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Abstract: We introduce and investigate binary (k, k)-designs, a special case of T-designs.
Our combinatorial interpretation relates (k, k)-designs to the binary orthogonal arrays. We derive
a general linear programming bound and propose as a consequence a universal bound on the
minimum possible cardinality of (k, k)-designs for fixed k and n. Designs which attain our bound
are investigated.
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1. Introduction

Let F = {0, 1} be the alphabet of two symbols and Fn
2 the set of all binary

vectors x = (x1, x2, . . . , xn) over F. The Hamming distance d(x, y) between points x = (x1, x2, . . . , xn)

and y = (y1, y2, . . . , yn) from Fn
2 is equal to the number of coordinates in which they differ.

In considerations of Fn
2 as a polynomial metric space (cf. [1–3]) it is convenient to use the

“inner product”

〈x, y〉 := 1− 2d(x, y)
n

(1)

instead of the distance d(x, y). The geometry in Fn
2 is then related to the properties of the Krawtchouk

polynomials {Q(n)
i (t)}n

i=0 satisfying the following three-term recurrence relation

ntQ(n)
i (t) = (n− i)Q(n)

i+1(t) + iQ(n)
i−1(t),

i = 1, 2, . . . , n− 1, with initial conditions Q(n)
0 (t) = 1 and Q(n)

1 (t) = t.
Any nonempty subset C ⊆ Fn

2 is called a code. Given a code C ⊂ Fn
2 , the quantities

Mi(C) := ∑
x,y∈C

Q(n)
i (〈x, y〉) (2)

= |C|+ ∑
x,y∈C,x 6=y

Q(n)
i (〈x, y〉), i = 1, 2, . . . , n,

are called moments of C, where |C| denotes the cardinality of C.
The well known positive definiteness of the Krawtchouk polynomials (see [1,3,4]) implies that

Mi(C) ≥ 0 for every i = 1, 2, . . . , n. The case of equality is quite important.

Definition 1. [5] Let T ⊂ {1, 2, . . . , n}. A code C ⊂ Fn
2 is called a T-design if

Mi = 0 for all i ∈ T.
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If T = {1, 2, . . . , m} for some m ≤ n, then C is known as an m-design (see [1,3,4]), or a (binary)
orthogonal array of strength m (cf. [1,3–6]), or an m-wise independent set [7].

The case of T consisting of even integers was introduced and considered by Bannai et al. in [5]
(Section 6.2) but (to the best of our knowledge) the special case of the next definition is not claimed yet.
The Euclidean analogs of the (k, k)-designs on Sn−1 were considered earlier [8–12]. Further analogs
in polynomial metric spaces such as q-ary Hamming spaces and infinite projective spaces could be
interesting and will be considered elsewhere.

Orthogonal arrays have nice combinatorial properties which imply, in particular, a divisibility
condition for (k, k)-designs (Corollary 1 below). Our approach allows a combinatorial interpretation
(Theorem 1) which reveals relations with the binary orthogonal arrays and implies a divisibility
condition. Note that the notion of T-designs seems to be too general for arbitrary T and even for most
specific T, so we do not find any combinatorial interpretation in [5].

Definition 2. If C ⊂ Fn
2 is a T-design with T = {2, 4, . . . , 2k}, where k ≤ n/2 is a positive integer, then C is

called a (k, k)-design. In other words, C is a (k, k)-design if and only if

Mi(C) = 0 for all i = 2, 4, . . . , 2k.

Thus, in this paper we focus on the special case when T consists of several consecutive even
integers beginning with 2. It is clear from the definition that any (k, k)-design is also an (`, `)-design
for every ` = 1, 2, . . . , k− 1.

We also derive and investigate general and specific linear programming (Delsarte) bounds. After
recalling general linear programming techniques, we will derive and investigate an universal (in sense
of Levenshtein [3]) bound. More precisely, we obtain a lower bound on the quantity

M(n, k) := min{|C| : C ⊂ Fn
2 is a (k, k)-design}, (3)

the minimum possible cardinality of a (k, k)-design in Fn
2 , as follows:

M(n, k) ≥
k

∑
i=0

(
n− 1

i

)
.

The paper is organized as follows. In Section 2 we derive a relation between (k, k)-designs and
antipodal (2k + 1)-designs implying a strong divisibility condition. Section 3 reviews the general linear
programming bound and recalls the definition of so-called adjacent (to Krawtchouk) polynomials
which will be important ingredients in our approach. Section 4 is devoted to our new universal bound.
In Section 5 we discuss (k, k)-designs which attain this bound.

2. Relations to Antipodal (2k + 1)-Designs

Classical binary m-designs have nice combinatorial properties.

Definition 3. Let C ⊆ Fn
2 be a code and M be a codeword matrix consisting of all vectors of C as rows. Then C

is called an m-design, 1 ≤ m ≤ n, if any set of m columns of M contains any m-tuple of Fm
2 the same number of

times (namely, λ := |C|/2m). The largest positive integer m such that C is an m-design is called the strength of
C. The number λ is called the index of C.

It follows from Definition 3 that the cardinality of any m-design is divisible by 2m. This property
implies a strong divisibility condition for a basic type of (k, k)-designs.
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Definition 4. A code C ⊆ Fn
2 is called antipodal if for every x ∈ C the unique point y ∈ Fn

2 such that
d(x, y) = n (equivalently, 〈x, y〉 = −1) also belongs to C. The point y is denoted also by −x and is called
antipodal to x.

If C ⊂ Fn
2 , then the set of the points, which are antipodal to points of C is denoted as usually

by −C. A strong relation between antipodal (2k + 1)-designs and (k, k)-designs is given as follows.

Theorem 1. Let D ⊂ Fn
2 be an antipodal (2k + 1)-design. Let the code C ⊂ Fn

2 be formed by the following
rule: from each pair (x,−x) of antipodal points of D exactly one of the points x and −x belongs to C. Then C is
a (k, k)-design. Conversely, if C ⊂ Fn

2 is a (k, k)-design which does not possess a pair of antipodal points, then
D = C ∪−C is an antipodal (2k + 1)-design in Fn

2 .

Proof. For the first statement we use in (2) the antipodality of D, the relation |C| = |D|/2, and the fact
that the polynomials Q(n)

2i (t) are even functions; i.e., Q(n)
2i (t) = Q(n)

2i (−t) for every t, to see that

M2i(C) =
M2i(D)

2
= 0

for every i = 1, 2, . . . , k. Therefore C is a (k, k)-design (whatever is the way of choosing one of the
points in pairs of antipodal points).

The second statement follows similarly.

Corollary 1. If C ⊂ Fn
2 is a (k, k)-design which does not possess a pair of antipodal points, then |C| is divisible

by 22k.

Proof. By Definition 3 it follows that 22k+1 divides the cardinality of the antipodal (2k + 1)-design D
constructed from C as in Theorem 1. Thus |C| = |D|/2 is divisible by 22k.

Example 1. For even n = 2`, the even weight code D ⊂ Fn
2 is an antipodal (2`− 1)-design. Therefore, any

code C obtained as in Theorem 1 is an (`− 1, `− 1)-design. Obviously, |C| = |D|/2 = 2n−2 = 22`−2. We
will come back to this example in Section 5.

We note that Definition 2 shows that any (2k)- or (2k + 1)-design is also a (k, k)-design. For small
k, this relation gives some examples of (k, k)-designs with relatively small cardinalities (see Section 5).

The m-designs in Fn
2 possess further nice combinatorial properties. For example, if a column of

the codeword matrix in Definition 3 is deleted, the resulting matrix is still an m-design in Fn−1
2 with the

same cardinality (possibly with repeating rows). Moreover, the rows with 0 in that column determine
an (m− 1)-design in Fn−1

2 of twice less cardinality. It would be interesting to have analogs of these
properties for (k, k)-designs.

3. General Linear Programming Bounds

Linear programming methods were introduced in coding theory by Delsarte (see [4,13]). The case
of T-designs in Fn

2 was recently considered by Bannai et al. [5] (see also [14] (Sections 4–6)).
The transformation (1) means that all numbers 〈x, y〉 are rational and belong to the set

Tn := {−1 + 2i/n : i = 0, 1, . . . , n}.

We will be interested in values of polynomials in Tn.
For any real polynomial f (t) we consider its expansion in terms of Krawtchouk polynomials

f (t) =
n

∑
j=0

f jQ
(n)
j (t)
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(if the degree of the polynomial f (t) exceeds n, then f (t) is taken modulo ∏n
i=0(t − ti),

where ti = −1 + 2i/n ∈ Tn, i = 0, 1, . . . , n). We define the following set of polynomials

Fn,k := { f (t) ≥ 0 ∀t ∈ Tn : f0 > 0, f j ≤ 0, j = 1, 3, . . . , 2k− 1 and j ≥ 2k + 1}.

The next theorem was proved (in slightly different setting) in [5]. We provide a proof here in
order to make the paper self-contained.

Theorem 2. [5] [Proposition 6.8] If f ∈ Fn,k, then

M(n, k) ≥ f (1)
f0

.

If a (k, k)-design C ⊂ Fn
2 attains this bound, then all inner products 〈x, y〉 of distinct x, y ∈ C are among the

zeros of f (t) and fi Mi(C) = 0 for every positive integer i.

Proof. Bounds of this kind follow easily from the identity

|C| f (1) + ∑
x,y∈C,x 6=y

f (〈x, y〉) = |C|2 f0 +
m

∑
i=1

fi Mi(C) (4)

(see, for example, [2] [Equation (1.20)], [15] [Equation (26)]), which is true for every code C ⊂ Fn
2 and

every polynomial f (t) = ∑m
j=0 f jQ

(n)
j (t).

Let C be a (k, k)-design and f ∈ Fn,k. We apply (4) for C and f . Since M2j(C) = 0 for j = 1, 2, . . . , k,
Mi ≥ 0 for all i, and f j ≤ 0 for all odd j and for all even j > 2k, the right hand side of (4) does
not exceed f0|C|2. The sum in the left hand side is non-negative because f (t) ≥ 0 for every t ∈ Tn.
Thus the left hand side is at least f (1)|C| and we conclude that |C| ≥ f (1)/ f0. Since this inequality
follows for every C, we haveM(n, k) ≥ f (1)/ f0.

If the equality is attained by some (k, k)-design C ⊂ Fn
2 and a polynomial f ∈ Fn,k, then

∑
x,y∈C,x 6=y

f (〈x, y〉) =
m

∑
i=1

fi Mi(C) = 0.

Since f (t) ≥ 0 for every t ∈ Tn, we conclude that f (〈x, y〉) = 0 whenever x, y ∈ C are distinct. Finally,
Mi(C) ≥ 0 for every i and fi ≤ 0 for i 6∈ {2, 4, . . . 2k} yield fi Mi(C) = 0 for every positive integer i.

We will propose suitable polynomials f (t) ∈ Fn,k in the next section. Key ingredients are certain
polynomials {Q1,1

i (t)}n−2
i=0 (adjacent to the Krawtchouk ones) which were first introduced as such and

investigated by Levenshtein (cf. [3] and references therein). In what follows in this section we describe
the derivation of these polynomials.

The definition of the adjacent polynomials {Q1,1
i (t)}n−2

i=0 requires a few steps as follows (cf. [3]). Let

Ti(u, v) :=
i

∑
j=0

(
n
i

)
Q(n)

i (u)Q(n)
i (v)

be the Christoffel-Darboux kernel (cf. [16]) for the Krawtchouk polynomials as defined in the
Introduction. Then one defines (1, 0)-adjacent polynomials [3] (Equation (5.65)) by

Q1,0
i (t) :=

Ti(t, 1)
Ti(1, 1)

, i = 0, 1, . . . , n− 1. (5)
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For the final step, denote

T1,0
i (x, y) :=

i

∑
j=0

(
∑

j
u=0 (

n
u)
)2

(n−1
j )

Q1,0
j (x)Q1,0

j (y) (6)

(the Christoffel-Darboux kernel for the (1, 0)-adjacent polynomials) and define [3] (Equation (5.68))

Q1,1
i (t) :=

T1,0
i (t,−1)

T1,0
i (1,−1)

, i = 0, 1, . . . , n− 2. (7)

The first few (1, 1)-adjacent polynomials are

Q1,1
0 (t) = 1, Q1,1

1 (t) = t,

Q1,1
2 (t) =

n2t2 − n + 2
n2 − n + 2

, Q1,1
3 (t) =

n2t3 − (n− 8)t
n2 − n + 8

.

Equivalently, the polynomials {Q1,1
i (t)}n−2

i=0 can be defined as the unique series of normalized (to
have value 1 at 1) polynomials orthogonal on Tn with respect to the discrete measure

nq2−n(1− t)(1 + t)
4(n− 1)(q− 1)

n

∑
i=0

rn−iδti , (8)

where δti is the Dirac-delta measure at ti ∈ Tn [3] (Section 6.2).
Finally, we note the explicit formula (cf. [3] (Section 6.2), [17] (p. 281))

Q1,1
i (t) =

K(n−2)
i (z− 1)

∑i
j=0 (

n−1
j )

, (9)

where z = n(1 − t)/2, which relates the (1, 1)-adjacent polynomials and the usual (binary)
Krawtchouk polynomials

K(n)
i (z) :=

i

∑
j=0

(−1)j
(

z
j

)(
n− z
i− j

)
.

It follows from (9) that the polynomials Q1,1
i (t) are odd/even functions for odd/even i (this also

follows from the fact that the measure (8) is symmetric in [−1, 1], therefore on Tn). We will use this fact
when we deal with our proposal for a polynomial in Theorem 2.

4. A Universal Lower Bound for M(n, k)

Using suitable polynomials in Theorem 2 we obtain the following universal bound.

Theorem 3. We have

M(n, k) ≥
k

∑
i=0

(
n− 1

i

)
.

If a (k, k)-design C ⊂ Fn
2 attains this bound, then all inner products 〈x, y〉 of distinct x, y ∈ C are among the

zeros of Q1,1
k (t) and |C| = ∑k

i=0 (
n−1

i ) is divisible by 22k.

Proof. We use Theorem 2 with the polynomial f (t) =
(

Q1,1
k (t)

)2
of degree 2k (so we have fi = 0 for

i ≥ 2k + 1) and arbitrary (k, k)-design in Fn
2 . It is obvious that f (t) ≥ 0 for every t ∈ [−1, 1]. Since

Q1,1
k (t) is an odd or even function, its square is an even function. Then fi = 0 for every odd i and thus

f ∈ Fn,k. The calculation of the ratio f (1)/ f0 gives the desired bound.
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If a (k, k)-design C ⊂ Fn
2 attains the bound, then equality in (4) follows (for C and the above f (t)).

Since fi Mi(C) = 0 for every i, the equality |C| = f (1)/ f0 is equivalent to

∑
x,y∈C,x 6=y

(
Q1,1

k (〈x, y〉)
)2

= 0,

whence Q1,1
k (〈x, y〉) = 0 whenever x and y are distinct points from C. The divisibility condition follows

from Corollary 1.

Remark 1. Linear programming bounds (cf. (7)–(9) and Theorem 4.3 in [15]) with the polynomial

(t + 1)
(

Q1,1
k (t)

)2
give the Rao [18] bound (see also [3,6] and references therein) for the minimum possible

cardinality of (2k + 1)-designs in Fn
2 , that is 2 ∑k

i=0 (
n−1

i ). Thus our calculation of f (1)/ f0 quite resembles
(and in fact follows from) the classical one [4] (see also [3] (Section 2)) by noting that, obviously, the value in
one is two times less and the coefficient f0 is the same because of the symmetric measure (equivalently, since

(t + 1)
(

Q1,1
k (t)

)2
is equal to the sum of the odd function t

(
Q1,1

k (t)
)2

and our polynomial).

Remark 2. The bound of Theorem 3 can be proved also via the relation from Theorem 1 if we allow consideration
of multisets and apply the Rao bound for orthogonal arrays with (possibly) repeating points. However, we prefer
to keep the linear programming framework as more general and as giving information for the structure of designs
which attain the linear programming bounds (to be used in the next section).

5. On Tight (k, k)-Designs

Following Bannai et al. [5] we call tight every (k, k)-design in Fn
2 with cardinality ∑k

i=0 (
n−1

i ).
Example 1 provides tight (`− 1, `− 1)-designs for any even n = 2`. Indeed, we have

`−1

∑
i=0

(
2`− 1

i

)
=

1
2

2`

∑
i=0

(
2`− 1

i

)
= 22`−2.

Theorem 1 allows us to relate the existence of tight (k, k)-designs and tight (2k + 1)-designs.

Theorem 4. For fixed n and k, tight (k, k)-designs exist if and only if tight (2k + 1)-designs exist.

Proof. If C ⊂ Fn
2 is a tight (k, k)-design, it cannot possess a pair of antipodal points since −1 is not a

zero of Q1,1
k (t). Thus we may construct an antipodal (2k− 1)-design D ⊂ Fn

2 with cardinality

2|C| = 2
k

∑
i=0

(
n− 1

i

)
;

i.e., attaining Rao bound.
Conversely, any tight (2k + 1)-design in Fn

2 has cardinality 2 ∑k
i=0 (

n−1
i ) and is antipodal. By

Theorem 1 it produces a tight (k, k)-design.

We proceed with consideration of the tight (k, k)-designs with k ≤ 3. The tight (1, 1)-designs
coexist with the Hadamard matrices due to a well known construction. We recall for completeness the
definition of a Hadamard matrix—it is a square matrix whose entries are either +1 or −1 and whose
rows are mutually orthogonal.

The next result was also obtained in [14] (Proposition 2) for the classification of tight index
2 designs.

Theorem 5. Tight (1, 1)-designs exist if and only if n is divisible by 4 and there exists a Hadamard matrix of
order n.
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Proof. Let C ⊂ Fn
2 be a (k, k)-design with

1 +
(

n− 1
1

)
= n

points. Then n is divisible by 4 and, moreover, since Q1,1
1 (t) = t, the only possible inner product is

0, meaning that the only possible distance is n/2. Therefore C is a (n, n, n/2) binary code. Changing
0→ −1 we obtain a Hadamard matrix of order n. Clearly, this works in the other direction as well.

Doubling a tight (1, 1)-design gives a tight 3-design which is clearly related to a Hadamard code
(n, 2n, n/2). It is also worth noting that a Hadamard matrix of order n + 1 defines a tight 2-design in
Fn

2 , which is a (1, 1)-design with cardinality n + 1 [6] (Theorem 7.5); i.e., exceeding our bound by 1.
The divisibility condition now shows that this is the minimum possible cardinality for length n ≡ 3
(mod 4). Further examples of (1, 1)-designs can be extracted from the examples in [19,20], where
linear programming bounds for codes with given minimum and maximum distances are considered.

The classification of tight (k, k)-designs, k ≥ 2, will be already as difficult combinatorial problem
as the analogous problems for classical designs in Hamming spaces (see, for example [5,8,21,22] and
references therein). We present here the direct consequences of the linear programming approach
combined with the divisibility condition of Corollary 1.

Theorem 6. Tight (2, 2)-designs could possibly exist only for n = m2 + 2, where m ≥ 3 is a positive integer,
m ≡ 2, 5, 6, 10, 11 or 14 (mod 16).

Proof. Let C ⊂ Fn
2 be a tight (2, 2)-design. For k = 2, we have

M(n, 2) ≥ 1 +
(

n− 1
1

)
+

(
n− 1

2

)
= (n2 − n + 2)/2,

which means that n2 − n + 2 is divisible by 32. This yields n ≡ 6 or 27 (mod 32).
Looking at the zeros of Q1,1

2 (t), we obtain ±
√

n− 2/n ∈ Tn, whence it follows that n− 2 has to
be a perfect square. Setting n = m2 + 2, we obtain m ≡ 2, 5, 6, 10, 11 or 14 (mod 16).

The classification of tight 4-designs was recently completed by Gavrilyuk, Suda, and Vidali [21]
(see also [22]). The only tight 4-design is the unique even-weight code of length 5 (see Example 1). It
has cardinality 16, which is the minimum possibility for a (2, 2)-design of length 5 since in this case
our bound is 11 and the cardinality must be divisible by 24 = 16.

Theorem 7. Tight (3, 3)-designs could possibly exist only for n ≡ 8 (mod 16) or n ≡ 107 (mod 128),
where n = (m2 + 8)/3, m ≥ 4 is a positive integer, divisible by 4 and not divisible by 3, or m ≡ 43 (mod 64).
The code obtained as in Theorem 1 from the binary Golay code [24, 12, 8] is a tight (3, 3)-design.

Proof. Let C ⊂ Fn
2 be a tight (3, 3)-design. Then 26 divides

|C| = 1 +
(

n− 1
1

)
+

(
n− 1

2

)
+

(
n− 1

3

)
=

n(n2 − 3n + 8)
6

,

i.e., n(n2 − 3n + 8) is divisible by 27. This gives n ≡ 0 (mod 8) or n ≡ 107 (mod 128). Since Q1,1
3 (t)

has roots 0 and±
√

3n− 8/n (the later necessarily belonging to Tn; otherwise C would be an equidistant
code with the only allowed distance n/2), it follows that 3n− 8 is a perfect square. Setting n = 8u and
3n− 8 = m2, we easily see that u has to be odd and m cannot be multiple of 3. If n ≡ 107 (mod 128),
we obtain m ≡ 43 (mod 64).

The necessary conditions are fulfilled for n = 24, where the Golay code, which is a tight 7-design,
produces as in Theorem 1 a tight (3, 3)-design of 211 = 2048 points.
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