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Abstract: This paper is devoted to establishing the most refined axiom for a digital covering
space which remains open. The crucial step in making our approach is to simplify the notions
of several types of earlier versions of local (k0, k1)-isomorphisms and use the most simplified
local (k0, k1)-isomorphism. This approach is indeed a key step to make the axioms for a digital
covering space very refined. In this paper, the most refined local (k0, k1)-isomorphism is proved
to be a (k0, k1)-covering map, which implies that the earlier axioms for a digital covering space
are significantly simplified with one axiom. This finding facilitates the calculations of digital
fundamental groups of digital images using the unique lifting property and the homotopy lifting
theorem. In addition, consider a simple closed k := k(t, n)-curve with five elements in Zn, denoted by
SCn,5

k . After introducing the notion of digital topological imbedding, we investigate some properties
of SCn,5

k , where k := k(t, n), 3 ≤ t ≤ n. Since SCn,5
k is the minimal and simple closed k-curve with odd

elements in Zn which is not k-contractible, we strongly study some properties of it associated with
generalized digital wedges from the viewpoint of fixed point theory. Finally, after introducing the
notion of generalized digital wedge, we further address some issues which remain open. The present
paper only deals with k-connected digital images.

Keywords: local (k0, k1)-isomorphism; unique lifting property; homotopy lifting theorem;
digital covering; digital topological imbedding; generalized digital wedge

MSC: 54C08; 68R10; 05C40

1. Introduction

Since 2004 [1–4], the notion of digital covering space has been strongly used in digital topology
and digital geometry. First of all, the unique path lifting (upl- for brevity) property [3] and the
homotopy lifting theorem [2] among others [4–6] are key properties which can be used in calculating
digital k-fundamental groups of digital images (X, k), classifying digital images using algebraic
invariants [1,2,5], and their applications such as the winding number in a digital topological setting.
Thus, there are many works using these properties including the papers [1–7] so that some results
derived from these properties have been used in the fields of image analysis, pattern recognition,
image processing, mathematical morphology and so forth.

Then, the following problems remain open:
(Q1) How to characterize several types of local (k0, k1)-isomorphisms ?
(Q2) What is the most simplified version of a local (k0, k1)-isomorphism ?
(Q3) What is the most refined axioms for a digital covering space ?

Since SCn,5
k is the minimal model satisfying the non-k-contractibility [3,8], we strongly need to

investigate its digital topological properties.
(Q4) How to establish the notion of digital topological imbedding ?
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(Q5) What are digital topological properties of SCn,5
k ?

(Q6) How to characterize the alignment of fixed point sets of SCn,5
k and those of m-times of digital

wedges of SCn,5
k ?

Up to now, in literature, when studying an alignment of fixed point sets of SCn,l1
k ∨ SCn,l2

k , we

have only studied it with the same k-adjacency of SCn,l1
k and SCn,l2

k . Assume two digital images SCn1,l1
k1

and SCn2,l2
k2

such that k1 6= k2 or n1 6= n2. Then, after introducing a notion of generalized digital wedge,
we may have the following queries.
(Q7) How can we establish a generalized digital wedge SCn1,l1

k1
∨ SCn2,l2

k2
with a certain k-adjacency ?

(Q8) How can we study an alignment of fixed point sets of a generalized digital wedge SCn1,l1
k1
∨ SCn2,l2

k2
?

For instance, given two digital images, SC3,5
26 and SC2,6

8 , how can we deal with the alignment of
the fixed point sets of SC3,5

26 ∨ SC2,6
8 ?

In particular, regarding the issue referred to as (Q3), a recent paper [9] tried to establish
certain relationships between a (strong) local (k0, k1)-isomorphism [2] and a digital (k0, k1)-map
by using the notions of “conciliator” [9] and the upl-property for a (k0, k1)-surjection [2,3]. However,
this approach invokes certain redundant results because it took a detour for the work instead of a
direct proof using the given hypothesis. Indeed, these properties are not necessary to address the
query (Q3). Furthermore, some literature, including the paper [9], confused and misunderstood a
rudimentary version of local (k0, k1)-isomorphism in [1], a (strong) local (k0, k1)-isomorphism [2],
and certain relationships between the rudimentary version of a local (k0, k1)-isomorphism and a
digital (k0, k1)-map. Hence we now need to make them more clarified in this paper and further,
address the queries (Q1)–(Q8) above. In the present paper the notation “ :=” is used for introducing a
new terminology.

The paper is organized as follows. Section 2 investigates basic notions needed for the study in
the present paper. Section 3 first proposes the notion of digital topological imbedding and studies
some properties of it. In addition, it characterizes SCn,5

k , where k := k(t, n), 3 ≤ t ≤ n. Section 4 studies
several types of local k-isomorphisms and some properties of them. Furthermore, it proposes the most
simplified version of a local (k0, k1)-isomorphism. Section 5 proposes the most refined axiom for a
digital covering space using a very simplified version of a local (k0, k1)-isomorphism. In Section 6,
after mentioning some important features of SCn,5

k which are associated with some digital homotopy
properties of SCn,5

k , we intensively study fixed point sets of SCn,5
k and m-times of digital wedges of

SCn,5
k . Besides, using the notion of digital topological imbedding, we firstly introduce the notion

of generalized digital wedge and further, study an alignment of fixed point sets of SCn1,l1
k1
∨ SCn2,l2

k2
.

Finally, Section 7 concludes the paper.

2. Preliminaries

Among many kinds of methods of studying digital images [10–25], motivated by the typical
graph theory [26–28], the present paper will follow a graph theoretical approach to study digital
images in [22,29]. Naively, a digital image (X, k) can be considered to be a set X ⊂ Zn with one of the
k-adjacency of Zn from (1) of the present paper (or a digital k-graph on Zn [7]), where Zn is the set of
points in the Euclidean nD space with integer coordinates, n ∈ N and N is the set of natural numbers.

Motivated by the digital k-connectivity for low dimensional digital images (X, k), X ⊂ Z3 [22,29],
as a generalization of this approach, the papers [1,3,30] firstly developed some k-adjacency relations
for high dimensional digital images (X, k), X ⊂ Zn (see also (1) of the present paper). More precisely,
the digital k-adjacency relations (or digital k-connectivity) for X ⊂ Zn, n ∈ N, were initially developed
in [3] (see also [1,2,30]), as follows:

For a natural number t, 1 ≤ t ≤ n, the distinct points p = (p1, p2, · · · , pn) and q =

(q1, q2, · · · , qn) ∈ Zn are k(t, n)-adjacent if at most t of their coordinates differ by ±1 and the
others coincide.
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According to this statement, the k(t, n)-adjacency relations of Zn, n ∈ N, are formulated [3] (see
also [2,4,30]) as follows:

k := k(t, n) =
t

∑
i=1

2iCn
i , where Cn

i :=
n!

(n− i)! i!
. (1)

For instance, the following are obtained [2,30]:

(n, t, k) ∈
{
(4, 1, 8), (4, 2, 32), (4, 3, 64), (4, 4, 80); and

(5, 1, 10), (5, 2, 50), (5, 3, 130), (5, 4, 210), (5, 5, 242).

Using these k-adjacency relations of Zn in (1), n ∈ N, we will call the pair (X, k) a digital image on
Zn, X ⊂ Zn. Indeed, we should represent (X, k) as a binary digital image (X, k, k̄), k 6= k̄, where the
k-adjacency is concerned with the set X ⊂ Zn and the k̄-adjacency is associated with the set Zn \ X
(see the paradox of digital k-connectivity in [18,22]). However, since this paper certainly approves this
situation, for convenience, we only take the notation (X, k) instead of (X, k, k̄), k 6= k̄.

Besides, these k-adjacency relations can be essential to studying digital products with normal
adjacencies [3] and calculating digital k-fundamental groups of digital products [4,31]. For x, y ∈ Z
with x � y, the set [x, y]Z = {n ∈ Z | x ≤ n ≤ y} with 2-adjacency is called a digital interval [18,19].

Hereafter, (X, k) is assumed in Zn, n ∈ N, with one of the k-adjacency of (1). The following
terminology and notions [3,18,19,22,29,31] will be often used later. Two non-empty digital images
(X1, k) and (X2, k) are said to be k-adjacent if X1 ∩ X2 = ∅ and there are certain points x1 ∈ X1 and
x2 ∈ X2 such that x1 is k-adjacent to x2 [18].

Consider a digital image (X, k) in Zn, n ∈ N and a point y ∈ Xc which is the complement of
X in Zn. Then, the point y is said to be k-adjacent to (X, k) if there is a point x ∈ X such that x is
k-adjacent to y [19]. Equivalently, we may define that the point y is k-adjacent to (X, k) if (X, k) is
k-adjacent to {y} [19].

In a digital image (X, k), by a k-path, we mean a sequence (xi)i∈[0,l]Z ⊂ X such that xi and xj are
k-adjacent if | i− j | = 1 [19]. Besides, l is called a length of this k-path. Using this approach, we can
also represent the concept of k-connectedness, as follows [19].

We say that (X, k) is k-connected [19] if for any distinct points x, y ∈ X there is a k-path (xi)i∈[0,l]Z
in X such that x0 = x and xl = y (for more details see [31]). Besides, a singleton set is assumed to be
k-connected (for more details see [31]).

By a simple k-path from x to y in (X, k), we mean a finite set (xi)i∈[0,m]Z
⊂ X as a sequence such

that xi and xj are k-adjacent if and only if | i− j | = 1, where x0 = x and xm = y [19]. Then, the length
of this set (xi)i∈[0,m]Z

is denoted by lk(x, y) := m.

A simple closed k-curve (or simple k-cycle) with l elements in Zn, n ≥ 2, denoted by SCn,l
k [3,19],

l(≥ 4) ∈ N, is defined to be the set (xi)i∈[0,l−1]Z ⊂ Z
n such that xi and xj are k-adjacent if and only

if | i− j | = ±1(mod l). Then, the number l of SCkn,l depends on both the dimension n of Zn and the
k-adjacency.

Given a digital image (X, k), the digital k-neighborhood of x0 ∈ X with radius ε is defined in X to
be the following subset of X

Nk(x0, ε) = {x ∈ X | lk(x0, x) ≤ ε} ∪ {x0}, (2)

where lk(x0, x) is the length of a shortest simple k-path from x0 to x and ε ∈ N.
Using the digital k-neighborhood of (2), we observe that a digital image (X, k) can be a digital

space [32]. To be precise, let us assume a certain relation on the set (X, k): We say that two distinct
points x and y have a relation R, denoted by (x, y) ∈ R, if

x ∈ Nk(y, 1) or y ∈ Nk(x, 1). (3)
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Then, it is clear that the relation R in (3) is symmetric and non-reflexive so that the relation set ((X, k), R)
is a digital space [31].

Since every point x of a digital image (X, k) in Zn always has an Nk(x, 1) ⊂ X, the digital
continuities of [22] can be represented as the following form which will be effectively used in addressing
all of the questions posed in Section 1.

Proposition 1. [3,4,7] Let (X, k0) and (Y, k1) be digital images in Zn0 and Zn1 , respectively. A function
f : X → Y is (k0, k1)-continuous if and only if for every point x ∈ X, f (Nk0(x, 1)) ⊂ Nk1( f (x), 1).

Owing to a digital k-graph theoretical feature of a digital image (X, k), we have often used a
(k0, k1)-isomorphism as in [7] instead of a (k0, k1)-homeomorphism as in [8], as follows:

Definition 1. [8] (see also [7]) For two digital images (X, k0) in Zn0 and (Y, k1) in Zn1 , a map h : X → Y
is called a (k0, k1)-isomorphism if h is a (k0, k1)-continuous bijection and further, h−1: Y → X is
(k1, k0)-continuous. Then we use the notation X ≈(k0,k1)

Y. If n0 = n1 and k0 = k1, then we call it a
k0-isomorphism and use the notation X ≈k0 Y.

3. Development of a Digital Topological Imbedding

SCn,5
k plays an important role in digital topology because it is the minimal model for

non-k-contractibility [3,8]. Thus, we need to explore digital topological properties of it. To characterize
SCn,5

k , where k := k(t, n), 3 ≤ t ≤ n, we firstly develop a new notion of ‘digital topological imbedding’.
Motivated by the topological imbedding [33], we now propose the following.

Definition 2. Consider two digital images (X, k := k(t, n)), X ⊂ Zn and (Y, k′ := k(t′, n′)), Y ⊂ Zn′ such
that there is an arbitrary (k, k′)-isomorphism h : (X, k) → (h(X), k′) ⊂ (Y, k′). Then, (X, k) is said to be a
digital topological imbedding into (Y, k′) with respect to the (k, k′)-isomorphism h.

In particular, in the case X ⊂ Zn with the same k-adjacency of both X and Zn, a digital topological
imbedding is simply understood to be an inclusion (X, k) ⊂ (Zn, k).

Remark 1. In Definition 2, we observe the following:

(1) The dimension n need not be equal to n′.
(2) The k-adjacency need not be equal to k′-adjacency.
(3) Unlike the typical notion of a topological imbedding [33], the phrase “with respect to the (k, k′)-isomorphism

h” is strongly required.

Definition 3. In Definition 2, as to k := k(t, n) for X and k′ := k(t′, n′) for Y, if t = t′, then (X, k) is said to
be a strictly digital topological imbedding into (Y, k′) with respect to the (k, k′)-isomorphism h.

Using these notions, we obtain the following:

Theorem 1. SC3,5
26 is digital topologically imbedded into (Zn, k(3, n)) with respect to a

(26, k(3, n))-isomorphism, n ≥ 3.

Proof. Let us take a certain set (see Figure 1c)

SC3,5
26 := {x0 = (0, 0, 0), x1 = (−1,−1, 1), x2 = (−1, 0, 2), x3 = (0, 1, 2), x4 = (1, 1, 1)} ⊂ Z3.

Then, consider the map
h : SC3,5

26 → (Y, k(3, n)) ⊂ Zn, (4)
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defined by
h(xi) = yi, i ∈ [0, 4]Z,

where Y is the following set as an example{
y0 = (0, 0, 0, 0n−3), y1 = (−1,−1, 1, 0n−3), y2 = (−1, 0, 2, 0n−3),

y3 = (0, 1, 2, 0n−3), y4 = (1, 1, 1, 0n−3),

}

and 0n−3 :=

(n-3)-times︷ ︸︸ ︷
(0, 0, · · · , 0).

Since the map h is a (26, k(3, n))-isomorphism, the proof is completed.
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Figure 1. Configuration of several types of SCn,l
k : (a) SC2,7

8 := (xi)i∈[0,6]Z [34], (b) SC2,9
8 :=

(xi)i∈[0,8]Z [34], (c) SC3,5
26 := (xi)i∈[0,4]Z . Here, n = 3, the underlying 3-dimensional lattice is shown as

a dashed grid. The simple closed 26-curve consisting of 5 points appears as black dots labelled x0

through x4. Indeed, there are several shapes of SC3,5
26 in Z3.

The map in (4) is just an example. Indeed, there are many types of (26, k(3, n))-isomorphisms
for supporting Theorem 1. It is clear that no SC2,5

k exists, k ∈ {4, 8} [34] and further, there is no SC3,5
k ,

k ∈ {6, 18} [34]. However, we obtain the following:

Corollary 1. SCn,5
k(t,n) exists in Zn if 3 ≤ t ≤ n.

Proof. After considering SCn,5
k(t,n) to be the set h(SC3,5

26 ) with respect to a certain

(26, k(t, n))-isomorphism h : SC3,5
26 → (h(SC3,5

26 ), k(t, n)) which is similar to the map h in (4)
for 3 ≤ t ≤ n, which completes the proof.

Example 1. (1) SC4,5
64 is considered in Z4. To be precise, since k(3, 4) is equal to 64 (see the property (1)),

consider the map h1 : SC3,5
26 → (Y, 64) ⊂ Z4 defined by

h1(xi) = yi, i ∈ [0, 4]Z,

where SC3,5
26 is the set referred to in the proof of Theorem 1 and Y is assumed to be the set.

Y :=

{
y0 = (0, 0, 0, 0), y1 = (−1,−1, 0, 1), y2 = (−1, 0, 0, 2),

y3 = (0, 1, 1, 2), y4 = (1, 1, 0, 1).

}

Then the map h1 is a (26, 64)-isomorphism supporting a digital topological imbedding of SC3,5
26 in Z4 with

h1(SC3,5
26 ) = SC4,5

64 := (Y, 64).

(2) SC4,5
80 is considered in Z4. To be specific, since k(4, 4) is equal to 80, assume the map h2 : SC3,5

26 →
(Z, 80) in Z4 defined by

h2(xi) = zi, i ∈ [0, 4]Z,
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where SC3,5
26 is the set referred to in the proof of Theorem 1 and Z is assumed to be the following set.{

z0 = (0, 0, 0, 0), z1 = (−1,−1, 1, 1), z2 = (−1, 0, 0, 2),

z3 = (0, 1, 1, 2), z4 = (1, 1, 1, 1).

}

Then, the map h2 is a (26, 80)-isomorphism supporting a digital topological imbedding of SC3,5
26 in Z4 with

h2(SC3,5
26 ) = SC4,5

80 := (Z, 80).

Using methods similar to the digital topological imbeddings in Example 1, we obtain
the following:

Corollary 2. Given SCn,l
k with k := k(t, n), a digital topological imbedding of SCn,l

k into (Zm, k′) exists if
t ≤ t′ and n ≤ m, where k′ := k(t′, m).

In view of Theorem 1 and Corollary 1, and the notion of SCn,l
k , according to the k-adjacency of Zn

as stated in (1), as to the number l of SCn,l
k , we observe the following properties [34].

If k(t, n), t 6= 1, for l ≥ 7, n ∈ N \ {1}, then it is clear that the number l of SCn,l
k can be even or

odd (see Figure 1a). Besides, if l ≥ 5, n ∈ N \ {1, 2}, then it is clear that the number l can be odd or
even (see Figure 1c). More explicitly, for k := k(t, n), t ≥ 2, the number l of SCn,l

k can be assumed to be
even or odd. For instance, consider SC2,6

8 , SC2,7
8 , SC2,9

8 , and SC3,9
18 (see Figure 1a,b). In general, SCn,2a

k
and SCn,2a+1

k are considered according to the dimension n ∈ N \ {1}, and a ≥ 2, a ∈ N. Regarding
SCn,l

k , n ∈ N \ {1}, we can sum up certain properties of l of SCn,l
k , as follows:

(1) in the case k = 2n(n 6= 2), we have l ∈ N0 \ {2};
(2) in the case k = 4(n = 2), we obtain l ∈ N0 \ {2, 6};
(3) in the case k = 8(n = 2), we have l ∈ N \ {1, 2, 3, 5};
(4) in the case k = 18(n = 3), we obtain l ∈ N \ {1, 2, 3, 5}; and

(5) in the case k := k(t, n) such that 3 ≤ t ≤ n,

we have l ∈ N \ {1, 2, 3}.


(5)

Hereafter, regarding l of SCn,l
k , we will follow the property (5) which is an improved version of (2)

of [34].

4. Characterizations of Several Types of Local (k0, k1)-Isomorphisms and Their Relationships
with Both the (k0, k1)-Continuity and a Surjection

In general and algebraic topology we define the notion of local homeomorphism as follows:
For two topological spaces X, Y, we say that a map h : X → Y is a local homeomorphism if each point
x ∈ X is contained in an open set O(x) such that V := h(O(x)) is open in Y and the restriction h|O(x)
is a homoeomorphism from O(x) to V [35]. Then, it turns out that not every local homeomorphic
surjection is a covering map from the viewpoint of algebraic topology [35]. However, in digital
topology, we have the query (Q3) as referred to in Section 1.

This section initially compares several types of local k-isomorphisms such as a rudimentary
version of a local (k0, k1)-isomorphism (or a local (k0, k1)-homeomorphism in [1]) and a (strong)
local (k0, k1)-isomorphism [2], which we can clarify a certain difference between them. Indeed, this
approach is very important in making the axioms for a digital covering space refined. Motivated
by Definition 1, as mentioned in the previous part, in the present paper we will call a pseudo local
(k0, k1)-isomorphism (see Definition 4) and a local (k0, k1)-isomorphism (see Definitions 5 and 6)
instead of a local (k0, k1)-homeomorphism in [1,2].
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Definition 4. [1] (a rudimentary version of a local (k0, k1)-isomorphism or a pseudo local (k0, k1)-isomorphism)
For two digital images (X, k0) in Zn0 and (Y, k1) in Zn1 , a (k0, k1)-continuous map h : X → Y is called a
pseudo local (k0, k1)-isomorphism if for every point x ∈ X, h(Nk0(x, 1)) is k1-isomorphic with Nk1(h(x), 1).
If n0 = n1 and k0 = k1, then the map h is called a pseudo local k0-isomorphism.

In Definition 4, we called the map h a pseudo local (k0, k1)-isomorphism to avoid some confusion
with the typical local (k0, k1)-isomorphism in Definitions 5 and 6 below. Then, we consider the
following example for Definition 4.

Example 2. Let us consider the two maps p1 and p2 in Figure 2. Then, these maps are pseudo local
8-isomorphisms. More precisely, assume the set X := X1 ∪ X2 in Figure 2, where X1 := {xi | i ∈ [0, 11]Z} ⊂
Z2 and X2 := {x12} ⊂ Z2 and further, Y := Y1 ∪ Y2, where Y1 := {yj | j ∈ [0, 12]Z} ⊂ Z2 and
Y2 := {y13} ⊂ Z2.

Then, consider the map p1 : (X, 8)→ SC2,12
8 := (bi)i∈[0,11]Z defined by

p1(xi) = bi and p1(x12) = b0.

Besides, consider the map p2 : (Y, 8)→ SC2,13
8 := (cj)j∈[0,12]Z defined by

p2(yj) = cj and p2(y13) = c0.

Then, each maps p1 and p2 are pseudo local 8-isomorphisms.
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Figure 2. Configuration of local 8-isomorphisms of Definition 4 referred to in Example 2.
(a) p1 : (X, 8)→ SC2,12

8 . (b) p2 : (Y, 8)→ SC2,13
8 .

As another version of a local (k0, k1)-isomorphism, a paper [2] established the following notion
which is stronger than a pseudo local (k0, k1)-isomorphism.

Definition 5. [2] For two digital images (X, k0) in Zn0 and (Y, k1) in Zn1 , a (k0, k1)-continuous map h :
X → Y is called a local (k0, k1)-isomorphism if for every x ∈ X, h maps Nk0(x, 1) (k0, k1)-isomorphically onto
Nk1(h(x), 1). If n0 = n1 and k0 = k1, then the map h is called a local k0-isomorphism.

Definition 5 can be certainly admissible in studying digital topology. However, regarding the
questions (Q1)–(Q3) posed in Section 1, we now need to make Definition 5 more simplified and refined.
Finally, we recognize that the condition “(k0, k1)-continuous map h : X → Y” is redundant for defining
a “local (k0, k1)-isomorphism” of Definition 5 because the condition “for every x ∈ X, h maps Nk0(x, 1)
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(k0, k1)-isomorphically onto Nk1(h(x), 1)” of Definition 5 implies the (k0, k1)-continuity of the given
map h, as follows:

Lemma 1. For two digital images (X, k0) in Zn0 and (Y, k1) in Zn1 , consider a map h : X → Y. Assume that
the map h has the property that for every x ∈ X, h maps Nk0(x, 1) (k0, k1)-isomorphically onto Nk1(h(x), 1).
Then h is a (k0, k1)-continuous map. In particular, in the case n0 = n1 and k := k0 = k1, the map h is a
k-continuous map.

Proof. With the hypothesis, for every x ∈ X and Nk0(x, 1), h has the property

h(Nk0(x, 1)) ≈k1 Nk1(h(x), 1)). (6)

In other words, by Definitions 1 and 5, and (6), the restriction h to the set Nk0(x, 1), i.e., h|Nk0
(x,1) :

Nk0(x, 1) → Nk1(h(x), 1), is a (k0, k1)-isomorphism. Thus, using Proposition 1, since h|Nk0
(x,1) :

Nk0(x, 1)→ Nk1(h(x), 1) is a bijection, we obtain

h(Nk0(x, 1)) ⊂ Nk1(h(x), 1)). (7)

By the hypothesis, for any point x ∈ X we have the property (7). Thus, by Proposition 1, we obtain
the (k0, k1)-continuity of h.

Indeed, we have
h(Nk0(x, 1)) = Nk1(h(x), 1)).

Naively, since h(x) is already determined by the given map h and h(x) ∈ h((Nk0(x, 1)),
we certainly obtain

h(Nk0(x, 1)) ⊂ Nk1(h(x), 1)).

Conversely, for the sake of a contradiction, suppose there is a point t ∈ Nk1(h(x), 1) \ h(Nk0(x, 1)).
Then, this assumtion invokes a contradicton to the (k0, k1)-isomorphism of h.

Owing to Lemma 1, we can make the local (k0, k1)-isomorphism of Definition 5 simplified because
the condition of the (k0, k1)-continuity of the map h of Definition 5 is redundant for defining a local
(k0, k1)-isomorphism. Thus, after replacing the condition “a (k0, k1)-continuous map h : X → Y” by a
just “map h : X → Y”, we obtain the most refined version of a local (k0, k1)-isomorphism, as follows:

Definition 6 (Refinement of a local (k0, k1)-isomorphism of Definition 5). For two digital images
(X, k0) in Zn0 and (Y, k1) in Zn1 , consider a map h : (X, k0) → (Y, k1). Then the map h is said to be a
local (k0, k1)-isomorphism if for every x ∈ X, h maps Nk0(x, 1) (k0, k1)-isomorphically onto Nk1(h(x), 1).
If n0 = n1 and k0 = k1, then the map h is called a local k0-isomorphism.

It is clear that a local (k0, k1)-isomorphism of Definition 6 is stronger than a pseudo local
(k0, k1)-isomorphism of Definition 4. Hereafter, when studying digital images, we will follow a
local (k0, k1)-isomorphism in Definition 6 instead of Definition 5.

Remark 2. (1) By Lemma 1 and Definition 6, a local (k0, k1)-isomorphism is a (k0, k1)-continuous map.
(2) A local (k0, k1)-isomorphism need not be a (k0, k1)-isomorphism. For instance, consider the map

h : SCn0,3l
k0

:= (ei)i∈[0,3l−1] → SCn1,l
k1

:= (bi)i∈[0,l−1]

defined by h(ei) = bi(mod l). Then, the map h is a local (k0, k1)-isomorphism of Definition 6 which is not a
(k0, k1)-isomorphism.
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Regarding (Q1)–(Q3), let us now examine if a local (k0, k1)-isomorphism of Definition 6
is surjective.

Theorem 2. A local (k0, k1)-isomorphism is a surjection.

Before proving the assertion, we need to recall that all digital images (X, k) in this paper are
assumed to be k-connected. With the hypothesis, let us now prove the assertion.

Proof. For the sake of a contradiction, suppose a local (k0, k1)-isomorphism h : (E, k0)→ (B, k1) which
is not surjective. With the hypothesis, since h(E) is clearly a k1-connected proper subset of (B, k1),
i.e., h(E) ( B, we may take a point b′ ∈ B \ h(E) such that b′ is k1-adjacent to h(E) because (B, k1) is
assumed to be k1-connected. Then, there is a point b ∈ h(E) which is k1-adjacent to b′. Let us now
consider a point e ∈ h−1({b}) ⊂ E so that h(e) = b. Indeed, e need not be unique because of the local
(k0, k1)-isomorphism h. Then, take a certain point e ∈ h−1({b}) anyway. Owing to the hypothesis of a
local (k0, k1)-isomorphism of h, for the set Nk0(e, 1) ⊂ E, there is the following (k0, k1)-isomorphism

h|Nk0
(e,1) : Nk0(e, 1)→ Nk1(h(e), 1) = Nk1(b, 1). (8)

Then, we have a contradiction to the property (8) because for the point b′ ∈ Nk1(b, 1), there is no point
x ∈ Nk0(e, 1) such that h(x) = b′.

Corollary 3. (1) Given a digital image (X, k), the identity map of (X, k) is a local k-isomorphism.
(2) Consider a digital topological imbedding from (X, k0) into (Y, k1) with respect to a (k0, k1)-isomorphism

h : (X, k0)→ (h(X), k1) such that h(X) ( Y. Then, the map h is not a local (k0, k1)-isomorphism.
(3) Given a digital image (X, k) and its a proper subset A ( X, the inclusion map i : (A, k)→ (X, k) is

not a k-local isomorphism.

Proof. (1) For any element x ∈ X, since 1X(Nk(x, 1)) = Nk(x, 1), the proof is completed.
(2) Assume a map h : (X, k0)→ (Y, k1) such that (X, k0) is (k0, k1)-isomorphic to (h(X), k1) and

h is not surjective. Then, let us prove the assertion of (2) with a counterexample. Consider the sets
X := [1, 4]Z and Y := {yi|i ∈ [1, 5]Z} in Figure 3. Assume a map h : (X, 2) → (Y, 8) suggested in
Figure 3, defined by

h(i) = yi, i ∈ [1, 4]Z, i.e., h(X) = {yi | i ∈ [1, 4]Z}.

Then, consider the map h1 : (X, 2) → (h(X), 8) ( (Y, 8) defined by h1(x) = h(x), x ∈ X which is
a (2, 8)-isomorphism. However, it is clear that h : (X, 2) → (Y, 8) is not a local (2, 8)-isomorphism
because the point “4(∈ X)” does not support a local (2, 8)-isomorphism of h. To be precise, it is clear
that (X, 2) is a digital topologically imbedded into (Y, 8) with respect to the (2, 8)-isomorphism h1.
However, the map h is not a local (2, 8)-isomorphism because

N2(4, 1) = {3, 4} and N8(h(4), 1) = N8(y4, 1) = {y3, y4, y5}

so that N2(4, 1) is not (2, 8)-isomorphic to N8(h(4), 1) with respect to the given map h.
(3) As a special case of (2), the proof is completed.

Example 3. Given the three maps in Figure 4, we obtain the following:

(1) In Figure 4a, the map f : (A, 26) → (B, 18) defined by f (ai) = bi, i ∈ [0, 2]Z, is a local
(26, 18)-isomorphism. However, if we replace (A, 26) above by the case (A, 18) with the map f above,
the map f is not a local 18-isomorphism.

(2) In Figure 4b, the map h : (Z, 2) → (X, 26) given by h(t) = xt(mod 3), t ∈ Z, is not a local
(2, 26)-isomorphism. By contrary, suppose that the map h is a local (2, 26)-isomorphism. Then, take the
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digital 2-neighborhood of the point 0 with radius 1, N2(0, 1) = {−1, 0, 1}. Then, we should have the
(2, 26)-isomorphism

h|N2(0,1) : N2(0, 1)→ N26(h(0), 1) = N26(x0, 1) = X. (9)

However, the map in (9) is not a (2, 26)-isomorphism because the inverse map (h|N2(0,1))
−1 is not

(26, 2)-continuous. More precisely, while every point t ∈ N26(x0, 1) has the property N26(t, 1) =

N26(x0, 1) = X, some two points in (h|N2(0,1))
−1(N26(xi, 1)) are not 2-adjacent, xi ∈ X, which invokes

a contradiction to the (2, 26)-isomorphism in (9). More precisely, see the points “− 1, 1” which are not
2-adjacent, while their corresponding points h(−1) = x2, h(1) = x1 which are 26-adjacent.

(3) In Figure 4c, the map p : (X, 8)→ SC2,7
8 := (yi)i∈[0,6]Z defined by p(xi) = yi, i ∈ [0, 6]Z, is not a local

8-isomorphism, where X := {xi | i ∈ [0, 6]Z} ⊂ Z2 and x0 = (0, 0), x1 = (1, 1), x2 = (2, 0), x3 =

(3, 1), x4 = (4, 0), x5 = (5, 1), x6 = (4, 0). Indeed, we may call the set (X, 8) a finite fence set with
8-adjacency.

1

h4321
(X, 2) (Y,8)

y

4y
2y

3y

5y

Figure 3. Explanation of the map h referred to in the proof of Corollary 3, where (Y, 8) is a portion of
Z2 with 8-adjacency.
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Figure 4. (a) Configuration of a (26, 18)-continuous surjection f which is a local (26, 18)-isomorphism
mentioned in Example 3(1). (b) Configuration of a (2, 26)-continuous surjection which is not a local
(2, 26)-isomorphism stated in Example 3(2). (c) Configuration of an (8, 26)-surjection p : (X, 8) →
SC2,7

8 := (yi)i∈[0,6]Z which is not a local (8, 26)-isomorphism referred to in Example 3(3), where X
consists of six elements.
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5. The Most Refined Axiom for a Digital Covering Space

It is well known that the notion of graph covering strongly contributed to the classification
of graphs [28]. Similarly, the concept of covering space in algebraic topology has also been
substantially used in classifying topological spaces [24,36]. However, investigating these covering
structures [24,27,28], it turns out that digital covering spaces have their own features [1–4] and
further, have some strong advantages of exploring various properties of digital images. Many
properties derived from the notion of digital covering space have been often used in calculating
digital fundamental groups [2,8,30] and classifying digital covering spaces [7,8]. Thus, the work
making the earlier axioms for a digital covering space refined is really a hot issue (see (Q3)) in digital
topology. Let us now recall the axioms of a digital covering space which are equivalent to the initial
versions of a digital covering space in [3].

Definition 7. [3] (see also [4]) Let (E, k0) and (B, k1) be digital images in Zn0 and Zn1 , respectively.
Let p : E→ B be a ((k0, k1)-continuous) surjection. Suppose, for any b ∈ B there exists ε ∈ N such that

(1) for some index set M, p−1(Nk1(b, ε)) = ∪i∈M Nk0(ei, ε) with ei ∈ p−1(b);
(2) if i, j ∈ M and i 6= j, then Nk0(ei, ε) ∩ Nk0(ej, ε) is an empty set; and
(3) the restriction of p to Nk0(ei, ε) from Nk(ei, ε) to Nk(b, ε) is a (k0, k1)-isomorphism for all i ∈ M.

Then the map p is called a (k0, k1)-covering map, (E, p, B) is said to be a (k0, k1)-covering and (E, k0) is
called a digital (k0, k1)-covering space over (B, k1).

The k1-neighborhood Nk1(b, ε) of Definition 7 is called an elementary k1-neighborhood of b with
some radius ε [3]. The axioms for a digital covering space in Definition 7 are certainly acceptable
because they are descriptive and constructive. Besides, the paper [4] established a slightly simpler
form of the axioms of a digital covering space, as follows.

Remark 3. (1) As for the axioms for a (k0, k1)-covering of Definition 7, we can replace “(k0, k1)-continuous
surjection” with “surjection” because the surjection of p with the properties (1) and (3) of Definition 7 implies
that p is (k0, k1)-continuous [4].

(2) Given a surjection p : (E, k0) → (B, k1), if there is a certain ε ∈ N such that the restriction map
p to Nk0(e, ε) from Nk0(e, ε) to Nk1(p(e), ε) is a (k0, k1)-isomorphism, then we say the map p is a radius ε

local isomorphism [2]. In Definition 7, we may take ε = 1 [4]. However, to study some works such as the
homotopy lifting theorem [2], since we need a radius 2 local (k0, k1)-isomorphism, we may take ε(≥ 1) as stated
in Definition 7 (see Remark 1 of [4]).

(3) In view of (2) above, a digital (k0, k1)-covering map is a obviously a radius 1 local (k0, k1)-isomorphism
[4] because a radius ε local (k0, k1)-isomorphism implies a radius 1 local (k0, k)-isomorphism.

Remark 4. A pseudo local (k0, k1)-isomorphism need not imply a digital (k0, k1)-map [1]. To be precise,
consider the two maps p1 and p2 referred to in Example 2 (see also Figure 2) to be counterexamples instead of
the misprinted counterexample in [1]. As already stated in Example 2, while each maps p1 and p2 are pseudo
local 8-isomorphisms, they are not 8-covering maps. Naively, each p1 and p2 are neither 8-covering maps nor
local 8-isomorphisms of Definition 6 (see the points x0 or x12 in Figure 2a and the points y0 or y13 in Figure 2b).
Indeed, a pseudo local (k0, k1)-isomorphism is quite different from the local (k0, k1)-isomorphism of Definition 5
(see also Definition 6 in the present paper).

Let us now explore some properties of a local (k0, k1)-isomorphism of Definition 6 which will be
used in addressing the issue (Q3), as follows:

Proposition 2. Consider a map p : (E, k0)→ (B, k1) such that every element e ∈ E has the property that

p|Nk0
(e,1) : Nk0(e, 1)→ Nk1(p(e), 1)
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is (k0, k1)-isomorphism, i.e., p is a local (k0, k1)-isomorphism of Definition 6. Then, for any b ∈ B and some
index set M, we obtain

p−1(Nk1(b, 1)) = ∪i∈M Nk0(ei, 1) with ei ∈ p−1(b). (10)

Then, the following hold.

(1) In (10), if i, j ∈ M and i 6= j, then Nk0(ei, 1) ∩ Nk0(ej, 1) is an empty set;
(2) In (10), for any i, j ∈ M, Nk0(ei, 1) is k0-isomorphic to Nk0(ej, 1).
(3) In (10), for any i, j ∈ M and i 6= j, Nk0(ei, 1) is not k0-adjacent to Nk0(ej, 1).

Proof. (1) First of all, owing to the hypothesis of the map p, in (10), we prove the following:

If i, j ∈ M and i 6= j, then ei is not k0-adjacent to ej. (11)

By contrary, suppose ei is k0-adjacent to ej, which implies ei ∈ Nk0(ej, 1). Then, by the hypothesis,
p|Nk0

(ej ,1) : Nk0(ej, 1) → Nk1(b, 1) should be a (k0, k1)-isomorphism. However, from (10), since we
have p(ei) = p(ej) = b so that the map p|Nk0

(ej ,1) is not injective, which invokes a contradiction to the
(k0, k1)-isomorphism of p|Nk0

(ej ,1).
Next, in (10), we now prove that for any i 6= j ∈ M, the two sets Nk0(ei, 1) and Nk0(ej, 1) are

disjoint. For the sake of a contradiction, for some Nk0(ei, 1) and Nk0(ej, 1), suppose

Nk0(ei, 1) ∩ Nk0(ej, 1) 6= ∅.

Then, take a certain point
e ∈ Nk0(ei, 1) ∩ Nk0(ej, 1). (12)

As proved above, since ei is not k0-adjacent to ej, we may take e /∈ {ei, ej}. Owing to the property (12),
it is clear that the element e ∈ E is k0-adjacent to both the points ei and ej. Naively, with the
property (11), we obtain

ei, ej ∈ Nk0(e, 1). (13)

Owing to the hypothesis of a local (k0, k1)-isomorphism of p and the property (10), the restriction p to
Nk0(e, 1), i.e.,

p|Nk0
(e,1) : Nk0(e, 1)→ Nk1(p(e), 1) = Nk1(b, 1) (14)

should be a (k0, k1)-isomorphism. However, since p(ei) = p(ej) = b, by the properties (10) and (13),
the restriction map in (14) is not a (k0, k1)-isomorphism because it is not injective, which invokes a
contradiction to the property (14).

(2) Since a digital isomorphism clearly holds a composite, owing to the hypothesis of the local
(k0, k1)-isomorphism of p, the proof is completed because{

Nk0(ei, 1) ≈(k0,k1)
Nk1(b, 1) and Nk1(b, 1) ≈(k1,k0)

Nk0(ei, 1)

⇒ Nk0(ei, 1) ≈k0 Nk0(ej, 1).

(3) In (10), after recalling the fact Nk0(ei, 1) ∩ Nk0(ej, 1) = ∅ already proved in (1), by contrary,
in (10), suppose that there are certain i, j ∈ M with i 6= j such that the sets Nk0(ei, 1) is k0-adjacent to
Nk0(ej, 1). Then, owing to the facts already proved in (1) and (2), there are at least two distinct points
e, e′ ∈ E such that 

e ∈ Nk0(ei, 1) and e 6= ei;

e′ ∈ Nk0(ej, 1) and e′ 6= ej; and

e is k0-adjacent to e′.
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Then, we have a simple k0-path E1 := (ei, e, e′, ej) ⊂ (E, k0) such that p(ei) = p(ej) = b ∈ (B, k1).
Let us now consider the sequence

(p(ei), p(e), p(e′), p(ej)) = (b, p(e), p(e′), b) ⊂ (B, k1). (15)

Regarding the sequence in (15), since e′ ∈ Nk0(e, 1) and e′ 6= e, by the hypothesis,
the (k0, k1)-isomorphism

p|Nk0
(e,1) : Nk0(e, 1)→ Nk1(p(e), 1)

is also considered. Hence we have p(e) 6= p(e′) and further, p(e) is k1-adjacent to p(e′).
Similarly, by (10), we also obtain the following:{

p(e) is k1-adjacent to p(ei); and

p(e′) is k1-adjacent to p(ej).

Besides, it is clear that p(E1) is k1-connected. Hence the sequence (b, p(e), p(e′), b) is a k1-cycle with
three points which is not simple. To be precise, since b is k1-adjacent to both p(e) and p(e′) and
further, p(e) is also k1-adjacent to p(e′), the sequence (b, p(e), p(e′), b) has a shape of a triangle with
k1-adjacency and it is a subset of Nk1(t, 1) ⊂ B, where t ∈ {b, p(e), p(e′)} ⊂ (B, k1). This invokes
a contradiction to the hypothesis of a local (k0, k1)-isomorphism of p. More precisely, owing to the
hypothesis, for each element s ∈ {ei, e, e′, ej}, each restriction of p to Nk0(s, 1),

p|Nk0
(s,1) : Nk0(s, 1)→ Nk1(p(s), 1)

should be a (k0, k1)-isomorphism so that the inverse map of p|Nk0
(s,1), denoted by (p|Nk0

(s,1))
−1, should

be a (k1, k0)-isomorphism. However, it is clear that

(p|Nk0
(s,1))

−1 is not a (k1, k0)-isomorphism. (16)

More explicitly, while p(ei) is k1-adjacent to p(e′), the images by the map (p|Nk0
(s,1))

−1 of the two

points p(ei) and p(e′) are not k0-adjacent. To explain the situation related to (16), as an example, let us
consider two digital images (E, 8) and (B, 26) in Figure 5, where{

E := {e2i = (2i, 0), e2i+1 = (2i + 1, 1) | i ∈ Z} and

B := {b0 = (0, 0, 0), b1 = (1, 1, 0), b2 = (1, 1, 1)}.
(17)

To support the above situation supposed in (15), assume the map p : (E, 8)→ (B, 26) defined by

p(ei) = bi(mod 3). (18)

Then we now show that the map p in (18) is not a local (8, 26)-isomorphism. To be precise, while the
map p of (18) is a (2, 26)-continuous surjection supporting the property (15) and b0 is 26-adjacent to b2,
the element (p|N8(e1,1))

−1(b0) = e0 is not 8-adjacent to (p|N8(e1,1))
−1(b2) = e2 in (E, 8).
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Figure 5. Configuration of an (8, 26)-continuous surjection which is not a local (8, 26)-isomorphism
referred to in (18), where E is a portion of an infinite set (or an infinite fence set with 8-adjacency)
in (17).

Owing to Definition 7, Remark 2(1), Theorem 2, and Proposition 2, we obtain the following:

Corollary 4. A local (k0, k1)-isomorphism of Definition 6 is equivalent to a digital (k0, k1)-covering map.

Before proving the assertion, by Remark 3(2), in Definition 7 we may assume ε to be 1 (see
Remark 3(2) of the present paper or Remark 1 of [4]). With this setting, we prove the assertion.

Proof. Since a digital (k0, k1)-covering map implies a local (k0, k1)-isomorphism (see Definition 7(3)
and the surjection of Definition 7), it is sufficient to prove that a local (k0, k1)-isomorphism of Definition
6 implies a digital (k0, k1)-covering map. Based on the property (10), we observe the following:

(1) By Remark 2(1), the given map is a (k0, k1)-continuous map.
(2) By Theorem 2, the given map is a surjection.
(3) As mentioned in Remark 3(2), in Definition 7 we may take ε = 1. Then, the properties from

Proposition 2(1)–(2) with the hypothesis imply the axioms (2)–(3) of Definition 7. Naively,
we obtain that Nk0(ei, 1) ∩ Nk0(ej, 1) = ∅ and further, the restriction of p on Nk0(e, 1), p|Nk0

(e,1) :
Nk0(e, 1)→ Nk1(p(e), 1), is a (k0, k1)-isomorphism.

Owing to these properties, the proof is completed.

Based on Proposition 2 and Corollary 4, we now confirm the following:

Remark 5. Let (E, k0) and (B, k1) be digital images in Zn0 and Zn1 , respectively. Let p : E → B be a local
(k0, k1)-isomorphism. Then, for any b ∈ B, we obtain the following properties (see Remark 1 of [4]):

(1) For some index set M, p−1(Nk1(b, 1)) = ∪i∈M Nk0(ei, 1) with ei ∈ p−1(b);
(2) if i, j ∈ M and i 6= j, then Nk0(ei, 1) ∩ Nk0(ej, 1) is an empty set; and
(3) the restriction of p to Nk0(ei, 1) from Nk(ei, 1) to Nk(b, 1) is a (k0, k1)-isomorphism for all i ∈ M.

Thus, the map p is a (k0, k1)-covering map, (E, p, B) is a (k0, k1)-covering and (E, k0) is a digital
(k0, k1)-covering space over (B, k1) (see Remark 1 of [4]).

Motivated by Example 3(1) and Corollary 4, we obtain the following (see Figure 4a as an example):

Corollary 5. Given a digital image (B, k1) and each point b ∈ B, if B = Nk1(b, 1), then there are many
(k0, k1)-covering maps p : (E, k0)→ (B, k1) which need not be the identity map, where E = Nk0(e, 1) for any
e ∈ E and (E, k0) is (k0, k1)-isomorphic to (B, k1).
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Based on Corollary 4 and Remark 5, let us consider the upl-property and its related works. Given
a digital image (X, k), take a certain point x0 ∈ X. Then, the pair (X, x0) is called a pointed digital
image with the given k-adjacency. We say that a k-path on (X, k), f : [0, m]Z → (X, k) begins at x ∈ X if
f (0) = x [2]. If a (k0, k1)-continuous map f : ((X, x0), k0)→ ((Y, y0), k1) satisfies f (x0) = y0, then we
say that f is a pointed (k0, k1)-continuous map. Since the notion of digital lifting and the upl-property
play important roles in digital covering theory, let us recall them.

Definition 8. [2,3] (1) For digital images (E, k1) in Zn1 , (B, k2) in Zn2 , and (X, k0) in Zn0 , let p : (E, k1)→
(B, k2) be a (k1, k2)-continuous map and f : (X, k0) → (B, k2) be a (k0, k2)-continuous map. We say that
a lifting of f (with respect to p) is a (k0, k1)-continuous map f̃ : (X, k0) → (E, k1) such that p ◦ f̃ = f .
In particular, in the case f : [0, m]Z → (B, k2) be a (2, k2)-continuous map, the lifting of f denoted by
f̃ : [0, m]Z → (X, k1) is called a k2-path lifting (with respect to p).

(2) In (1), the map p has the upl-property if any two k2-paths f , g : [0, m]Z → (B, k2) are equal if
p ◦ f =p ◦ g and f (0) = g(0).

Remark 6. In Definition 8, we can replace the given map p by a certain (k1, k2)-continuous surjection or a
digital (k1, k2)-covering map depending on the situation [2,3].

Since the upl-property plays a crucial role in digital covering theory, let us recall it as follows:

Theorem 3. [3]([Unique path lifting property]) Let ((E, e0), k0) and ((B, b0), k1) be pointed digital images in
Zn0 and Zn1 , respectively. Let p : E→ B be a (k0, k1)-covering map such that p(e0) = b0. Then, any k1-path
f : [0, m]Z → B beginning at b0 has a unique digital lifting to a k0-path f̃ in E beginning at e0.

Using Corollary 4, we can also simplify the upl-property using a local (k0, k1)-isomorphism,
as follows:

Proposition 3. Let p : (E, k0) → (B, k1) be a local (k0, k1)-isomorphism of Definition 6. Then, the map p
supports the upl-property.

Proof. By Corollary 4, since a local (k0, k1)-isomorphism p : (E, k0) → (B, k1) implies a digital
(k0, k1)-covering map, by Theorem 3, the proof is completed.

As mentioned above, the notion of local (k0, k1)-isomorphism indeed plays an important role
in digital curve theory. Based on this notion, the notion of radius ε local (k0, k1)-isomorphism was
developed [2] which is essential to developing the homotopy lifting theorem [3]. Without this theorem,
we can neither calculate the digital fundamental groups of digital images nor study some local
properties such as the (generalized) topological k-number [30]. Thus, based on the digital homotopy
lifting theorem in [2] and Remark 3(2), we obtain the following:

Remark 7. (1) Let p : (E, e0) → (B, b0) be a radius 2 local (k0, k1)-isomorphism such that p(e0) = b0.
Namely, for any element e ∈ E, the restriction p|Nk0

(e,2) : Nk0(e, 2)→ Nk1(p(e), 2) is a (k0, k1)-isomorphism
such that p(e0) = b0. Then, the map p supports the digital homotopy lifting theorem in [2] because a radius 2
local (k0, k1)-isomorphism implies a local (k0, k1)-isomorphism.

(2) When studying all properties related to a digital covering map, after replacing a digital covering map
with a local (k0, k1)-isomorphism of Definition 6, we can effectively study them. It turns out that this local
(k0, k1)-isomorphism facilitates the digital covering theory and related works.

In digital topology, there are several types of digital fundamental groups established by Kong [12],
Malgouyres [20], Boxer [8] and so forth. The group proposed by Kong and Malgoure is different
from that established by Boxer. In particular, when calculating the digital 4-fundamental group of
SCn,4

k , the two approachs appear quite differently. The latter is calculated by using some properties



Mathematics 2020, 8, 1868 16 of 21

derived from digital covering theory such as the trivial extension [8], the upl-property [3] and the
digital homotopy lifting theorem [2]. Eventually, if X is pointed k-contractible, then it turns out that
the k-fundamental group of (X, k) is a trivial group [8]. Regarding the homotopy lifting theorem [2]
and the unique digital lifting theorem [3], we obtain the following properties of SCn,5

k .

Remark 8. (1) SCn,5
k is the minimal model for a simple closed k-curve with an odd cardinality.

(2) SCn,5
k is the minimal model which is not k-contractible.

(3) The map p : (Z, 2)→ SCn,5
k := (xi)i∈[0,4] defined by p(t) = xt(mod 5) is a local (2, k)-isomorphism.

6. Generalized Digital Wedges and Alignments of Fixed Point Sets of SCn1,l1
k1

∨ SCn2,l2
k2

,
Where n1 6= n2 or k1 6= k2

Given two digital images (X, k1) inZn1 and (Y, k2) inZn2 , where k1 := k(t1, n1) and k2 := k(t2, n2),
this section explores a certain k-adjacency for a digital wedge of (X, k1) and (Y, k2). Using this
approach, given two SCn1,l1

k1
and SCn2,l2

k2
, where n1 6= n2 or k1 6= k2, we initially establish the digital

wedge SCn1,l1
k1
∨ SCn2,l2

k2
with a certain k-adjacency of Zn, where n := max{n1, n2} and further, study

some properties of an alignment of of fixed point sets of SCn1,l1
k1
∨ SCn2,l2

k2
, where n1 6= n2 or k1 6= k2,

which remains open. Up to now, in the literature, there are only studies of alignments of fixed points
sets of SCn,l1

k ∨ SCn,l2
k [34]. Thus, the study of an alignment of fixed point sets of the other cases

remains open. Hence this section mainly deals with this study for the generalized digital wedges. As a
generalization of a digital wedge in [3,34] and the compatible k-adjacency of a digital wedge in [30],
using the notion of digital topological imbedding, we now establish the following:

Definition 9. Given two digital images (X, k1) in Zn1 and (Y, k2) in Zn2 , where k1 := k(t1, n1) and k2 :=
k(t2, n2), take n := max{n1, n2} and t := max{t1, t2}. Then, we define a digital wedge of (X, k1) and (Y, k2)

in Zn with a k-adjacency of Zn, where k := k(t, n), denoted by (X ∨ Y, k), as one point union of the certain
digital images (X′, k′1 := k(t1, n)) and (Y′, k′2 := k(t2, n)) in Zn satisfying the following properties.
(W1) There are the following digital topological imbeddings,{

f : (X, k1)→ (X′, k′1) with respect to a (k1, k′1)-isomorphism and

g : (Y, k2)→ (Y′, k′2) with respect to a (k2, k′2)-isomorphism,

such that the set X′ ∪Y′ ⊂ Zn is assumed with the k-adjacency and further,
(W2) X′ ∩Y′ is a singleton, say {p},
(W3) X′ \ {p} and Y′ \ {p} are not k-adjacent, and
(W4) as for the subsets (X′, k), (Y′, k) ⊂ (X′ ∪Y′, k), the following properties hold.{

WX′ : (X′, k)→ (X, k1) is a (k, k1)-isomorphism and

WY′ : (Y′, k)→ (X, k2) is a (k, k2)-isomorphism.

In view of this feature, we may consider (X ∨ Y, k) to be (X′ ∨ Y′, k) which is one point union of X′ and Y′

with k-adjacency.

Given two SCn1,l1
k1

and SCn2,l2
k2

, if n1 = n2 and k1 = k2, then (SCn1,l1
k ∨ SCn2,l2

k , k) always exists in
Zn [34], where k := k1 and n := n1.

Remark 9. Given two SCn1,l1
k1

and SCn2,l2
k2

, if n1 6= n2 and k1 6= k2, not every SCn1,l1
k1
∨ SCn2,l2

k2
always exists

with the k-adjacency of Definition 9.

Regarding Remark 9, we observe the following examples.
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Example 4. (1) Given SC2,6
8 and SC2,8

4 , no (SC2,6
8 ∨ SC2,8

4 , k) exists in Z2 for any k ∈ {4, 8}.
(2) SC3,5

26 ∨ SC3,5
26 exists in Z3 with 26-adjacency (see Figure 6a). In general, SC3,5

26 ∨ SCn,5
k(t,n) exists in Zn

with k(t, n)-adjacency, 3 ≤ t ≤ n.
(3) (SC3,5

26 ∨ SC2,6
8 , 26) exists in Z3 (see Figure 6b).

(4) (SC3,5
26 ∨ SC3,6

18 , 26) is obtained in Z3 (see Figure 6b).
(5) Consider SCn,5

k , k := k(t, n), 3 ≤ t ≤ n, SC2,6
8 , and SC2,8

4 .
While (SCn,5

k ∨ SC2,6
8 , k) exists in Zn, no (SCn,5

k ∨ SC2,8
4 , k) exists in Zn for any k-adjacency of Zn.

0
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x

x

5x

7x

6
x

8x

(a) (b)

0

4

3

1

2

x

x

x
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(-1,-1,-1)

(0,0,0)

(0,0,0)

(0,1,2)

(-1,-1,1)

(0,0,-3)

(0,1,2)

Figure 6. Configuration of digital wedges of two simple closed k-curves, k ∈ {8, 18, 26}, SC3,5
26 :=

(xi)i∈[0,4]Z and SC3,6
18 := (yi)i∈[0,5]Z . (a) SC3,5

26 ∨ SC3,5
26 . Here, n = 3, the underlying 3-dimensional lattice

is shown as a dashed grid. The digital wedge generated by the two simple closed 26-curve consisting
of 5 points appears as black dots labelled x0 through x8 with SC3,5

26 ∩ SC3,5
26 = {x0}. (b) (SC3,5

26 ∨
SC2,6

8 , 26) = (SC3,5
26 ∨ SC3,6

18 , 26). Here, n = 3, the underlying 3-dimensional lattice is shown as a dashed
grid. The digital wedge generated by both the simple closed 26-curve and the simple closed 18- or
8-curve appears as black dots labelled x0 through x4 and y1 through y5 with SC3,5

26 ∩ SC3,6
18 = {x0}.

Recent papers [34,37] studied some alignments of fixed point sets of digital image (X, k) with the
notation, as follows:

F(Conk(X)) := {Fix( f )] | f ∈ Conk(X)}, (19)

where Fix( f ) := {x ∈ X | f (x) = x}, the notation X] means the cardinality of the given set X, and

Conk(X) := { f | f is a k-continuous self-map of (X, k)}.

Besides, the set F(Conk(X)) of (19) means the set of all cardinalities of fixed point sets of every
k-continuous self-maps of (X, k). Then, based on the set in (19), we define the following:

Definition 10. [34] Given (X, k), F(Conk(X)) := (F(Conk(X)), 2) as a digital image is said to be an
alignment of fixed point sets of k-continuous self-maps of (X, k).

Definition 11. [34] Given (X, k), if F(Conk(X)) = [0, X]]Z, then (F(Conk(X)), 2) (or F(Conk(X)) for
brevity) is said to be perfect.

Lemma 2. [34] Given SCn,l
k (see the property (2)), depending on the number l which is odd or even, we obtain

the following:

(1) F(Conk(SCn,l
k )) = [0, l+1

2 ]Z ∪ {l} if l ∈ N1 \ {1, 3} [34].

(2) F(Conk(SCn,l
k )) = [0, l

2 + 1]Z ∪ {l} if l ∈ N0 \ {2} [37].
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Theorem 4. (1) F(Con26(SC2,l
8 ∨ SC3,5

26 )) = [0, l+9
2 ]Z ∪ [l, l + 2]Z ∪ {l + 4} if l(≥ 5) ∈ N1.

(2) F(Con26(SC2,l
8 ∨ SC3,5

26 )) = [0, l
2 + 5]Z ∪ [l, l + 2]Z ∪ {l + 4} if l(≥ 4) ∈ N0.

Proof. Given SC2,l
8 and SC3,5

26 , according to Definition 9, the generalized digital wedge SC2,l
8 ∨ SC3,5

26
is obtain in Z3 with 26-adjacency. Among many kinds of 26-continuous self-maps f of SC2,l

8 ∨ SC3,5
26 ,

regarding F(Con26(SC2,l
8 ∨ SC3,5

26 )), it is sufficient to consider only the maps f such that

(a) f |SC3,5
26
(x) = x; or

(b) f |SC2,l
8
(x) = x; or

(c) f (SC2,l
8 ) ( SC2,l

8 and f (SC3,5
26 ) ( SC3,5

26 ; or
(d) f does not have any fixed point of it, where f |X means the restriction function f to the given set X.

Firstly, from (a), since SC2,l
8 ∨ SC3,5

26 has the cardinality l + 4, by Lemma 2(1)), we have

[5,
l + 1

2
+ 4]Z ∪ {l + 4} ⊂ F(Con26(SC2,l

8 ∨ SC3,5
26 )). (20)

Secondly, from (b), by Lemma 2(1), we obtain

[l, l + 2]Z ∪ {l + 4} ⊂ F(Con26(SC2,l
8 ∨ SC3,5

26 )). (21)

Thirdly, from (c)–(d), we have

[0,
l + 1

2
+ 2]Z ⊂ F(Con26(SC2,l

8 ∨ SC3,5
26 )). (22)

After comparing the three numbers in (20)-(22), we conclude that F(Con26(SC2,l
8 ∨ SC3,5

26 )) =

[0, l+9
2 ]Z ∪ [l, l + 2]Z ∪ l + 4 if l(≥ 5) ∈ N1.

(2) Based on Lemma 2(2), using methods similar to (20)–(22), we complete the proof.

Example 5. F(Con26(SC2,7
8 ∨ SC3,5

26 )) = [0, 9]Z ∪ {11}.
(2) F(Con26(SC2,8

8 ∨ SC3,5
26 )) = [0, 10]Z ∪ {12}.

Theorem 5. F(Conk(

m-times︷ ︸︸ ︷
SCn,5

k ∨ · · · ∨ SCn,5
k )) = [0, 4m − 1]Z ∪ {4m + 1}, where m ∈ N and

k := k(t, n), 3 ≤ t ≤ n.

Proof. By using the approach similar to (a)–(d) of the proof of Theorem 4, we initially obtain

F(Conk(

m-times︷ ︸︸ ︷
SCn,5

k ∨ · · · ∨ SCn,5
k )) = [0,

5(2m− 1)− (2m− 3)
2

]Z ∪ {4m + 1},

where m ∈ N. Since 5(2m−1)−(2m−3)
2 = 4m− 1, we complete the proof.

Corollary 6. (1) F(Conk(

m-times︷ ︸︸ ︷
SCn,5

k ∨ · · · ∨ SCn,5
k ∨(P, k))) is perfect, where P is a simple k-path with length 1.

(2) F(Conk(

m-times︷ ︸︸ ︷
SCn,5

k ∨ · · · ∨ SCn,5
k ∨SCn,4

k )) is perfect.
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Proof. (1) First of all, we find that the difference between 4m− 1 and 4m + 1 is equal to 2. Secondly,

join a simple k-path (P, k) with length 1 onto the set

m-times︷ ︸︸ ︷
SCn,5

k ∨ · · · ∨ SCn,5
k to establish the digital wedge

m-times︷ ︸︸ ︷
SCn,5

k ∨ · · · ∨ SCn,5
k ∨(P, k). Thirdly, using the approaches similar to (a)–(d) of the proof of Theorem 4,

we complete the proof.
(2) First of all, we find that F(Conk(SC2,4

k )) = [0, 4]Z and the difference between 4m − 1 and

4m + 1 is equal to 2. After joining SC2,4
k onto the set

m-times︷ ︸︸ ︷
SCn,5

k ∨ · · · ∨ SCn,5
k to establish the digital wedge

m-times︷ ︸︸ ︷
SCn,5

k ∨ · · · ∨ SCn,5
k ∨SC2,4

k and further, using the approaches similar to (a)–(d) of the proof of Theorem
4, we complete the proof.

The paper [38] proposed the fixed point property of the infinite M-sphere (see Theorem 2 of [38]).
More precisely, let ((Z2)∗, γ∗) [39] be the Alexandroff one point compactification of the Marcus-Wyse
topological plane (Z2, γ) and Con((Z2)∗, γ∗) be the set of all self-continuous maps of ((Z2)∗, γ∗).
Then, we obtain the following:

Theorem 6. [38] ((Z2)∗, γ∗) does not have the fixed point property in Con((Z2)∗, γ∗).

This theorem is correct. However, the paper [38] has a misprinted part related to the map g in (9)
and Figure 1 of [38]. Thus, we would improve them related to the proof of Theorem 2 of [38], as follows:

Proof. Although there are many examples replacing the map (9) and Figure 1 in [38], we will take the
following [39]. Let p := (1, 0), x1 := (1,−1), x2 := (2, 0), x3 := (1, 1), x4 := (0, 0), x5 := (0, 1) (for more
details, see the map g below and Figure 3 in [39]).

With ((Z2)∗, γ∗), consider the self-map g of (Z2)∗ defined by [39]{
g((Z2)∗ \ CM(p)) = {p}, where CM(p) := {p, x1, x2, x3, x4},
g(p) = x5, g(x3) = x4, g(x4) = x3, g(x1) = x4, g(x2) = x3.

(23)

Then, we obtain

g((Z2)∗) = {p := (1, 0), x3 := (1, 1), x4 := (0, 0), x5 := (0, 1)} ⊂ Z2.

While the map g is continuous, (Z2)∗ does not have any point such that g(x) = x, where x ∈ (Z2)∗.

7. Conclusions

It turns out that the simplified version of a local (k0, k1)-isomorphism gives us very strong
advantages of making the earlier version of axioms for a digital covering space most simplified.
Besides, this approach is a key step in addressing the hot issue which was an unsolved problem during
the last 20 years. Finally, it appears that the most refined local (k0, k1)-isomorphism of Definition 6
implies the earlier version of axioms for a digital covering space. Thanks to the most refined version of
the local (k0, k1)-isomorphism, we can replace axioms for a digital covering space in all literature with
the local (k0, k1)-isomorphism of Definition 6 as just one axiom with some properties, which facilitates
the study of digital covering theory. Furthermore, owing to the new notion of digital topological
imbedding, we proposed a suitable k-adjacency for the digital wedge SCn1,l1

k1
∨ SCn2,l2

k2
, where n1 6= n2

or k1 6= k2. This work also plays an important role in digital topology and digital geometry. Since a
digita image can be considered to be a digital metric space, using the work [40], we can further expand
the obtained works.
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