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Abstract: We consider the Dirichlet problem for an elliptic equation with a singularity. The singularity
of the solution to the problem is caused by the presence of a re-entrant corner at the boundary of
the domain. We define an Rν-generalized solution for this problem. This allows for the construction
of numerical methods for finding an approximate solution without loss of accuracy. In this

paper, the existence and uniqueness of the Rν-generalized solution in set
◦

W1
2,α(Ω, δ) is proven.

The Rν-generalized solution is the same for different parameters ν.
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1. Introduction

The weak solution of a boundary value problem for the elliptic equation in domain Ω
(Ω ⊂ R2) with reentrant corners γi(i = 1, ..., N) on boundary ∂Ω, belongs to class W1+k−ε

2 (Ω),
k = min

i=1,...,N
{ki}, where

ki =

{
π/γi for Dirichlet or Neuman problem,

π/2γi for mixed boundary value problem,

and ε is an arbitrary positive number.
For two-dimensional linear elliptic boundary-value problems with homogeneous

Dirichlet–Dirichlet and Dirichlet–Neumann boundary conditions posed on the adjacent sides
of re-entrant corners, it was stated that 0.25 ≤ ki ≤ 0.67 for 3π/2 ≤ γi ≤ 2π.

In this case, the approximate finite-element solution converges to a weak solution of the problem
at an O(hk) rate (h is the mesh step) in the norm of Sobolev space W1

2 (Ω) [1,2].
By using meshes refined toward the singularity point or special methods for separating the

singular and regular components of the solution near corner points, numerical methods of the first order
of accuracy were created (see, for example, [3–12]). However, these methods lead to ill-conditioned
systems of linear algebraic equations. These involve complication of computing process and affect the
accuracy of the results.

For the boundary-value problem for elliptic equations with singularity, we propose to define its
solutions as an Rν-generalized one (see, for examples, [13]). This conception allows for investigating
problems with singularities of different kinds (discontinuous or not bounded coefficients, right hands
of the equation and boundary conditions; existence of the re-entrant corners on the boundary) and
constructing the weighted FEMfor these problems. This method provides convergence rates O(h) and
O(h2) of the approximate finite-element solution to the Rν-generalized one in the norm of the Sobolev
and Lebesque weighted spaces, respectively (see [14–17]).
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For boundary-value problems with corner singularity, the existence and uniqueness of an
Rν-generalized solution was established in [18–22] assuming that the coefficient multiplying u(x)
in the differential equation is sufficiently large. Below, this restrictive assumption is dropped and a
weighted set of functions is defined in which a unique Rν-generalized solution exists for the given
class of the boundary value problems; moreover, this solution is unique for all ν.

2. Problem Formulation

Let Ω ⊂ R2 be a nonconvex polygon and ∂Ω its boundary, with an obtuse corner γ with the
vertex at the origin O(0, 0); Ω̄ denotes the closure of Ω, i.e. Ω̄ = Ω ∪ ∂Ω.

We introduce weight function

ρ(x) =

{
(x2

1 + x2
2)

1/2, x ∈ Ω′,

δ, x ∈ Ω̄ \Ω,

where Ω′ = {x ∈ Ω̄ : (x2
1 + x2

2)
1/2 ≤ δ� 1} (see Figure 1).

Figure 1. Domain Ω with re-entrant corner.

Let W1
2,α(Ω, δ) (α > 0) be the set of functions subject the following conditions:

(a) |Dku(x)| ≤ c1(δ/ρ(x))α+k for x ∈ Ω′, k = 0, 1, c1 > 0;
(b) ‖u‖L2,α(Ω\Ω′) ≥ c2 > 0,

equipped with norm

‖u‖W1
2,α(Ω) =

 ∑
|λ|≤1

∫
Ω

ρ2α(x)|Dλu(x)|2dx

1/2

, (1)

where Dλ = ∂|λ|

∂x
λ1
1 ∂xλ2

2

, λ = (λ1, λ2) with |λ| = λ1 + λ2 (here, λ1 and λ2 are non-negative integers).

For k = 0, we use notation W0
2,α(Ω, δ) = L2,α(Ω, δ).

Set
◦

W1
2,α(Ω, δ) ⊂ W1

2,α(Ω, δ) is a closure in Norm (1) of set C∞(Ω, δ) that contain functions
satisfying Conditions (a) and (b). Here, C∞(Ω) is an infinitely differentiable and finite space in
Ω functions.

Let L∞,−α(Ω, c3) denote the set of functions with norm

‖u‖L∞,−α(Ω,c3)
= vrai max

x∈Ω
|ρ−α(x)u(x)| ≤ c3,

where c3 is positive constant not depending on u(x).
We consider differential equation
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−
2

∑
l=1

∂

∂xl

(
all(x)

∂u
∂xl

)
+ a(x)u(x) = f (x), x ∈ Ω, (2)

with boundary condition

u(x) = 0, x ∈ ∂Ω. (3)

Definition 1. Boundary-value problem (2), (3) is called the Dirichlet problem with uncoordinated degeneration
of the input data if the coefficients and right-hand side of the equation satisfy conditions

all ∈ L∞,−β(Ω, c4), a ∈ L∞,−β(Ω, c5), (4)

2

∑
l=1

all(x)ξ2
l ≥ c6ρβ(x)

2

∑
l=1

ξ2
l , (5)

a(x) > c7ρβ(x) almost everywhere on Ω, (6)

f ∈ L2,µ(Ω, δ), µ ≥ 0. (7)

Here β, µ are real numbers, ci ≥ 0, i = 4, 5, 6, 7, while ξ1 and ξ2 are arbitrary real parameters.

Define

aΩ(u, v) =
∫

Ω

[
2

∑
l=1

allρ
2ν ∂u

∂xl

∂v
∂xl

+ all
∂ρ2ν

∂xl

∂u
∂xl

v

]
+ aρ2νuv dx,

fΩ(v) =
∫

Ω
ρ2ν f v dx.

Definition 2. Function uν from space
◦

W1
2,ν+β/2(Ω) is called an Rν-generalized solution of the Dirichlet

problem with uncoordinated degeneration of the input data if identity

aΩ(uν, v) = fΩ(v)

holds for all v ∈
◦

W1
2,ν+β/2(Ω) and for any given value of ν, satisfying inequality

ν ≥ µ + β/2. (8)

Remark 1. The summands of bilinear form aΩ(u, v) have different asymptotic orders. This is due to the
fulfilment of Condition (4). In [18,19] for such problems, we established that there is no unique Rν-generalized

solution in space
◦

W1
2,α(Ω), since there is a sheaf of solutions in the neighborhood of the singular point. In [20–22],

we proved the uniqueness of the Rν-generalized solution in set
◦

W1
2,α(Ω, δ) with the correct choice of parameters

ν and δ.
Examples of problems with uncoordinated degeneration of the initial data can serve as boundary-value

problems for the Lamé and Maxwell systems, and Stokes problem in domains with re-entrant corners on
the boundary.

Remark 2. The main idea of the proposed approach is as follows: we introduce into the generalized statement
of Problems (2)–(7) a special weight function ρ raised to a certain power depending on the spaces that contain
the coefficients and the right-hand side of the equation, sizes of re-entrant corners on the domain boundary.
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The presence of such a function in the definition of the solution overpowers the singularity and ensures that the
Rν-generalized solution of the problem belongs to set W2

2,ν(Ω, δ).

3. Existence and Uniqueness of Rν-Generalized Solution

We formulate the main result.

Theorem 1. Let Conditions (4)–(8) hold and

ν +
β

2
> 0. (9)

Then, for any ν satisfying Conditions (8) and (9), there always exists parameter δ, such that Rν-generalized
solution uν of the Dirichlet problem with uncoordinated degeneration of the input data exists and is unique from

set
◦

W1
2,ν+β/2(Ω, δ) and

‖uν‖W1
2,ν+β/2(Ω,δ) ≤ c8‖ f ‖L2,µ(Ω,δ), (10)

where a positive constant c8 is independent of f and uν.

To prove this theorem, we need the lemma.

Lemma 1 ([22]). For each function u in set W1
2,α(Ω, δ) and for any α∗ > α, estimate

‖u‖L2,α∗−1(Ω′ ,δ) ≤ c9‖u‖L2,α∗ (Ω,δ) (11)

holds, where c9 = c10
δα

√
α∗−α

, c10 = const > 0.

Proof. For α∗ > α and Condition (a), we have

‖u‖2
L2,α∗−1(Ω′ ,δ)

=
∫

Ω′
ρ2(α∗−1)u2 dx ≤ c2

1δ2α
∫

Ω′
ρ2(α∗−1)ρ−2α dx ≤

c2
1δ2αc11δ2(α∗−α)

2(α∗ − α)
, (12)

where c11 is a constant dependent of mes Ω′. From Condition (b) for function u, we obtain

‖u‖2
L2,α∗ (Ω) ≥ ‖u‖

2
L2,α∗ (Ω\Ω′)

= δ2(α∗−α)‖u‖2
L2,α(Ω\Ω′) ≥ c2

2δ2(α∗−α). (13)

From Inequalities (12) and (13), we obtain estimate (11) with c10 = c1
c2

√
c11
2 .

Proof of Theorem 1. First, we show that forms aΩ(u, v) and fΩ(v) are continuous on
◦

W1
2,ν+β/2(Ω, δ),

and inequalities

aΩ(u, v) ≤ c12‖u‖W1
2,ν+β/2(Ω,δ)‖v‖W1

2,ν+β/2(Ω,δ), (14)

fΩ(v) ≤ c13‖ f ‖L2,µ(Ω,δ)‖v‖W1
2,ν+β/2(Ω,δ) (15)

hold. The proofs of Estimates (14) and (15) are established by using Conditions (4), (7), and (8),
Lemma 1, and Cauchy–Schwarz inequality.

Let us show that the bilinear form is
◦

W1
2,ν+β/2-elliptical in Ω. We have

aΩ(u, u) =
2

∑
k=1

∫
Ω

[
akkρ2ν

(
∂u
∂xk

)2
+ akk

∂ρ2ν

∂xk

∂u
∂xk

u

]
dx +

∫
Ω

aρ2νu2 dx (16)
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for any u from
◦

W1
2,ν+β/2(Ω, δ). Considering Condition (4), we establish the inequality for the absolute

value of the second term on the right-hand side in (16)∣∣∣∣∣ 2

∑
k=1

∫
Ω

akk
∂ρ2ν

∂xk

∂u
∂xk

u dx

∣∣∣∣∣ ≤
∣∣∣∣∣ 2

∑
k=1

∫
Ω′

akk2νρ2ν−1 ∂u
∂xk

u dx

∣∣∣∣∣ ≤
≤ ε

2

∑
k=1

∫
Ω′

ρ2ν+β

(
∂u
∂xk

)2
dx +

2c2
4ν2

ε

∫
Ω′

ρ2ν+β−1u2 dx.

From (16) and the last inequality, we obtain

aΩ(u, u) ≥
2

∑
k=1

∫
Ω

akkρ2ν

(
∂u
∂xk

)2
dx− ε

2

∑
k=1

∫
Ω′

ρ2ν+β

(
∂u
∂xk

)2
dx+

+
∫

Ω
aρ2νu2 dx−

2c2
4ν2

ε

∫
Ω′

ρ2ν+β−1u2 dx. (17)

Supposing that α∗ and α equal ν and ν/2 in Lemma 1, respectively, we have

‖u‖2
L2,ν+β/2−1(Ω′ ,δ)

≤
2c2

10δν

ν
‖u‖2

L2,ν+β/2(Ω,δ), c10 = const > 0. (18)

Considering (5), (6) and (18) from Estimate (17) we obtain

aΩ(u, u) ≥ (c5 − ε)|u|2W1
2,ν+β/2(Ω,δ) +

(
c6 −

4c2
4c2

10νδν

ε

)
‖u‖2

L2,ν+β/2(Ω,δ).

Obviously, we can always choose ε and δ, such that constants c5 > ε, c6 >
4c2

4c2
10νδν

ε , and inequality

aΩ(u, u) ≥ c14‖u‖2
W1

2,ν+β/2(Ω,δ) (19)

is valid with constant c14 = min
(

c6 − ε, c7 −
4c2

4c2
10νδν

ε

)
. Therefore, bilinear form aΩ(u, u) is

◦
W1

2,ν+β/2-elliptical.

According to (14), (15), and (19), bilinear form aΩ(u, u) is continuous, and
◦

W1
2,ν+β/2-elliptical,

and linear form fΩ(v) is continuous on
◦

W1
2,ν+β/2(Ω, δ); then, the existence and uniqueness of an

Rν-generalized solution of Problems (2)–(7) follows from the Lax–Milgram theorem (see [1]).
Considering that

c14‖uν‖2
W1

2,ν+β/2(Ω,δ) ≤ aΩ(uν, uν) = fΩ(uν) ≤ c13‖uν‖W1
2,ν+β/2(Ω,δ)‖ f ‖L2,µ(Ω,δ),

we obtain Estimate (10).

Theorem 2 ([23]). If for some δ there is a set of values ν, such that an Rν-generalized solution of Problems (2)–(7)

exists in set
◦

W1
2,ν+β/2(Ω, δ), then this solution is unique for all such ν.

Remark 3. Theorems 1 and 2 are valid for the domain with a boundary containing multiple re-entrant corners.

Remark 4. For the Stokes problem, the Lamé system, and Maxwell’s equations in a two-dimensional domain
with a boundary containing re-entrant corners, we constructed and investigated a weighted FEM that provides
convergence rate O(h), and this rate does not depend of the singularity size (value) ([14–17,23,24]). The solution
for those boundary-value problems was defined as an Rν-generalized one in the weighted set.
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4. Conclusions

We presented the concept of an Rν-generalized solution for boundary-value problems with
a singularity. We proved a theorem on the existence and uniqueness of an Rν-generalized solution
in a special set. This definition of the solution allows for creating highly efficient numerical methods
without loss of accuracy for boundary-value problems with a singularity. The established theorem
helps to determine optimal parameters ν and δ in numerical methods to improve the accuracy of
finding an approximate solution. We plan to determine the body of optimal parameters (BOP) for
the crack problem, for boundary-value problems of the theory of elasticity in regions with re-entrant
angles at the boundary, and with a change in the type of boundary conditions.
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