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Abstract: This paper is devoted to solving boundary value problems for differential equations with
fractional derivatives by the Fourier method. The necessary information is given (in particular,
theorems on the completeness of the eigenfunctions and associated functions, multiplicity of
eigenvalues, and questions of the localization of root functions and eigenvalues are discussed) from
the spectral theory of non-self-adjoint operators generated by differential equations with fractional
derivatives and boundary conditions of the Sturm–Liouville type, obtained by the author during
implementation of the method of separation of variables (Fourier). Solutions of boundary value
problems for a fractional diffusion equation and wave equation with a fractional derivative are
presented with respect to a spatial variable.

Keywords: eigenvalue; eigenfunction; function of Mittag–Leffler; fractional derivative; Fourier
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In memoriam of my Father Sultan
and my son Bibulat

1. Introduction

Let ϕ(x) ∈ L1(0, 1). Then the function

d−α

dx−α
ϕ(x) ≡ 1

Γ(α)

x∫

0

(x− t)α−1 ϕ(t) dt ∈ L1(0, 1)

is known as a fractional integral of order α > 0 beginning at x = 0 [1]. Here Γ(α) is the Euler
gamma-function. As is known (see [1]), the function ψ(x) ∈ L1(0, 1) is called the fractional derivative
of the function ϕ(x) ∈ L1(0, 1) of order α > 0 beginning at x = 0, if

ϕ(x) =
d−α

dx−α
ψ(x),

which is written
ψ(x) =

dα

dxα
ϕ(x).

Then
dα

dxα

denote the fractional integral for α < 0 and the fractional derivative for α > 0.
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Let {γk}n
0 be a set of real numbers satisfying the condition 0 < γj ≤ 1, (0 ≤ j ≤ n). We denote

σk =
k

∑
j=0

γj − 1;

µk = σk + 1 =
k

∑
j=0

γj (0 ≤ k ≤ n),

and assume that
1
ρ
=

n

∑
j=0

γj − 1 = σn = µn − 1 > 0.

Following M. M. Dzhrbashyan [1], we consider the integro-differential operators

D(σ0)ϕ(x) ≡ d−(1−γ0)

dx−(1−γ0)
ϕ(x),

D(σ1)ϕ(x) ≡ d−(1−γ1)

dx−(1−γ1)

dγ0

dxγ0
ϕ(x),

D(σ2)ϕ(x) ≡ d−(1−γ2)

dx−(1−γ2)

dγ1

dxγ1

dγ0

dxγ0
ϕ(x),

· · · · · · · · · · · ·

D(σn)ϕ(x) ≡ d−(1−γn)

dx−(1−γn)

dγn−1

dxγn−1
· · · dγ0

dxγ0
ϕ(x).

We denote Dα
ax the operator of fractional integro-differentiation of order α beginning at a ∈ R and

with end at x ∈ R of order [α]. By definition we have

D(α)
ax φ(t) =





sign(x−a)
Γ(−α)

x∫
a

φ(t)dt
(x−t)α−1 , α < 0, φ(t) ∈ L1[a, b],

φ(t), α = 0, φ(t) ∈ L1[a, b],

sign[α]+1(x− a) ∂[α]+1

∂x[α]+1 Dα−[α]−1
ax φ(t), α > 0, φ(t) ∈ L1[a, b],

where [α] is the integer part of α, which satisfies [α] ≤ α < [α] + 1, and x ∈ [a, b].

Boundary Value Problems for Differential Equations of Fractional Order

The paper is devoted to the method of separation of variables (the Fourier method). This method,
which is so widely used in solving boundary value problems for partial differential equations of
integer order, until recently remained unsuitable for solving boundary value problems for differential
equations with fractional derivatives. The main reason, of course, is that the spectral theory of
non-self-adjoint operators generated by the corresponding differential expressions of fractional order
and boundary conditions of the Sturm–Liouville type has been supplemented with the necessary
information quite recently.

Almost all of the author’s papers, to varying degrees, are devoted to the study of the spectral
structure of these operators, which constitute the theoretical basis of the method of separation of
variables, and the author of this paper, in a sense, summarizes his work in this area.

So, in this paper, a method of separation of variables is presented for solving boundary value
problems for differential equations with fractional derivatives of the form

∂2u
∂t2 =

∂2u
∂x2 + C1Dα

0xu + C0Dβ
0tu, 0 < α, β < 2, (1)
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and
∂u(x, t)

∂t
= Dα

0+u(x, t).

First of all, we note that anomalous diffusion or dispersion we can describe using the fractional
space derivatives, and some processes with ‘memory’ effects-using the fractional time derivatives.

It should be noted that depending on the modeled process, the fractional differentiation operators
appearing in these equations can be both the Riemann–Liouville fractional differentiation operators
and the fractional differentiation operators in the Caputo sense. One of the most important problems
in modeling physical processes using differential equations with fractional derivatives is the problem
of establishing in what sense the fractional derivative is taken and the identification of the order of this
fractional derivative.

Undoubtedly, the most significant, fundamental point in the study of boundary value problems
for these equations by the method of separation of variables is the question of completeness of systems
of eigenfunctions of boundary value problems for the equations

L(u; γ0, γ1, γ2, q(x)) = D(σ2)u− [λ + q(x)]u(x) = 0, (2)

X′′(x) + C1Dα
0xX = λX(x), (3)

(these equations arise when the variables are separated in Equations (2) and (3)).
Therefore, we present basic results from the spectral theory of operators generated by differential

equations of the form (2) and boundary conditions of the Sturm–Liouville type.
The relationship between eigenvalues and zeros of a Mittag–Leffler function is shown.
The Green’s functions of boundary value problems for equations of the form (2) are considered

in detail (it should be noted that these Green’s functions were first obtained by the author in his
post-graduate student paper [2]), the study of which made it possible to approach problems of the
distribution of zeros of a function of the Mittag type from completely new positions-Leffler and
reveal the deeply hidden properties of these functions, which for many years have not been possible
for specialists in the theory of functions. First of all, we note that the asymptotic properties of the
Mittag–Leffler function have been sufficiently well studied [1], but the study of the non-asymptotic
properties of the zeros of the Mittag–Leffler function or, similarly, the eigenvalues of operators
generated by boundary value problems for Equation (2), is conjugate with large analytical difficulties
(in particular, M. M. Dzhrbashian wrote in [1] that “the question about the completeness of the
eigenfunctions of boundary value problems for Equation (2) or a finer question about whether these
systems compose a basis in L2(0,1) has a certain interest. However, their solution is apparently
associated with significant analytic difficulties”.). Therefore, the author gives these properties in
sufficient detail.

2. Boundary Value Problems for the Fractional Order Diffusion Equation

In this section we present the necessary information from the spectral theory of operators
generated by differential equations of fractional order and boundary conditions of the
Sturm–Liouville type.

2.1. Spectral Analysis of Operators, Generated by Fractional Differential Equations of Order More than 1 but
Less than 2 and Boundary Conditions of Sturm–Liouville Type and on One Method for Identifying the Order of
the Fractional Derivative

We devote this subsection to the spectral analysis of two boundary value problems [3,4]

L(u; 1, 1− α, 1, 0) =
1

Γ(α)
d

dx

x∫

0

u′(ζ)
(x− ζ)1−α

dζ + λu(x) = 0
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u(0) = 0, u(1) = 0,

and

L(u; 1, 1, 1− α, 0) =
1

Γ(α)

x∫

0

(x− ζ)α−1u′′(ζ)dζ + λu(x) = 0,

u(0) = 0, u(1) = 0.

These problems are the focus of many researchers.
First, we note that in [4] (and references therein), the following problem was considered

u
′′
+ λ

dα

dxα
u = 0, 0 < α < 1, (4)

u(0) = 0, u(1) = 0. (5)

with studying of the spectrum of the operator

D(β)u =
d−α

dx−α

d2

dx2 u =
1

Γ(α)

x∫

0

(x− ζ)α−1u
′′
(ζ)dζ, (β = 2− α)

(the operator D(σ2) transforms to the operator D(β) if γ0 = γ1 = 1 and γ2 = 1− α).
The operator D(β) arose great interest after F. Mainardi’s paper [3]. In this paper, the following

equation was considered

1
Γ(2− γ)

x∫

0

u′′(ζ)
(t− ζ)γ−1 dζ + ωγu(t) = 0 (6)

where ω is a positive constant and 1 < γ < 2, which Mainardi called a fractional oscillatory equation.
This paper has been, without exaggeration, very interesting for a lot of researchers. First of all, note
that:

1. If λ 6= 0, then any solution u(x) ∈ S2[0, 1] (where S2[0, 1] is the class of summable (integrable) on
[0, 1] functions u(x) including their derivatives of first and second order) for the equation

D(β)u =
1

Γ(α)

x∫

0

(x− ζ)α−1u′′(ζ)dζ = −λu (7)

coincides with the solution for Equation (4);
2. Equations (4) and (7) are equal if

lim
x→0

d−(1−α)

dx−(1−α)
u(x) = 0.

Of course, the fractional oscillatory equation, or equation for fractional oscillator (as an equation,
which describes an oscillatory physical system), will have at least the main oscillatory properties.

Hereafter, the following integral equations will play the main role:

u(x)− λ

Γ(2− α)




1∫

0

x(1− ζ)1−αu(ζ)dζ −
x∫

0

(x− ζ)1−αu(ζ)dζ


 =
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= u(x)− λ

Γ(2− α)

1∫

0

G0(x, ζ)u(ζ)dζ = 0,

u(x)− λ

Γ(2− α)




1∫

0

x1−α(1− ζ)1−αu(ζ)dζ −
x∫

0

(x− ζ)1−αu(ζ)dζ


 =

u(x)− λ

Γ(2− α)

1∫

0

G1(x, ζ)u(ζ)dζ = 0

where G0(x, ζ) is the Green’s function of the problem (4) and (5), which was constructed in [2] and
G1(x, ζ) is the Green function of the problem

L(u; 1, 1− α, 1, 0) =
1

Γ(α)
d

dx

x∫

0

u′(ζ)
(x− ζ)1−α

dζ + λu(x) = 0, (8)

u(0) = 0, u(1) = 0, (9)

which was considered in [5] for the first time (see also references therein).
Important note: the operators L(u; 1, 1− α, 1, 0) and L(u; 1, 1, 1− α, 0) have the same orders, but

the γ0, γ1, γ2, of those orders are different.
It is easy to show [6] that G0(x, ζ) is not with a fixed sign, and this fact says that Equation (7)

was incorrectly chosen as the oscillatory equation. Physically, it is clear that the order of the
operator L(u; γ0, γ1, γ2, q(x)) is close to 2 (or when γ0 + γ1 + γ2 − 1 is close to 2), then the operator
L(u; γ0, γ1, γ2, q(x)) has the main oscillatory properties. We have the following result.

Theorem 1. If

0 < α <

(
32π2

9
+

2
3

)−1

,

then the first eigenvalue of the problem (4) and (5) is positive and simple (the multiplicity of this eigenvalue is
equal to 1), and basic (main) tone has no nodes (i.e., the first eigenfunction corresponding to the first eigenvalue
does not vanish in (0, 1)).

Proof. That the first eigenvalue of the problem (4) and (5) is positive and simple for

0 < α <

(
32π2

9
+

2
3

)−1

was proved in [7,8]. We show now that basic (main) tone of the problem (4) and (5) has no nodes.
It is known that a number λ will be an eigenvalue of the problem (4) and (5) [4] if and only if

this value λ is the root (zero) of the function E1/β(−λ; 2) and the corresponding eigenfunctions of the
problem (4) and (5) are

un(x) = xE 1
β
(−λnxβ; 2), n = 1, 2, 3...

where
λ1, λ2, ..., λn, ...

are zeros of the function Eβ(−λ; 2), numbered according to the non-decreasing of their modules,

Eρ(z; µ) =
∞

∑
k=0

zk

(µ + kρ−1)
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is a Mittag–Leffler function. We shall show that the function

u1(x) = xE 1
β
(−λ1xβ; 2)

does not vanish in (0, 1). Let x0 ∈ (0, 1) be such that

x0E 1
β
(−λ1xβ

0 ; 2) = 0.

Then the number λ1xβ
0 is a zero of Eβ(−λ; 2), moreover λ1xβ

0 < λ1 (since x0 ∈ (0, 1)).
This contradicts the assumption that λ1 is the first zero of the function E1/β(−λ; 2). Theorem 1
is proved.

Since for α > 2
3 , the function E1/β(−λ; 2) has no real zeros [9], then the problem (4) and (5) has

this main (at least first eigenvalues are real) oscillatory property only for small α.
Next, we consider in detail the function G1(x, ζ). As it was shown in [7], this function has many

useful properties, in particular G1(x, ζ) = G1(1− ζ, 1− x) and G1(x, ζ) > 0, for any x, t ∈ (0, 1)
(i.e., this Green’s function is a persymmetric function). Part of the results of the theorem below follow
from the well-known Perron’s theorem.

Theorem 2. The first eigenvalue λ1 of the problem (8) and (9) is real, simple, and satisfies the condition

0 < λ−1
1 <

Γ(2 + 2α)

Γ(1 + α)
,

and the basic (main) tone has no nodes for all α ∈ (0, 1).

Proof. As it was written above, from Perron’s theorem, it follows that the first eigenvalue is real and
simple, and the basic (main) tone has no nodes. Let us show that

0 < λ−1
1 <

Γ(2 + 2α̃)

Γ(1 + α̃)
, α̃ = 1− α

holds. As it was mentioned above, the problem (8) and (9) is equivalent to the integral equation of
Fredholm (II kind)

u(x) +
λ

Γ(1 + α̃)




x∫

0

(x− ζ)α̃u(ζ)dζ − xα̃

1∫

0

(1− ξ)α̃u(ζ) dζ


 = 0,

and the value λ is an eigenvalue of the problem (8) and (9) if and only if it is a zero of the Mittag–Leffler
function E 1

1+α̃
(−λ, 1 + α̃) [5,7].

Let us rewrite the operator

Au =
1

Γ(1 + α̃)




x∫

0

(x− ζ)α̃u(ζ)dζ − xα̃

1∫

0

(1− ζ)α̃u(ζ)dζ




as
Au = A0u− A1u,

where

A0u =
1

Γ(1 + α̃)

x∫

0

(x− ζ)α̃u(ζ)dζ,
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and

A1u =
1

Γ(1 + α̃)

1∫

0

xα̃(1− ζ)α̃u(ζ)dζ.

As operators A0 and A1 are trace class operators [10], then

spA = sp(A0 − A1) = sp(A0)− sp(A1).

Since A0 is Volterra’s operator, then sp(A0) = 0, and so

sp(A) = −sp(A1).

It is easy to find the trace of the operator A1 (A1 it is one-dimensional operator). Let us consider
the equation

u(x)− λ

Γ(1 + α̃)

1∫

0

xα̃(1− ζ)α̃u(ζ)dζ = 0.

The Fredholm determinant of this equation is

d(λ) = |1− λK11|,

where

K11 =
1

Γ(1 + α̃)

1∫

0

ζ α̃(1− ζ)α̃dζ =
Γ(1 + α̃)

Γ(2 + 2α̃)
.

From this we obtain

sp(A) =
Γ(1 + α̃)

Γ(2 + 2α̃)
.

Thus

λ−1
1 +

∞

∑
i=2

λ−1
i =

Γ(1 + α̃)

Γ(2 + 2α̃)
.

Since the kernel of the operator −A is non-negative, then λ1 is a positive number, and
∞
∑

i=2
λ−1

i is

positive, so

λ−1
1 <

Γ(1 + α̃)

Γ(2 + 2α̃)
.

Theorem 2 is proved.

Corollary 1. Since λ is an eigenvalue of the problem (8) and (9) [5,7] if and only if λ is a zero of the function
E1/(1+α̃)(−λ; 1 + α̃), and the corresponding eigenfunctions of the problem (8) and (9) are

un(x) = xα̃E1/(1+α̃)(−λnx1+α̃; 1 + α̃)

n = 1, 2, 3..., where λ1, λ2, ..., λn, ... are zeros of the function E1/(1+α̃)(−λ; 1 + α̃), numbered by
their non-decreased modules, then the function E1/(1+α̃)(−λ; 1 + α̃) has positive and simple first zero,
and the function

u1(x) = xα̃E1/(1+α̃)(−λ1x1+α̃; 1 + α̃)

does not vanish in (0, 1).

Conclusion. From these theorems follows
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(a) Which of Equations (4) or (8) is the correct choice as an oscillatory;
(b) How the spectral structure of L(u; γ0, γ1, γ2, q(x)) depends on generatrices γ0, γ1, γ2 of order of

fractional differential equation;
(c) How the nature of the modeling process helps to indentify generatrices γ0, γ1, γ2 of order of

operator.

2.2. On Completeness of System of Eigenfunctions and Associated Functions of Operator, Generated by Model
Fractional Differential Equation and Boundary Conditions of Sturm–Liouville Type

Let us start from the equation

D(σ2)u− [λ + q(x)]u(x) = 0, (10)

where

D(σ2)u =
1

Γ(1− γ)

d
dx

x∫

0

u′(ζ)
(x− ζ)γ

dζ, 0 < γ < 1, σ2 = 1 + γ.

At first, Equation (10) was studied in [5] as a model equation of the fractional order 1 < σ2 < 2.
In particular, it was established in [5] that the two-point Dirichlet problem

u(0) = 0, u(1) = 0, (11)

for Equation (10) with q(x) = 0 is equivalent to the integral equation

1
Γ(2− γ)




x∫

0

(x− t)1−γu(t)dt−
1∫

0

x1−γ(1− t)1−γu(t)dt


 = λu.

We have:

Theorem 3. Let γ0 = γ1 = 1, q(x) ≡ 0. Then the system of eigenfunctions and associated functions of the
problem (10) and (11) is complete in L2(0, 1).

A close result (for a semibounded potential q(x)) was obtained in [11]. It should be noted that the
proof of these statements are based on the fact that the operator, generated by the problem (10) and
(11), is sectorial [12].

Theorem 4. All eigenvalues of the problem (10) and (11) for q(x) ≡ 0 are in the angle |argz| < π(1−γ)
2 ,

0 < γ < 1.

Proof. Consider the expression (−D(σ2) f , f ). It is obvious that

(−D(σ2) f , f ) = −

 1

Γ(1− γ)

d
dx

x∫

0

f ′(t)
(x− t)γ

dt, f (x)




= (
1

Γ(1− γ)

x∫

0

f ′(t)
(x− t)γ

dt, f ′(x)) = (0 Jα
x f ′, f ′)

where α = 1− γ and 0 Jα
x is the operator of fractional integration of order α:

(0 Jα
x f )(x) =

1
Γ(α)

x∫

0

(t− s)1−α f (s)ds.
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By a well-known Matsaev–Palant theorem ([13], p. 481), the values of the form (0 Jα
x f ′, f ′) is in the

angle |argz| < πα
2 . This proves Theorem 4.

Since the number λ is an eigenvalue of the problem (10) and (11) if λ is a zero of the function
E1/µ(−λ; µ) (µ = 1 + γ) [5], the following proposition is valid.

Corollary 2. All zeros of the function E1/µ(−λ; µ) are in the angle |argz| < (π(1− γ))/(2), 0 < γ < 1.
Here µ = 1 + γ.

Theorem 5. The problem (10) and (11) for q(x) ≡ 0 has no eigenvalues inside the circle with radius
Γ(4− 2γ)/Γ(2− γ) centered at the coordinate origin.

2.3. Methods of the Theory of Perturbations in Fractional Calculus and the Questions of Localization and
Multiplicity of Eigenvalues

To prove that the studied operator does not have the associated functions, we present the main
points of the method presented in [14].

In L2(0, 1) we consider the operator

Aρ(u) =
1∫

0

G(x, t)u(t) dt =
1

Γ(ρ−1)




x∫

0

(x− t)
1
ρ−1u(t)dt−

1∫

0

x
1
ρ−1

(1− t)
1
ρ−1u(t) dt


 ,

which was for the first time studied in [7]. Here, 0 < ρ < 2, and

G(x, t) =





(1− t)
1
ρ−1x

1
ρ−1 − (x− t)

1
ρ−1

Γ(ρ−1)
, 0 ≤ t ≤ x ≤ 1,

(1− t)
1
ρ−1x

1
ρ−1

Γ(ρ−1)
, 0 ≤ x ≤ t ≤ 1,

is the Green function of the following problem S (for λ = 0):

1
Γ(n− ρ−1)

dn

dxn

x∫

0

(x− s)n−ρ−1−1u(s)ds + λ u = 0,

(n− 1 ≤ ρ−1 < n, n = [ρ−1] + 1, where [ρ−1] is the integer part of the number ρ−1)

u(0) = 0, u′(0) = 0, · · · , u(n−2)(0) = 0, u(1) = 0.

In this case [7], if γ0 = γ1 = · · · = γn = 1 then the problem S takes the form

u(n) + λ u = 0,

u(0) = 0, u′(0) = 0, · · · , u(n−2)(0) = 0, u(1) = 0,

of which the Green function G(x, t) (for λ = 0) reads

G(x, t) =





(1− t)n−1xn−1 − (x− t)n−1

(n− 1)!
, 0 ≤ t ≤ x ≤ 1,

(1− t)n−1xn−1

(n− 1)!
, 0 ≤ x ≤ t ≤ 1.

.

The last function was studied very well, and we will use it in the sequel. The operator Aρ was
investigated in [5,7,15]. Let us study this operator carefully, because it turns out that the Mainardi
equation [3] (fractional oscillatory equation) does not have many basic oscillatory properties. The
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search for such a differential equation that has these properties led us to study the operator Aρ. Now,
let us introduce the most significant properties of this operator established by the author earlier:

1. For ρ > 1 the operator Aρ is completely nonself-adjoint [5,7,15];
2. For ρ ≤ 1 the operator Aρ is sectorial [6] (and see the references therein);
3. For 0 < ρ < 2 the system of eigenfunctions of the operator Aρ is complete in L2(0, 1) [5,16];

Now, let us study integral operators corresponding to boundary value problems for fractional
differential equations using methods of the theory of perturbations.

The holomorphic dependence of these operators on the order of fractional differentiation is proved.
There are several useful criteria for holomorphy. In accordance with this, various types of holomorphic
families are considered. We will use type (A). Type (A) is defined in terms of the boundedness of the
perturbation with respect to the unperturbed operator.

Let us formulate a very important criterion, which we will use later [17].

Theorem 6. (Criterion of holomorphy (A)). Let T be a closable operator from X in Y, and let T(n), n = 1, 2, ...,
be operators from X in Y, of which the domains of definition contain D(T) = D. Assume that there exists
constants a, b, c ≥ 0, such that

T(n)u ≤ cn−1(a||u||+ b||Tu||), u ∈ D, n = 1, 2, .... (12)

Then for |κ| < 1/c the series

T(κ)u = Tu + κT(1)u + κ2T(2)u + ..., u ∈ D

defines the operator T(κ) with the domain of definition D. If |κ| < (b + c)−1, then the operator T(κ) is closable,
and the closures T̃(κ) form a holomorphic family of type (A) [7].

We shall note that the holomorphic families of this type and, in particular bounded-holomorphic
families, were studied since Rellich’s papers [18] (and references therein). A wide list of references is
presented in papers of M.K. Gavurin and V.B. Loginov [18] (and references therein).

Theorem 7. If |ε| < 1, then the operator

A(ε)u = −
x∫

0

(x− t)1+εu(t)dt +
1∫

0

x1+ε(1− t)1+εu(t)dt

forms a holomorphic family of type (A), i.e.,

A(ε)u = A(0)u + εA1u + ε2 A2u + ... + εn Anu + ...

where

A(0)u = −
x∫

0

(x− t)u(t)dt +
1∫

0

x(1− t)u(t)dt

the unperturbed operator, and

Anu(x) =
x∫

0

(
K̃(x, t)n − K(x, t)n

)
u(t)dt,

K̃(x, t)n =
x(1− t) lnn(1− t)x

n!
,
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K(x, t)n =





x(1−t) lnn(1−t)x
n! , t < x,

0, t ≥ x.

Theorem 8. If |ε| < 3/2, then the operator

B̃(ε)u = −
x∫

0

(x− t)1+εu(t)dt +
1∫

0

x(1− t)1+εu(t)dt

forms a holomorphic family of type (A) where

B(0)u = −
x∫

0

(x− t)u(t)dt +
1∫

0

x(1− t)u(t)dt

is the unperturbed operator, and

Bnu(x) =
x∫

0

(
K(x, t)n − K(x, t)n

)
u(t)dt,

where

K(x, t)n =
x(1− t) lnn(1− t)x

n!
,

and

K(x, t)n =





x(1−t) lnn(1−t)x
n! t < x,

0, t ≥ x.

Since [15] the Fredholm spectrum of the operators under study coincides with the zeros of the
appropriate function of the Mittag–Leffler type, the presented method allows to efficiently study the
problem of distribution of zeros for functions of Mittag–Leffler type. To confirm this assertion, we give
two examples. Following [8], we introduce the following notation: λn(α) are the eigenvalues of the
problem (4) and (5). In [8], it was written that “... in the limiting case α = 0 the problem (4)–(5) becomes
the Sturm–Liouville boundary value problem with the sequence of eigenvalues λn(α) = (πn)2. Is it
true that lim

α→0+
λn(α) = (πn)2 for any fixed n? The answer will be positive.”

Let us prove a stronger proposition.

Theorem 9. lim
α→α0+

λn(α) = lim
α→α0−

λn(α) = λn(α0) for any α0 ∈ [0, 1].

Proof. Theorem 8 is a trivial corollary of Theorem 4.2 (see [10], p. 35) and the fact that the operator
function B̃(ε) is strongly continuous for |ε| < 1.

Finally, we consider one more significant question of the multiplicity of eigenvalues of the operator
B̃(ε) (as was mentioned above, this question is related to the question of the multiplicity of zeros of a
corresponding function of the Mittag–Leffler type [7]).

It is known ([1], theorem of Dzhrbashian–Nersesian) that all zeros of a function of the
Mittag–Leffler type Eρ(z, µ) (where ρ > 1/2, ρ 6= 1, Im(µ) = 0) that are sufficiently large in the
modulus are simple. Therefore, we mainly pay attention to the multiplicity of the first eigenvalues of
the operator B̃(ε). The following theorem holds [14]

Theorem 10. Let |ε| <
(

32π2

9 + 2
3

)−1
. Then the first eigenvalue λ1(ε) of the operator B̃(ε) is simple [7].
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Proof. It is known [7] that if the spectrum of the operator B̃(0) is divided into two parts by a closed
curve Γ, then the spectrum of the operator B̃(ε) is also divided by the curve Γ for sufficiently small ε.
In this case, the estimate of the smallness of ε is as follows [7]:

|ε| < minζ∈Γ(a||R(ζ, B̃(0))||+ b||B̃(0)R(ζ, B̃(0))||+ c)−1 (13)

(where a, b, and c are parameters that enter inequality (12)). As the contour Γ in Formula (13), we take
the circumference |ζ − 1

π2 | = ρ
2 , where ρ is the distance from 1

π2 to the set of the rest eigenvalues of the
operator B̃(0). The parameters a, b and c are already calculated [7]. Theorem 9 is proved.

We note that it can be shown in the same way that the second eigenvalue of the operator B̃(ε)
is simple too. It is the principal point that this method gives the possibility to include the study of
nonselfadjoint operators of the form A[α,β]

γ (and not only operators of the form A[α,β]
γ ) in the general

scheme of perturbation theory.

2.4. Solving the Problem of Finding the Radon Flux Density by Its Concentration at Different Depths of the
Earth’s Surface by the Method of Separated Variables

In the last few years, fractional integro-differentiation has been the focus of many researchers of
science and engineering [19,20] (and see references therein). We can describe anomalous diffusion
or dispersion using the fractional space derivatives, and some processes with ‘memory’ effects
using the fractional time derivatives. In this paragraph, we solve the problem of finding the radon
flux density [14] by its concentration at different depths of the earth’s surface by the method of
approximate solution of the first boundary value problem for the fractional differential equation of
advection-diffusion [21].

∂u(x, t)
∂t

= Dα
0+u(x, t).

It is known [21,22] that the problem of finding the radon flux density by its concentration at
different depths of the earth’s surface is set as follows: to find a solution to the boundary value problem

∂u(x, t)
∂t

= Dα
0+u(x, t),

where Dα
0+u(x, t)—the Riemann-Liouville fractional derivative of the order α, with boundary

conditions
u(0, t) = u(1, t) = 0, (14)

u(x, 0) = φ(x), (15)

Using the method of separation of variables [21], we can write out the solution to this problem

u(x, t) =
∞

∑
n=1

δnexp(λnt)xα−1Eα,α(λnxα). (16)

here

..., λ−3, λ−2, λ−1, λ1, λ2, λ3, ...

- Zeros of the function Eα,α(λ), arranged in the appropriate order according to [21], and

δn = {δ(x), zn(x)}L2(0,1), n = 1, 2, ...



Mathematics 2020, 8, 1877 13 of 27

- Fourier coefficients φ(x), and the system of functions zn
∞
n=1 = (1 − x)α−1Eα,α(λn(1 − x)α)

is the biorthogonal system of eigenfunctions ωn(x) = xα−1Eα,α(λnxα) (zn—is the system of
eigenfunctions of the contiguous boundary problem).

For an approximate solution of this problem, one can use the formula

u(x, t) ≈
N

∑
n=1

δnexp(λnt)xα−1Eα,α(λnxα).

In [23], using this formula, the problem of finding the radon flux density by its concentration at
different depths of the earth’s surface was solved. It was shown that

u(x, t) ≈
50

∑
n=1

δnexp(λnt)xα−1Eα,α(λnxα).

rather well approximates the exact solution u(x, t) and also there are algorithms for finding the
eigenvalues λn and the Fourier coefficients δn.

Remark 1. Note the paper [24], where the same problem is solved by numerical methods.

3. Method of Separation of Variables for Time–Space Fractional Vibration Equations—The
Basic Theory

In this paragraph we present the necessary information from the spectral theory of operators
generated by differential equations of the second order with fractional derivatives in the lowest terms
with boundary conditions of the Sturm–Liouville type.

Many problems of mathematical physics [25–27] associated with perturbations of normal
operators with discrete spectrum lead to the consideration in Hilbert space H of the compact operator

A = (I + S)H,

called a weak perturbation H (for a compact S) or as the operator of Keldysh type (the information about
of such operators and last investigations in this field were published in our brief [28]).

In [28] the basis property of the system of root vectors and localization of root vectors and
eigenvalues for the investigated operators were established (we shall also note paper [29] of one of
our co-authors E. Larionov, in which the spectral theory of the operators of the Keldysh type is very
strongly developed).

In the present paper, we consider the operator of Keldysh type B, generated by the
differential expression

u′′ + εDα
0xu = λu, (17)

and the boundary conditions of the Sturm–Liouville type

u(0) = 0, u(1) = 0. (18)

Note, that for 0 < α < 2, the spectral structure of operator B̃ generated by problem

u′′ + εDα
0xu = λu, (19)

u(0) = 0, u(1) = 0, (20)

was considered in detail in our paper [12]. In particular, the following theorem was shown:

Theorem 11. If |ε| < 10
20 , then all eigenvalues of operator B̃ are simple and real.
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From this theorem, it follows that the operator B̃ generated no associated functions.

Theorem 12. The number λ is an eigenvalue of problem (19) and (20) if λ is a zero of the function

ω(λ) = 1 +
∞

∑
n=1

n

∑
m=0

(−ε)n Cm
n λn−m

Γ(2n−mα + 2)
. (21)

The eigenfunctions of problem (A) take the form

χi(x) = x +
∞

∑
n=1

n

∑
m=0

(−ε)n Cm
n λn−m

i
Γ(2n−mα + 2)

x2n−mα+1, (22)

where λi are zero of the function ω(λ). In [12] it was proved that the system of eigenfunctions (22)
is complete in L2(0, 1). However, this system is not orthogonal. Therefore, in paper [12] they were
considered together with problems (19) and (20), the problem conjugate to it.

Let us consider operator B, generated by the differential Equation (19) and boundary
conditions (20). The following theorem holds [14]

Theorem 13. Let 0 < α < 2, then, the system of eigenfunctions of operator B is complete in L2(0, 1).

1. Next, let us denote n(r, B) the exact number of characteristic values of the operator B lying
in circle |λ| ≤ r. The problem of allocation of characteristic values of the operator B formulates an
investigation of asymptotic properties of n(r, B) for r → ∞. In [25], this problem was solved when the
order of fractional derivative Dα

0x was less than 1. In [25], the study of the function n(r, B) was reduced
to the one of the spectra for the linear beam operator L(λ) = I + M− λN.

Since M is a compact operator and N is a positive operator, then by Keldysh’s theorem ([10],
p. 318) we have

lim
x→0

n(r, B)
n(r, N)

= 1

if for the distribution function n(r, B) of characteristic values of the operator N we may choose
non-decreasing function ϕ(r)(0 ≤ r ≤ ∞) such that [10]:

1. lim
r→∞

ϕ(r) = ∞;

2. lim
r→∞

(ln ϕ(r))′ < ∞;

3. lim
r→∞

n(r,B)
ϕ(r) = 1.

Obviously, in our case as in [25] we may take the function
√

r as ϕ(r). Any linearized mechanical
system in which there is energy dissipation is described by a linear operator A, densely defined in H,
with values of the form (A f , f ) in the left half-plane:

Re(A f , f ) ≤ 0, ( f ∈ DA).

In quantum mechanics, energy dissipation is characterized by the fact that the form of the linear
operator describing the physical system lies in the upper half-plane, i.e.,

Im(A f , f ) ≥ 0, ( f ∈ DA).

For definiteness, when speaking of dissipative operators, we shall have in mind the operators of
the latter type; dissipative operators of quantum mechanics.
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2. Since (see [14] and references therein) any linearized mechanical system, which has an energy
dissipation described by a linear operator Ã, is densely defined in a Hilbert space H with values of the
form (Ã f , f ) in the left half-plane

Re(Ã f , f ) ≤ 0, ( f ∈ DÃ).

As the operator B̃ describes oscillations of the mechanical system, then it should be dissipative
(see [30] and references therein).

In this paragraph we show that the operator B̃ is dissipative.
First, we shall note papers of F. Tricomi, Matsaev and Palant [25] (and references therein) (where

it was shown, that values of the form (Iα f , f ) are lying in the angle | arg λ| ≤ απ
2 , here Iα—is fractional

integral in the Riemann–Liouville sense of order α) and papers of authors [25] (and references therein),
where it was established

Re(Dα
0xu, u) ≥ 0, 0 < α < 1, (23)

and
Re(Dα

0xu, u) ≤ 0, 1 < α < 2. (24)

Theorem 14. If 0 < α < 1 and ε > 0, then the operator, generated by the problem

u′′ − εDα
0xu = λu

u(0) = 0, u(1) = 0

is dissipative.

Proof. This theorem follows from the relation (23) and the fact that the operator

Tu =

{
−u′′,
u(0) = 0, u(1) = 0,

is dissipative.

Theorem 15. If 1 < α < 2 and ε < 0, then the operator, generated by the problem

u′′ − εDα
0xu = λu

u(0) = 0, u(1) = 0

is dissipative.

Proof. The scheme of the proof of Theorem 14 is the same as the one of Theorem 13.

Remark 2. Let D = {0 < x < 1, 0 < t < 1}, and consider the first boundary value problem for equations of
vibration of a string with a fractional derivative of order α with respect to partial variable

∂2u
∂t2 =

∂2u
∂x2 + C1Dα

0xu + C0Dβ
0tu, 0 < α, β < 2, (25)

u(0, t) = u(1, t), (26)

u(x, 0) = ϕ(x), (27)

u′t(x, 0) = ϕ(x), (28)
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If C0 is negative, the numerical methods can work well, and the related numerical theoretical
results can also be well established. However, when C0 is positive, our numerical methods can not
compute well, and the convergence and stability of the proposed methods can not be proved. This is a
consequence of the fact that the term C0Dβ describes dissipation, as it was established by the Theorems
13 and 14 (in the case when C0 is negative, the physical sense of the term C0Dβ is incomprehensible).
Thus, proved Theorems 13 and 14 allow to correctly formulate the boundary value problem for
Equation (25).

3. Let us consider operator A, generated by the problem

u′′ − εDα
0xu = λu, (29)

u(0) = 0, u(1) = 0, (30)

where 0 < α < 2.
Finally, let us show that operator A is oscillatory (if the operator describes the oscillation motions,

then it should have a whole complex of the oscillatory properties).
It is known that [25] (and references therein) if 0 ≤ ε ≤ 1

3 , and 1 < α < 2, then the Green function
of the problem (29) and (30) is of fixed sign (we shall note, that Green’s function of problem (29) and (30)
was firstly constructed by one of the authors in his paper [25] (and references therein)). Unfortunately,
this very important property of Green’s function is possible to get only for a small enough ε. This is
primarily due to the fact that Green’s function G2(x, τ) [4] of the problem (29) and (30), for 1 < α < 2,
has the following complex structure

G2(x, τ) = G1(x, τ)− ε

E1/2(ε, 2)

1∫

τ

Eβ[ε(η − τ)]βdη

1∫

0

G(x, t)Dα−1
0t Eβ[εtβ]dt,

G1(x, τ) =





(1− x)
x∫

τ
Eβ[ε(t− τ)]dt−

−x−
1∫

x
Eβ[ε(t− τ)β]dt, x ≥ τ,

−x
1∫

τ
Eβ[ε(t− τ)β]dt, x ≤ τ.

For 0 < α < 1, |ε| < 1/4, Green’s function of the problem (29) and (30) was constructed in [25]
(and references therein). Let us show how this function was constructed. Since the problem (29) and
(30), for 0 < α < 1, is equivalent to the equation

u(x) +
ε

Γ(2− α)





x∫

0

(x− t)1−αu(t)dt−
1∫

0

x(1− t)1−αu(t)dt



 = λ

1∫

0

G(x, t)u(t)dt

then

u(x) = λ(I − εK)−1
1∫

0

G(x, t)u(t)dt,

where

G(x, t) =

{
t(x− 1), t ≤ x,

x(t− 1), t > x,

Ku = − 1
Γ(2− α)

x∫

0

(x− t)1−αu(t)dt +
1

Γ(2− α)

1∫

0

x(1− t)1−αu(t)dt
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=
(

xJ2−α
0,1 − J2−α

0,x

)
u.

We can show that

K2u = K · Ku = (Kx)J2−α
0,1 u− xJ4−2α

0,1 u + J4−2α
0,x u

K3u = K · K2u = (K2x)J2−α
0,1 u− (Kx)J4−2α

0,1 u + xJ6−3α
0,1 u− J6−3α

0,x u.

By induction, we have

Kn =
n

∑
i=1

(−1)i+1(Kn−ix)J(2−α)i
0,1 u + (−1)n+2 J(2−α)n

x u.

Thus,

(I − εK)−1 = I +
∞

∑
n=1

(εK)nu

= I +
∞

∑
n=1

(ε)n

[
n

∑
i=1

(−1)i+1(Kn−ix)J(2−α)i
0,1 u + (−1)n+2 J(2−α)n

x u

]

= I +
∞

∑
n=1

n

∑
i=1

(ε)n(−1)i+1(Kn−ix)J(2−α)i
0,1 u +

∞

∑
n=1

(−1)n+2 J(2−α)n
x u.

Since, for |ε| < 1/4 the kernel k(x, t) of the operator K satisfies the condition

|k(x, t)| < 2,

we have that the Green’s function of problem (29)-(30) is of fixed-sign for 0 < α < 1 too.
Note the paper [29], which is very important in our opinion, which contains the proof of the basis

property for the eigenfunctions.

3.1. Parametric Identification for Time–Space Fractional Vibration Equations

In numerous publications of the last decades, the problem of identifying the parameters of
fractional models is mainly solved at a theoretical level, for example, by methods of spectral analysis.
In our paper [31] (and see references therein), the model parameters are determined based on several
characteristic points obtained in the experiment, by substituting the deformation values in the analytical
solutions of the corresponding problem. We will use the same technique in what follows to identify
the order of the fractional derivative in model (1).

3.1.1. The Bagley–Torvik Equation and the Laplace Transform

We consider the problem

u′′(x) + cDαu(x) + λu(x) = 0, u(0) = 0, u′(x) = 1, (31)

where Dαu(x) is a fractional derivative of the order α. When 1 < α < 2, by the Riemann–Liouville
definition, this problem is presented as follows [32]:

Dαu(x) =
d2

dx2


 1

Γ(2− α)

t∫

0

u(τ
(x− τ)α−1 dτ


 .

Equation (31) was proposed in papers [33,34] (and see references therein) for modeling the
oscillatory properties of various viscoelastic materials (polymers, glass, etc.). We shall note one recent
paper [35] (and see references therein) where this scheme is used to model changes of the stress–strain
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characteristics of polymer concrete when subjected to loadings. In these papers, the polymer concrete
samples based on polyester resin (dian- and dihloangidrid-1,1-dichloro-2,2-diethylene) were studied.
Polymer concrete is represented as the set of granules of a mineral filler that is located in a viscoelastic
medium. In this case, the motion of a granule is described by Equation (31), where λ is the rigidity
modulus of resin, α is the viscoelasticity parameter of the medium and c is the viscosity modulus
of resin.

Note that physical systems modeled by Equation (31) are very sensitive to changes in the order
of fractional damping and it lead us to the very important task of the parametric identification of
this value. We shall note that the problem of the parametric identification [36] (see and the references
therein) remains poorly understood. The paper [37] (see and the references therein) is devoted to
solving this important problem. Let us briefly give the technique presented in this paper.

We integrate Equaiton (31) from 0 to x and transform the resulting expression. We have

x∫

0

u′′(t)dt + c
x∫

0

Dαu(t)dt + λ

x∫

0

u(t)dt = 0,

x∫

0

du′(t)dt +
c

Γ(2− α)

x∫

0

d2

dt2




t∫

0

u(τ)
(t− τ)α−1


+ λ

x∫

0

u(t)dt = 0, (32)

u′(x)− u′(0) +
c

Γ(2− α)

d
dt




t∫

0

u(τ)dτ

(t− τ)α−1



∣∣∣∣
x

0
+ λ

x∫

0

u(t)dt = 0,

u′(x)− 1 +
c

Γ(2− α)

d
dt




x∫

0

u(t)dt
(x− t)α−1


+ λ

x∫

0

u(t)dt = 0.

Obtained expression (32) we integrate from 0 to x again:

x∫

0

u′(t)dt−
x∫

0

dt +
c

Γ(2− α)

x∫

0

d
dt




t∫

0

u(τ)dτ

(t− τ)α−1


+ λ

x∫

0

t∫

0

u(τ)dτdt = 0, (33)

u(x)− x +
c

Γ(2− α)

x∫

0

(x− t)1−αu(t)dt + λ

x∫

0

t∫

0

u(τ)dτdt = 0.

We solve the latest Equation (33) using the Laplace transform. Let us designate by U(s) the image
of the function u(x); i.e., U(s) = u(t) or [38] (which is the same),

U(s) =
∞∫

0

e−stu(t)dt.

It is clear that the function
x∫

0

(x− t)1−αu(t)dt

represents the convolution of the functions u(x) and x1−α. For the convolution of functions, there
exists the simple formula of images

x∫

0

f1(x) f2(x− t)dt = F1(s)F2(s),

where F1(s) and F1(s) are the images of the functions f1(x) and f2(x), respectively.
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It is clear that
x∫

0

t∫

0

u(τ)dτdt =
x∫

0

dt
t∫

0

u(τ)dτ = U(s)/s2. (34)

After some clearly transformations we obtain

U(s)− 1
s2 + cU(s)sα−2 + λU(s)/s2 = 0. (35)

From this we obtain the formula for the image

U(s) =
1

s2 + csα + λ
. (36)

Formula (36) makes it possible to express the solution of problem (31) using Laplace’s integral

u(x) =
1

2πi

σ+i∞∫

σ−i∞

estU(s)ds. (37)

3.1.2. Numerical Construction of the Solution

The obtained Formula (37) allows to numerically construct the graphs of solutions. The
calculations are performed using the package Mathcad 14. Figure 1 presents the graphs of solutions
for various values of parameter α. As in [35] we take c = 1.8 and λ = 93. Note that used parameter
values were obtained in the experiments on the samples of polymer concrete [35]. The presented
numerical check proves the validity of the limit behavior of the solution, which transforms into
harmonic oscillations for values of α that are close to 2.
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Figure 1. Graphs of solutions when 1 < α < 2.

To proof the correctness of the formulation of the problem of the parametric identification, it is
necessary to investigate the solution’s stability to the inaccuracy of the parameter α (α has an arbitrary
value from (0,1)). For this purpose, in the neighborhood of the point α, consider the relative increment
of this parameter by δ (i.e. α′ = α(1 + δ)) and determine the deviation function ρ(α, δ) with respect to
the norm in the space L1 (the of the summable functions)

ρ(α, δ) =
∫
|u(x, α)− u(x, α′)|dx, (38)

where u(x, α) is the solution of (31) with the parameter α. Here, the function ε(α, δ) = ∂ρ
∂δ determines277

the sensitivity of the solution to a possible error of the parameter α. The values of the function ε(α, δ)278

for various values of parameter α and the levels, 0.1, and 0.15 are found numerically; they are presented279

graphically in Fig. 2.280

Figure 1. Graphs of solutions when 1 < α < 2.
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To prove the correctness of the formulation of the problem of the parametric identification, it is
necessary to investigate the solution’s stability to the inaccuracy of the parameter α (α has an arbitrary
value from (0,1)). For this purpose, in the neighborhood of the point α, consider the relative increment
of this parameter by δ (i.e., α′ = α(1 + δ)) and determine the deviation function ρ(α, δ) with respect to
the norm in the space L1 (the of the summable functions)

ρ(α, δ) =
∫
|u(x, α)− u(x, α′)|dx, (38)

where u(x, α) is the solution of (31) with the parameter α. Here, the function ε(α, δ) = ∂ρ
∂δ determines

the sensitivity of the solution to a possible error of the parameter α. The values of the function ε(α, δ)

for various values of parameter α and the levels, 0.1, and 0.15 are found numerically; they are presented
graphically in Figure 2.
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Figure 2. On question of sensitivity of solutions of problem (31) to errors of parameter.

The obtained values of the function ε(α, δ) shows the growth of the sensitivity with increasing of281

parameter α. The maximum value of the function ε(α, δ) does not surpass 0.2; this allows us to draw a282

conclusion about the stability of the solutions of problem (31) in relation to a small error of parameter283

α and the correctness of the problem of identifying this parameter.284
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The obtained values of the function ε(α, δ) show the growth of the sensitivity with increasing of
parameter α. The maximum value of the function ε(α, δ) does not surpass 0.2; this allows us to draw a
conclusion about the stability of the solutions of problem (31) in relation to a small error of parameter
α and the correctness of the problem of identifying this parameter.

It is known that [31] the solution of Cauchy’s problem (31) is determined by the following formula

u(x) = x−
∞

∑
n=1

n

∑
m=0

(−1)n+1 Cm
n cmλn−mx2n+1−mα

Γ(2n−mα + 2)
(39)

Comparing the graphs of the solutions numerically obtained by Formulas (37) and (39), we can
draw a conclusion about their identity (Figure 3).

h(t, α) := t−
50

∑
n=1

n

∑
m=0

[
(−1)n+1 combin(n, m)cmλn−mt2n+1−mα

Γ(2n−mα + 2)

]

3.1.3. Parametric Identification of the Model by the Experimental Data

The following technique for the parametric identification of parameter α is based on the
experimental data, assuming that the rest of the parameters of the equation are known (with some
degree of accuracy). This technique was developed due to the possibility of finding a solution at
any point.
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So, assume that we know several experimental points u(xi) = Ui, i = 1, ..., N. To find the
parameter α we minimize the deviation of the theoretical curves from the experimental curves.
For calculating of the theoretical points we use Expression (33) for u(xi, α). Using the least-squares
method we determine the deviation function

F(α) =
N

∑
i=1

(Ui − u(xi, α))2. (40)

This function represents the sum of the deviations of the theoretical points from the experimental
points. The value of α minimizing this function we can consider approximately as the search value.
We shall note that the identification accuracy depends on the number of experimental points, together
with the accuracy of the other parameters of the system. The method of parametric identification
that we provide compares various nomographic techniques [39,40] (and references therein) and its
advantage consists in the accurate quantitative estimation of choosing the search parameter. It is
important that the deviation function (35) can be constructed on the entire range of supposed values of
the parameter; this improves the accuracy of the identification. For testing the provided technique, we
use the experimental data obtained in [35] (and references therein). The values for samples of polymer
concrete based on polyester resin (dian- and dihloangidrid-1,1-dichloro-2,2-diethylene) are presented
in Table 1.

Table 1. Experimental points for polymer concrete samples.

xi(c) 0.25 0.5 0.75 1 1.25 1.5

Ui 0.05 −0.04 −0.01 0.02 −0.01 −0.01

Finally, using these data, we construct the deviation function (40) presented in Figure 4. The
constructed graph shows that the deviation function has the minimum for α ≈ 1.47, and it allows us to
assume that the order of the fractional derivative in Expression (31) is equal to 1.47. Figure 5 presents
the experimental points and the theoretical curve. Comparing the experimental data presented in
Table 1 with the model allows us to draw a conclusion that the provided model is adequate and
our techniques for parametric identification have a high level of accuracy. The knowledge of the
parameter α in the model (31) allows us, in particular, to predict various stress–strain characteristics of
the material (polymer concrete, asphaltic concrete, etc.) when subjected to loading.

Now, having a technique for the parametric identification of the order of the fractional derivative
in the Begley–Torvik model, we will proceed to the presentation of the method of separation of
variables and its application to find the deformation-strength characteristics of polymer concrete.
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3.2. Method of Separation of Variables for Time–Space Fractional Vibration Equations

As it was noted in [41] the fractional calculus has attracted the attention of many authors in recent
years. In this regard, we should note the paper [14], as a unique comprehensive review of fractional
calculus and its application with the authoritative contribution of leading world experts. As it was
noted earlier, we can describe anomalous diffusion or dispersion using the fractional space derivatives,
and some processes with ‘memory’ effects using the fractional time derivatives. In [41] (and see the
references therein), the following equation was investigated

∂2u
∂t2 =

∂2u
∂x2 + C0Dα

0tu + C1Dβ
0xu + F

and was used to describe, in particular, the vibration of a string taking into account friction in a medium
with fractal geometry. This equation may be used to model changes in the deformation-strength
characteristics of polymer concrete under loading.
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In domain D = 0 < x < 1, 0 < t < 1, we consider the first boundary value problem for the
equation for the equation of vibration of a string with a fractional derivative of order with respect to
the spatial variable

∂2u
∂t2 =

∂2u
∂x2 + C1Dα

0xu + C0Dβ
0tu, 0 < α, β < 2, (41)

u(0, t) = u(1, t), (42)

u(x, 0) = ϕ(x), (43)

u′t(x, 0) = ϕ(x), (44)

Here, 0 < α < 2, c-constant, Dα
0xu-constant, Dα

0xu-fractional derivative of the Riemann–Liouville
type of order α. Fractional derivative of order α for function f (x) in a point x(0 6= m − 1 < α <

m), m ∈ N) defined by the formula

Dα f (x) =
dm

dxm


 1

Γ(m− a)

x∫

a

f (τ)
(x− τ)α+1−m dτ


 .

Obtained results are applied [14,41] for modeling changes in the deformation-strength
characteristics of polymer concrete under loading. The solution to problem (41)–(44) will be sought by
the Fourier method

u(x, t) = X(x)T(t). (45)

We substitute (45) into Equation (41), then for an unknown function X(x) we obtain the two-point
Dirichlet problem

X′′(x) + C1Dα
0xX = λX(x), (46)

X(0) = X(1) = 0. (47)

The solution to problem (46) and (47) was written out in [1,2], see the references therein.
In particular, it was shown that the number λ is an eigenvalue of problem (46) and (47), if and
only if λ is the zero of the function

ω(λ) =
∞

∑
n=0

n

∑
k=0

Ck
nλn−k(−C1)

k

Γ(2n− kβ + 2)

and the corresponding eigenfunctions Xj(x) have the form

Xj(x) =
∞

∑
n=0

n

∑
k=0

Ck
nλn−k(−C1)

k

Γ(2n− kβ + 2)
x2n+1−kα, j = 1, 2, 3, ... (48)

(here j-j-th eigenfunction of the problem (46) and (47)). The system of the eigenfunctions (48) is
complete [14,41] but not orthogonal, thus we construct the system

X̃j(x) = (1− x)−
∞

∑
n=0

n

∑
k=0

Ck
nλn−k(−C1)

k

Γ(2n− kβ + 2)
x2n+1−kα, j = 1, 2, 3, .. (49)

which is biorthogonal to the system of eigenfunctions

Xj(x) =
∞

∑
n=0

n

∑
k=0

Ck
nλn−k(−C1)

k

Γ(2n− kβ + 2)
x2n+1−kα, j = 1, 2, 3, ...
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Next, we find the general solution to the equation

T(t) + c0Dβ
0tT(t) = λT(t).

As in the case of Equation (46), we have

Tm(t) = Am

(
t +

∞

∑
n=0

n

∑
k=0

Ck
nλn−k(−C1)

k

Γ(2n− kβ + 2)
x2n+1−kα

)
+ Bm

(
1 +

∞

∑
n=0

n

∑
k=0

Ck
nλn−k(−C1)

k

Γ(2n− kβ + 1)
x2n+1−kα

)
.

Let us designate

Zm(t) =

(
t +

∞

∑
n=0

n

∑
k=0

Ck
nλn−k(−C1)

k

Γ(2n− kβ + 2)
x2n+1−kα

)
, Z̃m(t) =

(
1 +

∞

∑
n=0

n

∑
k=0

Ck
nλn−k(−C1)

k

Γ(2n− kβ + 1)
x2n+1−kα

)
.

Then the solution to problem (41)–(44) is written out in the standard way

u(x, t) =
∞

∑
m=1

Tm(t)Xm(x) =
∞

∑
m=1

[AmZm(t) + BmZ̃m(t)]Xm, (50)

putting in the last expression t− 0, we have

ϕ(x) =
∞

∑
n=0

BmZ̃(0)Z(0)Xm(x),

so
Bm =

1
Z̃(0)(ϕ(x), X̃m(x))(Xm(x), X̃m(x))

.

To find Am differentiate both parts (12) by t and let t = 0 we obtain,

∞

∑
m=1

[AmZ′m(0) + BmZ̃′m(0)]Xm(x) = ψ(x)

from here
[AmZ′m(0) + BmZ̃′m(0)](Xm(x), X̃m(x)) = (ψ(x), X̃m(x)).

Finally, we have,

Am =
1

Z′m(0)

[
1

Xm(x), X̃m(x)
− BmZ̃′m(0)

]

which allows us to write a solution to problem (41)–(44) in the form (50).
In the earlier papers of the author, Equation (46) was used to model the certain deformation-

strength characteristics of polymer concrete. In this paper, only transverse vibrations are considered,
all movements occur in one plane and the granule moves perpendicular to the axis. Then, to simulate
changes in the deformation-strength characteristics of polymer concrete under loading, we have the
following first boundary-value problem (here u(x, t)-granule displacement in moment t)

∂2u
∂t2 =

∂2u
∂x2 + C0Dβ

0xu + C1D1.47
0t u, 0 < α, β < 2, (51)

u(0, t) = u(1, t) = 0, (52)

u(x, 0) = ϕ(x) = 0, (53)

u′t(x, 0) = ϕ(x) = 0, (54)
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the solution of which according to Formula (50) has the form

u(x, t) =
∞

∑
m=1

[AmZm(t) + BmZ̃m(t)]Xm,

where

Xj(x) =
∞

∑
n=0

n

∑
k=0

Ck
nλn−k(−C1)

k

Γ(2n− kβ + 2)
x2n+1−1.47k,

X̃j(x) = (1− x)−
∞

∑
n=0

n

∑
k=0

Ck
nλn−k(−C1)

k

Γ(2n− kβ + 2)
x2n+1−1.47k,

Let us find eigenvalues λj numerically using the high-level language of technical calculations
MATLAB taking α = 1.47, C1 = 1.8 (according by [41]). Eigenvalues are presented in Table 2.

Table 2. Numerical results for eigenvalues of the problem (41)–(44).

λ1 λ2 λ3 λ4 λ5

16.6 59.4 125.0 213.4 323.4

Then, an approximate solution to problem (51)–(54) will take the form

u(x, t) =
5

∑
m=1

[AmZm(t) + BmZ̃m(t)]Xm, (55)

Formula (55) allows us to write a solution to the problem (51)–(54) if the functions ψ(x) and ϕ(x)
are continuously differentiable. Finally, it remains to determine the parameter β. This parameter can
again be determined by the technique developed in [14,41] since the parameter α is already defined.

Remark 3. We shall note the papers [42,43], where the same problem is solved by numerical methods and
compared with the solution (55).
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