rd.

The mean-variance portfolio selection with tracking error is then formulated as

V0 := inf
α∈A

J(α), (3)

and an optimal allocation given the cost J(α) will be given by

α∗t ∈ arg min
α∈A

J(α).

We complete this section by recalling the solution to the mean-variance problem when there is no
tracking error running cost, and which will serve later as benchmark for comparison when studying
the effect of the tracking error with several reference portfolios.

Remark 1 (Case of no tracking error). When Γ = 0, it is known, see e.g., [2] that the optimal mean-variance
strategy is given by

α∗t = Σ−1b
[

1
2µ

eb>Σ−1b T + x0 − X∗t

]
, 0 ≤ t ≤ T, (4)

where X∗t is the wealth process associated to α∗. The vector Σ−1b, which depends only on the model parameters
of the risky assets, determines the allocation in the risky assets.

In the sequel, we study the quantitative impact of the tracking error running cost on the optimal
mean-variance strategy.

3. Solution Allocation with Tracking Error

Our main theoretical result provides an analytic characterization of the optimal control to the
mean-variance problem with tracking error.

Theorem 1. There exist a unique pair (K, Λ) ∈ C ([0, T],R∗+)×C ([0, T],R+) solution to the system of ODEs
dKt =

{
(Ktb− Γwr)

> S−1
t (Ktb− Γwr)− w>r Γwr

}
dt, KT = µ

dΛt =
{
(Λtb− Γwr)

> S−1
t (Λtb− Γwr)− w>r Γwr

}
dt, ΛT = 0

(5)
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where St := KtΣ + Γ. The optimal control for problem (3) is then given by

αΓ
t = S−1

t ΓwrXt − S−1
t b
[
KtXt + Yt − (Kt −Λt)E[Xt]

]
, (6)

with

Yt = −
1
2

e−
∫ T

t b>S−1
s (Λsb−Γwr)ds

Rt =
1
2

∫ T

t
b>S−1

s b e−2
∫ T

s b>S−1
u (Λub−Γwr)du ds,

and X = XαΓ
is the wealth process associated to αΓ. Moreover, we have

V0 = J(αΓ) = Λ0X2
0 + 2Y0X0 + R0.

Proof. Given the existence of a pair (K, Λ) ∈ C ([0, T],R∗+) × C ([0, T],R+) solution to (5),
the optimality of the control process in (6) follows by the weak version of the martingale optimality
principle as developed in [19]. The arguments are recalled in Appendix A.

Here, let us verify the existence and uniqueness of a solution to the system (5).

(i) We first consider the equation for K, which is a scalar Riccati equation. The equation for K is
associated to the standard linear-quadratic stochastic control problem:

ṽ(t, x) := inf
α∈A

E
[∫ T

t

(
w>r Γwr(X̃t,x,α

s )2 − 2α>s ΓwrX̃t,x,α
s + α>s Γαs

)
ds
]

where X̃t,x,α
s is the controlled linear dynamics solution to

dX̃s = α>s b ds + α>s σdWs, t ≤ s ≤ T, X̃t = x.

By a standard result in control theory ([20] Ch. 6, Thm. 6.1, 7.1, 7.2), there exists a unique solution
K ∈ C([0, T],R+) to the first equation of system (5) (more, K ∈ C([0, T],R∗+) if wr is nonzero).
In this case, we have ṽ(t, x) = x>Ktx.

(ii) Given K, we consider the equation for Λ. This is also a scalar Riccati equation. By the same
arguments as for the K equation, there exists a unique solution Λ ∈ C([0, T],R+) to the second
equation of (5), provided that

ΛT ≥ 0, w>r Γwr − w>r Γ (KtΣ + Γ)−1 Γwr ≥ 0, KtΣ + Γ ≥ δId, 0 ≤ t ≤ T

for some δ > 0. We already have that ΛT = 0. From the fact that K > 0, together with the
nondegeneracy condition on the matrix Σ, we have that KtΣ + Γ ≥ Γ ≥ δId. Since Γ > 0,
and under the nondegeneracy condition of matrix Σ, we can use the Woodbury matrix identity
to obtain

(KtΣ + Γ)−1 = Γ−1 − Γ−1
(

Γ−1 +
Σ−1

Kt

)−1

Γ−1.

We then get

w>r Γwr − w>r Γ (KtΣ + Γ)−1 Γwr = w>r

(
Γ−1 +

Σ−1

Kt

)−1

wr ≥ 0.

(iii) Given (K, Λ), the equation for Y is a linear ODE, whose unique continuous solution is explicitly
given by

Yt = −
1
2

e−
∫ T

t b>S−1
s (Λsb−Γwr)ds.
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(iv) Given (K, Λ, Y), R can be directly integrated into

Rt =
1
2

∫ T

t
b>S−1

s b e−2
∫ T

s b>S−1
u (Λub−Γwr)du ds.

We can see from the expression of the optimal control (6) that the allocation in the risky assets
has two components. One component is determined by the vector S−1

t Γwr = (KtΣ + Γ)−1 Γwr

with leverage Xt, and the second one by the vector S−1
t b = (KtΣ + Γ)−1 b with leverage

[KtXt + Yt − (Kt −Λt)E[Xt]]. Computing the average wealth X = E[X] associated to αΓ, we can
express the control αΓ as a function of the initial wealth of the investor x0 and the current wealth Xt

αΓ
t = S−1

t ΓwrXt −ΛtS−1
t b

(
X0C0,t +

1
2

Ht

)
(7)

+ S−1
t b

[
Kt

(
X0C0,t +

1
2

Ht − Xt

)
−Yt

]

where we set Cs,t := e−
∫ t

s b>S−1
u (Λub−Γwr)du and Ht := Ct,T

∫ t
0 C2

s,t b>S−1
s b ds.

Remark 2. In the case when Γ is the null matrix, Γ = 0, we see that the first component of the optimal
control (7) vanishes,

Yt = −
1
2

, Rt =
1

4µ

(
1− eb>Σ−1b (T−t)

)
,

and the system of ODES (5) of (K, Λ) becomes
dKt = Ktb>Σ−1b dt, KT = µ

dΛt =
Λ2

t
Kt

b>Σ−1b dt, ΛT = 0,

which yields the explicit forms
Kt = µe−b>Σ−1b (T−t), Λt = 0.

We get S−1
t = Σ−1

Kt
= Σ−1eb>Σ−1b (T−t)

µ , C·,· = 1 and Ht =
1
µ

∫ t
0 b>Σ−1b eb>Σ−1b (T−s)ds. The first line of

the optimal control αΓ equation vanishes and the second line can be rewritten as

αΓ
t = Σ−1b

[
1

2µ

(
eb>Σ−1b (T−t) +

∫ t

0
b>Σ−1b eb>Σ−1b (T−s)ds

)
+ X0 − Xt

]
.

Computing the integral in this expression, we recover the optimal control of the classical mean-variance
problem (4).

Remark 3 (Limit of α
γ
t for Γ = γId → ∞). If we consider Γ in the form Γ = γId, the optimal control can be

rewritten as

α
γ
t =

(
Id +

Kt

γ
Σ
)−1

wrXt −
1
γ

(
Id +

Kt

γ
Σ
)−1

b
[
KtXt + Yt − (Kt −Λt)Xt

]
. (8)

We show in Appendix D that Kt and Λt are bounded functions of the penalization parameter γ,
thus Kt

γ , Λt
γ −→γ→∞

0.

We rewrite Yt as

Yt = −
1
2

eb>wr(T−t)e−
∫ T

t
1
γ b>

(
Id+

Ks
γ Σ
)−1

(Λsb+KsΣwr)ds
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and we get that Yt −→
γ→∞

− 1
2 eb>wr(T−t). Thus the second term of (8) vanishes and we get

α
γ
t −→γ→∞

wrXt

which corresponds to the reference portfolio.

Remark 4 (Expansion for Γ = γId → 0). We take Γ = γId. Since the covariance matrix Σ is symmetric,
there exists an invertible matrix Q ∈ Rd×d and a diagonal matrix D ∈ Rd×d such that Σ = Q · D · Q−1.
We can then rewrite the matrix S−1

t := (KtΣ + γId)
−1 as

S−1
t = Q · (KtD + γId)

−1 Q−1

with (
(KtD + γId)

−1
)

ij
=

{
1

Ktdi+γ if i = j

0 i f i 6= j

where di is the i-th diagonal value of the diagonal matrix D. From the nondegeneracy condition of the covariance
matrix, we have di > 0, ∀i ∈ J1, nK. As γ −→ 0, we want to write the Taylor expansion of the diagonal

elements of the inverse matrix (D + γId)
−1 equal to 1

Ktdi

(
1 + γ

Ktdi

)−1
. We have that Kt −→

γ→0
µe−ρ(T−t),

thus γ
Kt
−→
γ→0

0. We can then write the Taylor expansion of the matrix S−1
t as

S−1
t =

Σ−1

Kt
− γ

(
Σ−1)2

K2
t

+ O(γ2)

keeping only the terms up to the linear term in γ.
Putting this expression in the differential equation of K, and keeping only the terms up to the linear term in

γ, we get the differential equation

dKt

dt
= Ktρ− γ‖wr + Σ−1b‖2 + O(γ2), (9)

where we set ρ := b>Σ−1b. We look for a solution to this equation of the form

Kγ
t = K0

t + γK1
t + O(γ2).

Putting this expression in the differential Equation (9), we get two differential equations, for the leading
order and the linear order in γ respectively

dK0
t

dt = K0
t ρ, K0

T = µ
dK1

t
dt = K1

t ρ− ‖wr + Σ−1b‖2, K1
T = 0

which yield the explicit solution

Kγ
t = K0

t + γ‖wr + Σ−1b‖2 1− e−ρ(T−t)

ρ
+ O(γ2)

where K0
t = µe−ρ(T−t) is the solution to the differential equation in the unpenalized case.
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From the expansion for K, we can write the expansion of the differential equation for Λ up to the linear
term in γ. We use the expansion

1
Kγ

t
=

1
K0

t

(
1− γ‖wr + Σ−1b‖2 1− e−ρ(T−t)

K0
t ρ

)
+ O(γ2)

and we get the following expansion of the differential equation of Λ

dΛt

dt
=

Λ2
t

K0
t

ρ

(
1− γ‖wr + Σ−1b‖2 1− e−ρ(T−t)

K0
t ρ

)
(10)

− γ

(
2

Λt

K0
t

b>Σ−1wr −
(

Λt

K0
t

)2
b>Σ−2b− ‖wr‖2

)
+ O(γ2).

As before, we look for a solution of this differential equation of the form

Λγ
t = Λ0

t + γΛ1
t + O(γ2).

Plugging this expression into the Equation (10), we get the two following differential equations

dΛ0
t

dt =
(Λ0

t )
2

K0
t

ρ, Λ0
T = 0

dΛ1
t

dt = 2 Λ0
t Λ1

t
K0

t
ρ−

(
Λ0

t
K0

t

)2
ρ‖wr + Σ−1b‖2 1−e−ρ(T−t)

ρ

−
(

2 Λ0
t

K0
t

b>Σ−1wr +
(

Λ0
t

K0
t

)2
b>Σ−2b + ‖wr‖2

)
, Λ1

T = 0.

The first differential equation yields the solution Λ0
t = 0, ∀t ∈ [0, T]. Replacing Λ0

t by this value in the
second differential equation, we get the equation

dΛ1
t

dt
= −‖wr‖2

and obtain the solution
Λγ

t = γ‖wr‖2(T − t) + O(γ2).

We can also compute the first order expansion of C·,·

Cγ
s,t =1− γ

∫ t

s

ρ

K0
u

(
‖wr‖2(T − u)− b>Σ−1wr

ρ

)
du + O(γ2)

=1− γC1
s,t + O(γ2)

where we set

C1
s,t :=

eρ(T−t)

µρ

{
ρ‖wr‖2(t− s) +

(
eρ(t−s) − 1

) (
‖wr‖2(ρT − 1)− b>Σ−1wr

)}
,

and we have
Yγ

t = −1
2
+

γ

2
C1

t,T .

The last expansion we need to compute before rewritting the optimal control is the expansion of Ht. We can
rewrite

Ht =
eρT

µ

(
1− e−ρt)− γH1

t + O(γ2)
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with

H1
t :=

∫ t

0

(
2C1

s,t + C1
t,T

) b>Σ−1b
K0

s
ds +

∫ t

0
b>

Σ−1(
K0

s
)2

(
K1

s Id + Σ−1
)

b ds.

As shown in Appendix B, we can rewrite the optimal control

α
γ
t = Σ−1b α0

t + γ
(

Σ−1wr α1,3
t − Σ−2b α1,2

t − Σ−1b α1,1
t

)
+ O(γ2) (11)

where we set Σ−2 := (Σ−1)2, and with

α0
t = 1

2µ eρT + X0 − Xt

α1,1
t = ‖wr‖2

K0
t

(T − t)
(

X0 +
eρT

µ

(
1− e−ρt))+ X0C1

0,t +
H1

t
2 +

K1
t

2(K0
t )

2 +
Ct,T
2K0

t

α1,2
t = eρT

2K0
t µ

(
1− e−ρt)+ 1

2(K0
t )

2

α1,3
t = Xt

K0
t
.

(12)

We see that for γ = 0, we recover the classical mean-variance optimal control. For non-zero values of γ,
we see that a mix of three different portfolio allocations is obtained. The weight of the allocation Σ−1b is modified
and two allocations Σ−2b and Σ−1wr appear with weights γα1,2

t and γα1,3
t .

From this expansion of the control αγ, we can compute the first order asymptotic expansion in γ of the
equation giving the relation between the variance of the terminal wealth of the portfolio and its expectation.
In the classical mean-variance case, this equation is called the efficient frontier formula. As shown in Appendix C,
with the tracking error penalization, the first order asymptotic expansion in γ gives

Var(XT) =
e−ρT

1− e−ρT

(
XT

0 − X0

)2

+ γ

{
b>Σ−1wr

µ2

[
X0T − 1

2µ
eρT
(

T − 1− e−ρT

ρ

)]

−
∫ T

0

(
ρ

µ
α1,1

s +
b>Σ−2b

µ
α1,2

s

)
e−ρ(T−s)ds

}
+ O(γ2).

The leading order term corresponds to the efficient frontier equation of the classical mean-variance allocation
computed in [2], and thus for γ = 0, we recover this classical result. The linear term in γ contains contributions
of the three perturbative allocations. A modification of "leverage" of the original mean-variance allocation Σ−1b
and two different allocations Σ−2b and Σ−1wr.

4. Applications and Numerical Results

In this section, we apply the results of the previous section and study the allocation obtained
by considering four different static portfolios as reference. First, we shall study these allocations on
simulated data, in the case of misspecified parameters. The misspecification of parameters means that
the market parameters used to compute the portfolio allocations are different from the ones driving
the stocks prices. This study allows us to estimate the impact of the estimation error on the portfolio
performance. For a second time, we perform a backtest and run the different portfolios on real market
data. To simplify the presentation, we will assume now that the tracking error penalization matrix is
in the form Γ = γId with γ ∈ R∗+. With this simplification, we have S−1

t = (KtΣ + γId)
−1 and we can

rewrite the system of ODEs (5) and the optimal control (6) as
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dKt =

{
(Ktb− γwr)

> S−1
t (Ktb− γwr)− γ (wr)

> wr

}
dt, KT = µ

dΛt =
{
(Λtb− γwr)

> S−1
t (Λtb− γwr)− γ (wr)

> wr

}
dt, ΛT = 0

and

α
γ
t =γS−1

t wrXt −ΛtS−1
t b

(
X0C0,t +

1
2

Ht

)
+ S−1

t b
[

Kt

(
X0C0,t +

1
2

Ht − Xt

)
−Yt

]
where

St = KtΣ + γId, Cs,t := e−
∫ t

s b>S−1
u (Λub−γwr)du, Yt = −

1
2

Ct,T .

We will consider three different classical allocations as reference portfolio.

1. Equal-weights portfolio: in this classical equal-weights portfolio, the same capital is invested in
each asset, thus

wew
r =

1
d

e

where d is the number of risky assets considered and e ∈ Rd is the vector of ones.
2. Minimum variance portfolio: the minimum variance portfolio is the portfolio which achieves

the lowest variance while investing all its wealth in the risky assets. The weight vector of this
portfolio is equal to

wmin-var
r =

Σ−1e
e>Σ−1e

.

These weights correspond to the one-period Markowitz portfolio when every asset expected
return bi is taken equal to 1. In that case, only the portfolio variance is relevant and is minimized
during the optimization process.

3. ERC portfolio: the equal risk contributions (ERC) portfolio, presented in [17] and in the
monograph [18] is constructed by choosing a risk measure and computing the risk contribution
of each asset to the global risk of the portfolio. When the portfolio volatility is chosen as the risk
measure, the principle of the ERC portfolio lays in the fact that the volatility function satisfies
the hypothesis of Euler’s theorem and can be reduced to the sum of its arguments multiplied by
their first partial derivatives. The portfolio volatility σ(w) =

√
w>Σw of a portfolio with weights

vector w ∈ Rd can then be rewritten as

σ(w) =
d

∑
i=1

wi∂iσ(w) =
d

∑
i=1

wi (Σw)i

σ(w)
.

The term under the sum wi(Σw)i

σ(w)
, corresponding to the i-th asset, can be interpreted as the

contribution of this risky asset to the total portfolio volatility. The equal risk contribution
allocation is then defined as the allocation in which these contributions are equal for all the

risky assets of the portfolio, wi(Σw)i

σ(w)
= wj(Σw)j

σ(w)
for every i, j ∈ J1, dK. The equal risk contribution

allocation is thus obtained when the portfolio weights w∗ are given by

w∗ =

{
w ∈ [0, 1]d :

d

∑
i=1

wi = 1, wi (Σw)i = wj (Σw)j , ∀i, j ∈ J1, dK

}
.
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With this risk measure, the ERC portfolio weights can be expressed in a closed-form
only in the case where the correlations between every couple of stocks are equal, that is
corr(Pi, Pj) = c, ∀ i, j ∈ J1, dK, with the additional assumption that c ≥ − 1

d−1 . Under these
assumptions, and with the constaint that ∑d

i=1 (w
erc
r )i = 1, the weights of this portfolio are

equal to

(werc
r )i =

σ−1
i

∑d
j=1 σ−1

j

where σi is the volatility of the i-th asset.

In the general case, the weights of the ERC portfolio do not have a closed form and must be
computed numerically by solving the following optimization problem

werc
r = arg min

w∈Rd

d

∑
i=1

d

∑
j=1

(
wi (Σw)i − wj (Σw)j

)2

s.t e>w = 1 and 0 ≤ wi ≤ 1, ∀i ∈ J1, dK.

4. Control shrinking (zero portfolio): this is the portfolio where all weights are equal to zero,
wi

r = 0 for all i. This case corresponds to a shrinking of the controls of the penalized
allocation, in the same spirit as the shrinking of regression coefficients in the Ridge regression
(or Tikhonov regularization).

4.1. Performance Comparison with Monte Carlo Simulations

In this section we compare, for each reference portfolio, the classical dynamic mean-variance
allocation, the reference portfolio and the “tracking error" penalized portfolio. In a real investment
situation, expected return and covariance estimates are noisy and biased. Thus, in order to compare the
three portfolios and observe the impact of adding a tracking error penalization in the mean-variance
allocation, we will run Monte Carlo simulations, assuming that the real-world expected returns breal
and covariances σreal are equal to reference expected returns b0 and covariances σ0 plus some noise:

b0 =


0.12
0.14
0.16
0.10

 , v0 =


0.20
0.30
0.40
0.50

 , C0 =


1. 0.05 −0.05 0.10

0.05 1. −0.03 0.12
−0.05 −0.03 1. −0.13
0.10 0.12 −0.13 1.

 ,

with the volatilties v0 and correlations C0 and

breal = b0 + ε× noise, σreal = σ0 + ε× noise

where the covariance matrix σ0 is obtained from v0 and C0. The noise follows a standard normal
distribution N (0, 1) and ε is its magnitude. We use Monte Carlo simulations to estimate the expected
Sharpe ratio of each portfolio, equal to the average of the portfolio daily returns R divided by the
standard deviation of those returns: E

[ E[R]
Stdev(R)

]
.

We consider an investment horizon of one year, with 252 business days and a daily rebalancing
of the portfolio. The risk aversion parameter µ is chosen so that the targeted annual return of the

classical mean-variance allocation is equal to 20%, thus µ = eb>Σ−1b

2x0∗1.20 according to [2]. The initial wealth
of the investor x0 is chosen equal to 1 and we choose the penalization parameter γ = µ/100. Indeed,
as the value of µ depends on the value of the stocks expected return and covariance matrix and on the
targeted return, and can be very big, we express γ a function of this µ in order for the penalization to
be relevant and non-negligible.
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For each reference portfolio, we compare the reference portfolio, the classical mean-variance
allocation and the penalized one for values of noise amplitude ε ranging from 0 to 1. For each value of
ε, we run 2000 scenarios and we plot the graphs of the average Sharpe ratio as a function of ε.

On the Figures 1–4 , we can see that in the four cases, the mean-variance and the penalized
portfolios are superior to the reference. In the case where the equal weights portfolio is chosen as
reference, the penalized portfolio’s Sharpe ratio is lower than the mean-variance one for small values
of ε. For ε greater than approximately 0.25, the penalized portfolio’s Sharpe ratio becomes larger and
the gap with the mean-variance’s Sharpe tends to increase with ε. The same phenomenon occurs in
the case where the ERC portfolio is chosen as reference, with a smaller gap between the mean-variance
and penalized portfolios’ Sharpe ratios. When the minimum variance portfolio is chosen as reference,
the penalized portfolio’s Sharpe ratio is lower than the one of the mean-variance portfolio for all ε

in the interval [0, 1]. This is certainly due to the sensitivity of the minimum variance portfolio to the
estimator of the covariance matrix. Finally, in the case of the control shrinking, the Sharpe ratio of
the penalized portfolio is significantly higher that the Sharpe ratio of the mean-variance portfolio,
for every value of the noise amplitude ε in the interval [0, 1].

• Equal-weights reference portfolio
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Sharpe mean-variance
Sharpe penalized, = /100

Figure 1. The highest average Sharpe ratio attained by the equal-weight portfolio is equal to 0.047 for
ε = 0.
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• Minimum-variance reference portfolio
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Figure 2. The highest average Sharpe ratio attained by the minimum-variance portfolio is equal to
0.057 for ε = 0.

• ERC reference portfolio
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Figure 3. The highest average Sharpe ratio attained by the ERC portfolio is equal to 0.051 for ε = 0.
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• Control shrinking (zero reference)
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Sharpe penalized, = /100

Figure 4. In this case the reference weights are equal to zero, and no Sharpe ratio is computed for the
reference portfolio.

4.2. Performance Comparison on a Backtest

We now compare the different allocations on a backtest based on adjusted close daily prices
available on Quandl between 2013-09-03 and 2017-12-28 for four stocks: Apple, Microsoft, Boeing and
Nike. Here we chose a value of µ which corresponds to an annual expected return of 25%. In our
example, we express again γ as a function of µ and we consider two different values, γ = µ and
γ = µ/100.

Figures 5–7 show the total wealth of the four different portfolios, mean-variance, reference and
the penalized portfolio with the big and the small penalization as a function of time. On these graphs
we observe that, at the beginning of the investment horizon, the mean-variance allocation has the
largest wealth increase, hence the largest leverage. As the wealth of this portfolio attains the target
wealth, expressed as 1

2µ eb>Σ−1b T + x0 in the mean-variance control Equation (4), its leverage decreases
and its wealth curve flattens. The same phenomenon occurs for the penalized allocation with large
penalization parameter γ = µ. In this case, the high value of the penalization parameter keeps
the penalized portfolio controls close to the ones of the mean-variance portfolio. On the contrary,
the reference portfolios have constant weights and no target wealth. We can see that in each case the
reference portfolio’s wealth keeps increasing over the entire horizon. The wealth of the penalized
portfolio with penalization parameter γ = µ/100 follows the wealth of these reference portfolio due to
the small value of the tracking error penalization.

For these three reference portfolios, we observe that the penalized portfolio with penalization
parameter γ = µ outperforms both the mean-variance and the reference portfolios in terms of
Sharpe ratio whereas the penalized portfolio with penalization parameter γ = µ/100 outperforms
the mean-variance but underperforms the reference portfolio. This can be attributed to the larger
weight of the mean-variance criterion with respect to the tracking error in the optimized cost (2) with
penalization parameter γ = µ.

Finally, Figure 8 corresponds to the case of a reference portfolio with weights all equal to zero.
This corresponds to a shrinking of the optimal control of the penalized portfolio. In that case, for a better
visualization, we plot the total wealth of the mean-variance and penalized portfolios for penalization
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parameters γ = µ and γ = µ/100 normalized by the standard deviation of their daily returns. On this
graph, we can see that the normalized wealth of the two penalized portfolio is higher than the one of
the mean-variance allocation. Similarly to the three precedent reference portfolios, the two penalized
portfolios outperform the mean-variance allocation in terms of Sharpe ratio. As previously, we observe
that the Sharpe ratio of the penalized portfolio with penalization parameter γ = µ is greater than the
one with γ = µ/100, due to the larger weight of the mean-variance criterion in the functional cost.

• Equal-weights reference portfolio

0.0 0.2 0.4 0.6 0.8 1.0
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Wealth mean-variance
Wealth penalized, =
Wealth penalized, = /100
Wealth equal weights

Figure 5. Sharpe ratios: Mean-variance: 0.183; Equal weights: 0.258; Penalized γ = µ: 0.260; Penalized
γ = µ/100: 0.226.

• Minimum variance reference portfolio
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Wealth penalized, =
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Figure 6. Sharpe ratios: Mean-variance: 0.183; Minimum variance: 0.255; Penalized γ = µ: 0.256;
Penalized γ = µ/100: 0.220.
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• ERC portfolio
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Figure 7. Sharpe ratios: Mean-variance: 0.183; ERC: 0.258; Penalized γ = µ: 0.260; Penalized γ =

µ/100: 0.225.

• Zero portfolio (shrinking)
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Figure 8. Total wealth of the mean-variance and penalized portfolios for γ = µ and γ = µ/100,
normalized by the standard deviation of daily returns, as a function of time. Sharpe ratios:
mean-variance: 0.183; Penalized γ = µ: 0.252; Penalized γ = µ/100: 0.221.

5. Conclusions

In this paper, we propose an allocation method based on a mean-variance criterion plus a tracking
error between the optimized portfolio and a reference portfolio of same wealth and fixed weights.
We solve this problem as a linear-quadratic McKean–Vlasov stochastic control problem using a weak
martingale approach. We then show using simulations that for a certain degree of market parameter
misspecification and the right choice of reference portfolio, the mean-variance portfolio with tracking
error penalization outperforms the standard mean-variance and the mean-variance allocations in terms
of Sharpe ratio. Another backtest based on historical market data also shows that the mean-variance
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portfolio with tracking error outperforms the traditional mean-variance and the reference portfolios in
terms of Sharpe ratio for the four reference portfolios considered.

Compared to the approaches of robust and bayesian optimization ([9,21]), the regularization
of the mean-variance allocation by a tracking-error penalization offers a more intuitive and simple
approach from the financial point of view as the specification of the reference portfolio has a clear
operationnal meaning. The benchmark tracking with improvement of the Sharpe ratio is intrinsically
linked to the method described in this article and is, by definition, absent of the two other approaches.

Depending on the penalization parameter Γ, the choice of the reference portfolio plays an
important role. If this reference portfolio is not agnostic and the computation of its weights is based
on estimated market parameters, it will also be impacted by the parameter misspecification and the
allocation will be more sensitive to estimation errors. The allocation would be more robust when
an agnostic portfolio to market parameters, such as the equal-weights portfolio or the zero portfolio
(control shrinking), is chosen as reference.

In our approach, the mean-variance criterion in the optimized cost function is based on estimated
market parameters. Hence, while regularized by the tracking-error penalization, the allocation obtained
still has a sensitivity to parameter misspecification. This constitutes a limitation compared to a robust
optimization approach which optimizes the portfolio in the worst case scenario and is then unimpaired
by parameter misspecification. Nevertheless, as the optimization of the mean-variance allocation
with tracking error is based on estimators of the market parameters and not on a worst-case scenario,
this allocation should outperform the robust approach for smaller values of parameter misspecification.

A potential direction for further studies would be to compare quantitatively the approach of the
tracking error penalization with the robust optimization and the Bayesian approach. It would also be
interesting to compare the method presented in this paper with Deep Learning based approaches such
as the ones presented in [22,23].
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Appendix A. Proof of Theorem 1

The proof of Theorem 1 is based on the weak optimality principle lemma stated in [19],
and formulated in the case of the mean-variance problem (3) as:

Lemma A1 (Weak optimality principle). Let {Vα
t , t ∈ [0, T], α ∈ A} be a family of real-valued processes

in the form

Vα
t = vt(Xα

t ,E[Xα
t ]) +

∫ t

0
(αs − wrXα

s )
> Γ (αs − wrXα

s ) ds,

for some measurable functions vt on R×R, t ∈ [0, T], such that:

1. vT(x, x̄) = µ(x− x̄)2 − x, for all x, x̄ ∈ R,
2. the function t ∈ [0, T]→ E [Vα

t ] is nondecreasing for all α ∈ A
3. the map t ∈ [0, T]→ E

[
Vα∗

t

]
is constant for some α∗ ∈ A.

Then, α∗ is an optimal portfolio strategy for the mean-variance problem with tracking error (3), and

V0 = J(α∗).
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We aim to construct a family of processes {Vα
t , t ∈ [0, T], α ∈ A} as in Lemma A1, and given

the linear-quadratic structure of our optimization problem, we look for a measurable function vt in
the form:

vt(x, x) = Kt(x− x)2 + Λtx2 + 2Ytx + Rt (A1)

for some deterministic processes (Kt, Λt, Yt, Rt) to be determined. Condition (i) in Lemma A1 fixes
the terminal condition

KT = µ, ΛT = 0, YT = −1/2, RT = 0.

For any α ∈ A, with associated wealth process X := Xα, let us compute the derivative of the
deterministic function t → E[Vα

t ] = E
[
vt(Xt,E[Xt]) +

∫ t
0 (αs − wrXs)

> Γ (αs − wrXs) ds
]

with vt as
in (A1). From the dynamics of X = Xα

t in (1) and by applying Itô’s formula, we obtain

dE[Vα
t ]

dt
=Var(Xt)

(
K̇t + w>r Γwr

)
+ X2

t

(
Λ̇t + w>r Γwr

)
+ 2XtẎt + Ṙt (A2)

+E[Gt(α)]

where
Gt(α) := α>t Stαt + 2

{(
Kt(Xt − Xt) + Yt + ΛtXt

)
b> − Xtw>r Γ

}
αt.

By completing the square in α, and setting St := KtΣ + Γ and ρ̃t := b>S−1
t b, we rewrite Gt(α) as

Gt(α) =E
[(

αt − αΓ
t

)>
St

(
αt − αΓ

t

)]
−Var(Xt)

{
K2

t ρ̃t + w>r ΓS−1
t Γwr − 2Ktb>S−1

t Γwr

}
− X2

t

{
Λ2

t ρ̃t + w>r ΓS−1
t Γwr − 2Λtb>S−1

t Γwr

}
− 2Xt

{
ΛtYtρ̃t −Ytb>S−1

t Γwr

}
−Y2

t ρt

with αΓ
t := S−1

t ΓwrXt − S−1
t b

[
KtXt + Yt − (Kt −Λt)Xt

]
. The expression in (A2) is then rewritten as

dE[Vα
t ]

dt
=E

[(
αt − αΓ

t

)>
St

(
αt − αΓ

t

)]
+ Var(Xt)

{
K̇t − K2

t ρ̃t + w>r Γwr + 2Ktb>S−1
t Γwr − w>r ΓS−1

t Γwr

}
+ X2

t

{
Λ̇t −Λ2

t ρ̃t + w>r Γwr + 2Λtb>S−1
t Γwr − w>r ΓS−1

t Γwr

}
+ 2Xt

(
Ẏt + Ytb>S−1

t Γwr −ΛtYtρ̃t

)
+ Ṙt −Y2

t ρ̃t.

Therefore, whenever
K̇t − K2

t ρ̃t + w>r Γwr + 2Ktb>S−1
t Γwr − w>r ΓS−1

t Γwr = 0

Λ̇t −Λ2
t ρ̃t + w>r Γwr + 2Λtb>S−1

t Γwr − w>r ΓS−1
t Γwr = 0

Ẏt + Ytb>S−1
t Γwr −ΛtYtρ̃t = 0

Ṙt −Y2
t ρ̃t = 0
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holds for all t ∈ [0, T], we have

dE[Vα
t ]

dt
= E

[(
αt − αΓ

t

)>
St

(
αt − αΓ

t

)]
which is nonnegative for all α ∈ A, i.e., the process Vα

t satisfies the condition (ii) of Lemma A1.
Moreover, we see that Vα

t = 0, 0 ≤ t ≤ T if and only if αt = αΓ
t , 0 ≤ t ≤ T.

XΓ := XαΓ
is solution to a linear McKean–Vlasov dynamics and, since K ∈ C([0, T],R∗+),

Λ ∈ C([0, T],R+) and Y ∈ C([0, T],R), XΓ satisfies the square integrability condition

E
[

sup
0≤t≤T

|XΓ
t |2
]
< ∞, which implies that αΓ is F-progressively measurable and

∫ T
0 E[|αΓ

t |2]dt < ∞.

Therefore, αΓ ∈ A, and we conclude by the verification Lemma A1 that it is the unique
optimal control.

Appendix B. Computation Linear Expansion of αγ for Γ = γId → 0

α
γ
t =Σ−1b

(
1

2µ
eρT + X0 − Xt

)
+ γ

(
Σ−1wr + Σ−2b

) Xt

K0
t
− γ‖wr‖2(T − t)

Σ−1

K0
t

b
(

X0 +
eρT

µ

(
1− e−ρt))

− γ

(
Σ−1bX0C1

0,t + Σ−2b
X0

K0
t

)
− γ

(
Σ−1b

H1
t

2
+ Σ−2b

eρT

2K0
t µ

(
1− e−ρt))

− γ

2

{
1(

K0
t
)2 Σ−1

(
K1

t Id + Σ−1
)

b + Σ−1b
Ct,T

K0
t

}
+ O(γ2)

=Σ−1b
(

1
2µ

eρT + X0 − Xt

)
+ γΣ−1wr

Xt

K0
t

− γΣ−1b

{
‖wr‖2

K0
t

(T − t)
(

X0 +
eρT

µ

(
1− e−ρt))+ X0C1

0,t +
H1

t
2

+
K1

t

2
(
K0

t
)2 +

Ct,T

2K0
t

}

− γΣ−2b

{
eρT

2K0
t µ

(
1− e−ρt)+ 1

2
(
K0

t
)2

}
+ O(γ2).

Appendix C. Computation Linear Expansion of Var(XT) for Γ = γId → 0

We recall that the linear expansion of the optimal control can be written as

α
γ
t = Σ−1b α0

t + γ
(

Σ−1wr α1,3
t − Σ−2b α1,2

t − Σ−1b α1,1
t

)
+ O(γ2)

where the coefficients α1,1
t , α1,2

t and α1,3
t are given by (12). The average total wealth of the portfolio

constructed by the optimal control at time t is given by the ODE

dXt = ρζ − γ
(

ρα1,1
t + b>Σ−2bα1,2

t

)
+

(
γ

b>Σ−1wr

K0
t

− ρ

)
Xt + O(γ2), Xt = X0,



Mathematics 2020, 8, 1915 20 of 23

where we set ζ := X0 +
1

2µ eρT . We get the solution

XT =X0e−ρT + ζ
(

1− e−ρT
)

+ γ

{
b>Σ−1wr

µ

(
Tζ − 1

2µ
eρT 1− e−ρT

ρ

)
−
∫ T

0

(
ρα1,1

s + b>Σ−2bα1,2
s

)
e−ρ(T−s)ds

}
+ O

(
γ2
)

=XT
0
+ γXT

1
+ O(γ2)

with XT
0 := X0e−ρT + ζ

(
1− e−ρT)

XT
1 := b>Σ−1wr

µ

(
Tζ − 1

2µ eρT 1−e−ρT

ρ

)
−
∫ T

0

(
ρα1,1

s + b>Σ−2bα1,2
s

)
e−ρ(T−s)ds

and
XT

2
=
(

XT
0
)2

+ 2γXT
0XT

1
+ O(γ2)

The average of the square of the portfolio wealth at time t is given by the ODE

dX2
t =

(
ζ − γα1,1

t

)2
ρ− 2γb>Σ−2bα1,2

t

(
ζ − γα1,1

t

)
+ 2γ

w>r Σ−1b
K0

t

(
ζ − γα1,1

t

)
Xt

− ρX2
t + O(γ2)

which gives the solution

X2
T =X2

0e−ρT + ζ2
(

1− e−ρT
)

− 2γζ
∫ T

0

{
ρα1,1

s + b>Σ−2bα1,2
s

}
e−ρ(T−s)ds

+ 2γ
w>r Σ−1b

µ
ζ
∫ T

0
Xs

0ds + O(γ2).

We can then compute the variance of the terminal total wealth of the portfolio given by the
control (11)

Var(XT) =X2
T − Xt

2

=
e−ρT

1− e−ρT

(
XT

0 − X0

)2

+ γ
b>Σ−1wr

µ2

(
ζT − 1

2µ
eρT 1− e−ρT

ρ

)
− γ

∫ T

0

(
ρ

µ
α1,1

s +
b>Σ−2b

µ
α1,2

s

)
e−ρ(T−s)ds + O(γ2).

Appendix D. Proof that Kt and Λt are Bounded in γ

To prove this, we use a theorem from [24] (also in [25], Theorem 14.1, p93). We rewrite the
differential equation of K as

dKt

dt
= f (t, Kt, γ), KT = µ

with f (t, Kt, γ) := (Ktb− γwr)
> (KtΣ + γId)

−1 (Ktb− γwr) − γ‖wr‖2, where ‖ · ‖ denotes the
euclidean norm in Rd.
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For t ∈ [0, T], the partial derivatives ∂ f /∂K and ∂ f /∂γ exist and are continuous in the
neighbourhood of the solution Kt. Then the partial derivative

∂Kt

∂γ
= ψt

exists, is continuous, and satisfies the differential equation

ψ
′
t =

∂ f
∂K

(t, Kt, γ)ψt +
∂ f
∂γ

(t, Kt, γ).

Recalling that the derivative of the inverse of a nonsingular matrix M whose elements are functions
of a scalar parameter p w.r.t this parameter is equal to ∂M−1

∂p
= −M−1 ∂M

∂p
M−1, we can compute the

partial derivatives ∂ f /∂K and ∂ f /∂γ, and we obtain the following differential equation for ψ(ψt)
′
=
[
−‖σ>S−1

t (Ktb− γwr) ‖2 + 2b>S−1
t (Ktb− γwr)

]
ψt − ‖wr + S−1

t (Ktb− γwr) ‖2, t ∈ [0, T]

ψT = 0.

This ODE has an explicit solution given by

ψt =
∫ T

t
Ase−

∫ s
t Bududs

with At ≥ 0, ∀t ∈ [0, T] equal to

At :=
K2

t
γ2 ‖

(
Id +

Kt

γ
Σ
)−1

(b + Σwr) ‖2 −→
γ→∞

0

and

Bt :=2
Kt

γ
(b + Σwr)

>
(
Id +

Kt

γ
Σ
)−1

(b + Σwr)

− K2
t

γ2 (b + Σwr)
>
(
Id +

Kt

γ
Σ
)−1

Σ
(
Id +

Kt

γ
Σ
)−1

(b + Σwr)

− 2b>wr − ‖σ>wr‖2.

We have Bt →
γ→∞

−2b>wr − ‖σ>wr‖2, thus ψt −→
γ→∞

0, ∀t ∈ [0, T] and Kt is bounded in γ for every

t ∈ [0, T].
In the same spirit, we rewrite the differential equation of Λt as

dΛt

dt
= g(t, Λt, γ), Λt = 0

with g(t, Λt, γ) := (Λtb− γwr)
> S−1

t (Λtb− γwr)− γ‖wr‖2. The partial derivative

∂Λt

∂γ
= φt

exists, is continuous and satisfies the differential equationφ
′
t = 2b>S−1

t (Λtb− γwr) φt −
[
‖wr + S−1

t (Λtb− γwr) ‖2 + ψt‖σ>S−1
t (Λtb− γwr) ‖2

]
, t ∈ [0, T]

φ0 = 0.
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which gives the explicit solution

φt =
∫ T

t
Cse−

∫ s
t Dududs

with Ct ≥ 0, ∀t ∈ [0, T] equal to

Ct := ‖ 1
γ

(
Id +

Kt

γ
Σ
)−1

(Λtb + KtΣwr) ‖2 + ψt‖
1
γ

σ>
(
Id +

Kt

γ
Σ
)−1

(Λtb + KtΣwr)− σ>wr‖2

and

Dt := 2

[
1
γ

b>
(
Id +

Kt

γ
Σ
)−1

(Λtb + KtΣwr)− b>wr

]
.

We showed that Kt
γ , ψt −→

γ→∞
0 for every t ∈ [0, T]. Thus Ct −→

γ→∞
0, Dt −→

γ→∞
−2b>wr and φt −→

γ→∞
0,

∀t ∈ [0, T]. Λt is then bounded in γ for every t ∈ [0, T].
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