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Abstract: This article deals with a locally given Riemannian analytic manifold. One of the main
tasks is to define its regular analytic extension in order to generalize the notion of completeness.
Such extension is studied for metrics whose Lie algebra of all Killing vector fields has no center.
The generalization of completeness for an arbitrary metric is given, too. Another task is to analyze
the possibility of extending local isometry to isometry of some manifold. It can be done for metrics
whose Lie algebra of all Killing vector fields has no center. For such metrics there exists a manifold on
which any Killing vector field generates one parameter group of isometries. We prove the following
almost necessary condition under which Lie algebra of all Killing vector fields generates a group of
isometries on some manifold. Let g be Lie algebra of all Killing vector fields on Riemannian analytic
manifold, h ⊂ g is its stationary subalgebra, z ⊂ g is its center and [g, g] is commutant. G is Lie group
generated by g and is subgroup generated by h ⊂ g. If h∩ (z+ [g; g]) = h∩ [g; g], then H is closed in G.

Keywords: Riemannian analytic manifold; analytic extension; Lie algebra and Lie group; Killing
vector field

1. Introduction

For a long time, the “curvilinearity” of our space was scientifically substantiated. The geometry
of our space does not obey the laws of Euclidean geometry, but is determined by the general concept
of the Riemannian metric. So, we can determine the local properties of the surrounding space, but the
global structure of the universe as a whole is very difficult to be imagined. The prevailing opinion
expressed by A. Poincare is that, by analogy with the surface of the earth, the universe is a closed simply
connected space. Poincare put forward a hypothesis according to which a closed, simply connected
three-dimensional space is topologically equivalent to a three-dimensional sphere, which leads to
some analogy between the structure of the universe and the structure of the earth’s surface. Recently,
the purely mathematical hypothesis of Poincare was finally proved by G. Perelman.

It is possible to try an analytical approach to the study of global properties of Riemann space.
This approach is related to the fact that the Riemann tensor is given by analytic functions that
have the property of unique analytic extension. Consider a Riemannian analytic manifold and a
ball U ⊂ M of small radius centered at some point x0 ∈ M. By an analytic extension of a locally
defined metric, we mean any Riemannian analytic manifold N of the same dimension and an analytic
isometry ϕ : U→ N . Let us try to find the most natural analytical extension of this metric. As a
natural requirement to analytic extension, the result of extension must be nonextendable. The notion
of nonextendable Riemannian analiytic manifold was introduced in the classical monographs of
Helgason [1] and S. Kobayashi, Sh. Nomizu [2]. However, nonextendable manifolds can be very
unnatural. For example, a simply connected covering of the right half-plane without the points

(
1
n ; k

n

)
,

k, n ∈ N. Analytic extension of Riemannian analytic manifolds without Killing vector fields and
some spaces of affine connection was studied in the thesis of G.H. Smith [3]. Analytic extension of
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Riemannian analytic manifolds with Killing vector fields and closeness of Lie subgroups is studied in
this article.

Generally, the essential requirement for researching in global geometry of Riemannian spaces is
the completeness of the manifold under consideration. For a complete simply connected Riemannian
analytic manifold M, any isometry ϕ : U→ V between two connected open subsets U ⊂ M, V ⊂ M
analytically extends to the isometry ϕ : M→M [1].

However, usually the ball U of a Riemannian analytic manifold cannot be isometrically embedded
in a complete Riemannian analytic manifold, i.e., generally speaking, a locally defined Riemannian
metric does not analytically extend to the metric of a complete Riemannian manifold. We have a
problem of a generalization of the notion of completeness. A natural generalization of this kind is
the nonextendability of a Riemannian analytic manifold. However, nonextendable manifolds can be
quite unnatural.

We ask ourselves whether it is possible to construct a Riemannian analytic manifold M containing
U as an open subset and admitting analytic extension of local isometries to isometries of the whole
manifold using the given local properties of the Riemannian analytic metric, i.e., the metric defined on
a small ball U. That is, any isometry ϕ : U→ V between two connected open subsets U ⊂M, V ⊂M
analytically extends to the isometry ϕ : M→M . The following fact is an insurmountable obstacle to
such extension. Let g be the Lie algebra of all Killing vector fields on a Riemannian analytic manifold
M and h ⊂ g its stationary subalgebra for a fixed point p ∈M, X ∈ h⇔ X(p) = 0 . Let G be the simply
connected subgroup generated by the algebra g, and H be its subgroup generated by the subalgebra h.
Let G act on a simply connected manifold M; then the orbit of a fixed point p ∈ M is a submanifold
isometric to the group G/H, but the factor group G/H is a manifold if and only if the subgroup H is
closed in G, and this is not always true.

The aim of this paper is to define a pseudocomplete manifold, which is the “most complete”
analytic extension of an arbitrary locally given Riemannian analytic metric. An analytic extension
of a locally given Riemannian metric is studied. We consider cases of a completely inhomogeneous
metric and metric for which the Lie algebra of all vector Killing fields does not have a center. In these
cases, we define a quasicomplete manifold M with the property of uniqueness and extendability of
all local isometries f : U→ V , where U, V are connected open subsets of the manifold M, up to the
isometry f : M→M . An oriented Riemannian analytic manifold whose vector field algebra has a zero
center is called quasicomplete if it is nonextendable and does not admit nontrivial local isometries into
themselves, preserving orientation and all Killing vector fields.

We give a definition of a pseudocomplete manifold that leads to the “most complete” extension
of a locally given metric and applies to an arbitrary locally given metric. A Riemannian analytic
simply connected oriented manifold M is called pseudocomplete if it has the following properties:
M is nonextendable. There is no locally isometric orientation preserving covering map f : M→ N ,
where N is a simply connected Riemannian analytic manifold, and f (M) is an open subset of N not
equal to N. Among the pseudocomplete manifolds, we distinguish the “most symmetric” regular
pseudocomplete manifolds. Next, we study pseudocomplete manifolds of small dimensions and give
their classification.

The second goal is to study locally homogeneous manifolds, not only Riemannian, but also
pseudo-Riemannian. Below we give the conditions under which H is closed in G. The structure of
nonclosed subgroups is well known. However, the corresponding studies use the structure of groups
G and H and do not take into account the local properties of the Riemannian metric. A description of
the properties of an open subgroup H ⊂ G is contained in the classical work of A. I. Maltsev [4]. If the
Lie subgroup H of a simply connected Lie group G is not closed in G, then the group G contains a torus
T such that the intersection H ∩ T is an everywhere dense winding of this torus. However, this fact
is difficult to establish on the basis of the local properties of a given Riemannian analytic metric, i.e.,
on the basis of the properties of the Lie algebra g and its stationary subalgebra h. Is it possible to
find the properties of the Lie algebra of all Killing vector fields for which the subgroup H defined
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by the stationary subalgebra h is closed in the simply connected group G generated by the algebra
g. We should mention the result of Mostow, according to which H is closed in G if h is semisimple.
In addition, Mostow proved that H is closed in G if dimg− dimh < 5, [5].

Let us try to find the necessary and sufficient properties of the Lie algebra g of all Killing vector
fields on the Riemannian analytic manifold M and its stationary subalgebra h, under which H is closed
in G. Purely algebraic means are not enough here. To study the closeness problem for a stationary
subgroup H in a simply connected group G, we use the study of the analytic extension of a locally
given Riemannian analytic metric. Manifolds that are analytic extensions of an arbitrary locally given
Riemannian analytic metric have the same Lie algebra of all Killing vector fields. Therefore, the question
of whether the group H is closed in G is equivalent to the question of the analytic extendability of a
locally given Riemannian analytic metric on a locally homogeneous space to the metric of a complete
manifold. The concept of an analytic extension of a Riemannian analytic metric was given in the
classical monographs of Helgason [1] and S. Kobayashi, Sh. Nomizu [2], but it was not developed.
It was developed in [3].

The case when g has a zero center was studied in the papers [6–8] not only for Riemannian
manifolds, but also for pseudo-Riemannian spaces and spaces with affine connection. It is proved that
in this case the subgroup H defined by the stationary subalgebra h is closed in the simply connected
group G generated by the algebra g. In addition to the algebraic approach, an analytical approach is
being developed to study the analytic extension of Riemannian analytic manifolds. One of the main
topic of this paper is the study of locally homogeneous manifolds whose Lie algebra g of all Killing
vector fields has a nontrivial center z. The properties of the algebra g, its stationary subalgebra h and
the center z, which ensures the closedness of the subgroup H defined by the stationary subalgebra h,
in the simply connected group G generated by the algebra g are given. Let z be the center of the algebra
g, r its radical, and [g; g] its commutant. If h∩ (z+ [g; g]) = h∩ [g; g], then H is closed in G. If for any
semisimple subalgebra p ⊂ g such that p+ r = g holds an equality (p+ z)∩ h = p∩ h, then H is closed
in G.

It is of fundamental importance to study the case of a completely inhomogeneous Riemannian
metric, i.e., a metric that does not admit any one parameter local group of local isometries (Killing vector
fields). In this case, it is possible to define a so-called quasicomplete manifold that has the property
of unextendability and uniqueness for each locally given completely inhomogeneous metric, [9].
The definition of a quasicomplete manifold can be generalized to the case when the Lie algebra of
all Killing vector fields for a given locally defined Riemannian analytic metric has no center, [8].
Such manifold M has the property of the maximum possible symmetry, i.e., any isometry f : U→ V
V between connected open subsets of the variety M can be analytically extended to an isometry
f : M→M . However, a quasicomplete manifold has not only the disadvantage that it is not defined

for an arbitrary locally given metric, but in a certain sense it is not “the most complete.” We present the
concept of a pseudocomplete manifold for an arbitrary locally given Riemannian metric, investigate its
properties and connection with a quasicomplete manifold, and also describe pseudocomplete manifolds
in the case of small dimensions.

2. Analytic Extension of Riemannian Manifolds and Generalization of the Notion of
Completeness

The class of all locally isometric Riemannian analytic manifolds will also be called the class of
manifolds originating from a given germ of a Riemannian analytic manifold, and a specific manifold
from this class will be called the analytic extension of this germ. A natural requirement for the analytic
extension of a germ is the nonextendability of the resulting manifold. Let us move on to precise
definitions and formulations.
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Definition 1. An analytic extension of a Riemannian analytic manifold M is a Riemannian analytic manifold
N such that there exists an analytic embedding of M into N as a proper open subset. A manifold that does not
admit analytic extension is called nonextendable.

Definition 2. A local isometry between two Riemannian analytic manifolds M and N is the isometry ϕ : U→ V
between open subsets U ⊂ M, V ⊂ N. The manifolds between which there is a local isometry will be called
locally isometric.

Any vector field X ∈ g can be analytically extended along any curve on the manifold M and, thus,
the Lie algebra g defines the Lie algebra g of Killing vector fields on any simply connected manifold N
locally isometric to M. This fact is also true for manifolds with affine connection.

Lemma 1. Let M be an analytic manifold with affine connection, X an infinitesimal affine transformation defined
in a domain U ⊂M and let γ(t), 0 ≤ t ≤ 1, be a continuous curve in M such that γ (0)∈U. Then the vector field
X is analytically extendable along γ. If the curves γ(t) and δ(t), 0 ≤ t ≤ 1 , γ(0) = δ(0), γ(1) = δ(1) = x1,
are homotopic, then the extension of the vector field X to the point x1 along these curves coincide.

Proof. Suppose that X is analytically extendable to a neighborhood of any point γ(t) for 0 ≤ t < t1 < 1.
Let us prove that it also extends to a neighborhood of the point q = γ(t1). Let V be a normal
neighborhood of a point q, which is a normal neighborhood of each of its points [1]. Consider t ≤ t1

such that p = γ(t) ∈ V.
The vector field X generates a local one-parameter isometry group ϕs in a neighborhood of

each point γ(t), t < t1. Let us prove that for all sufficiently small values of s, the local isometries ϕs

analytically extend to a neighborhood of the point = γ(t1). Then the tangent vector field of this local
group of isometries will be the analytic extension of the vector field X to a neighborhood of the point q.

Let us consider a connected open set V0 containing points p and q, whose closure also belongs to
V, V0 ⊂ V, p, q ∈ V0. Let us consider a small neighborhood V′ ⊂ V0 of the point q and connect the point
p with a segment of the geodesic α(t), 0 ≤ t ≤ 1, with an arbitrary point q′ ∈ V′. Let Y = dα

dt (0) ∈ TpM
and ps = ϕs(p), Ys = ϕs(Y). From the point β(t), 0 ≤ t ≤ 1, we draw a geodesic β(t), 0 ≤ t ≤ 1 such that
dβ
dt (0) = Ys. For sufficiently small values of β(t) ∈ V0, 0 ≤ t ≤ 1. We put ϕs(q′) = β(1). The mapping
thus obtained is the analytic extension of the isometry ϕs.

Let us study the case of a completely inhomogeneous Riemannian metric, i.e., a manifold with such
metric that has not any Killing fields. In this case, it is possible to define a quasicomplete variety that
has the property of nonextendability and uniqueness for each locally given completely inhomogeneous
metric [8].

Definition 3. An analytic Riemannian manifold is called a completely inhomogeneous manifold if there are no
Killing vector fields on it. The Riemannian metric of a completely inhomogeneous manifold is called a completely
inhomogeneous metric.

By Lemma 1, all manifolds that are locally isometric to a completely inhomogeneous manifold are
completely inhomogeneous.

Definition 4. A completely inhomogeneous oriented Riemannian analytic manifold is said to be quasicomplete
if it is nonextendable and does not admit nontrivial orientation-preserving local isometries into itself.

Let us present the main properties of completely inhomogeneous quasicomplete manifolds, [9].
For an arbitrary completely inhomogeneous manifold M, consider the set S ⊂M of all fixed points of
all possible orientation-preserving local isometries of the manifold M into itself.
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Theorem 1. For an arbitrary completely inhomogeneous Riemannian analytic manifold M′, the set S ⊂M′ is
an analytic subset of codimension at least 2. Consequently, M′\S is a connected manifold.

Theorem 2. For any completely inhomogeneous Riemannian analytic manifold M′ there exists a quasicomplete
manifold M locally isometric to it and a locally isometric covering map f : M′\S→M. Thus, a quasicomplete
manifold is unique for every completely inhomogeneous locally given Riemannian analytic metric.

The proof of Theorems 1 and 2 can be found in [9].
The definition of a quasicomplete manifold can be generalized to the case when the Lie algebra

of all Killing vector fields for a given locally defined Riemannian analytic metric has no center, [8].
Such are also locally homogeneous manifolds, in particular all locally symmetric spaces.

Definition 5. An analytic Riemannian manifold M is called to be locally homogeneous if at any point p ∈M
the Killing vector fields form a basis of the tangent space TpM.

An equivalent definition of a locally homogeneous manifold M is that for any points p, q ∈ M
there exists a local isometry ϕ of the manifold M such that ϕ(p) = q.

Definition 6. An oriented Riemannian analytic manifold whose algebra Lie of all Killing vector fields has no
center is called quasicomplete if it is nonextendable and does not admit nontrivial preserving the orientation and
all Killing vector fields of local isometries into itself.

Let us investigate oriented Riemannian analytic manifolds whose Lie algebra of all Killing vector
fields has no center in order to prove that each such manifold is locally isometric to a quasicomplete
manifold, and a locally homogeneous quasicomplete manifold is a complete homogeneous manifold.

We denote by Z(M), the pseudogroup of all local isometries of a Riemannian analytic manifold M
preserving all Killing vector fields and orientation, ϕ ∈ Z(M)⇔ ∀X ∈ g ϕ(X) = X .

Lemma 2. Let M be an analytic Riemannian manifold satisfying the property of unique analiytic extension
of Killing vector fields and whose Lie algebra of all Killing vector fields has no center. Then the set S ⊂ M,
consisting of fixed points of all possible isometries ϕ ∈ Z(M), is an analytic subset of codimension at least 2.

Proof. Let us prove that for any open set U ⊂ M with compact closure there are only finitely many
local isometries from U to U belonging to the pseudogroup Z(M). Assume the opposite and consider
an infinite sequence of local isometries ϕi from U to U, ϕi ∈ Z(M). In the proof of Lemma 3 in [8],
was constructed a Killing vector field X on some open set V ⊂ U which satisfies the following condition.
For some subsequence of local isometries ϕi ∀t, |t| ≤ 1, ∀i ∈ N, ∃k(i) ∈ N such that lim

i→∞
ϕ

k(i)
i = ExptX,

where ExptX is the local one-parameter isometry group generated by the vector field X. Therefore,

for any Killing vector field Y on V ∃i ∈ N
∣∣∣(ExptX)

∗
Y −Y

∣∣∣ ≤ ∣∣∣∣ϕk(i)
i∗ Y −Y

∣∣∣∣ + ∣∣∣∣(ExptX)
∗
Y −ϕk(i)

i∗ Y
∣∣∣∣ ≤

0 +
∣∣∣∣Y − (Exp(−tX))ϕ

k(i)
i∗ Y

∣∣∣∣ ≤ 1
2

∣∣∣(ExptX)
∗
Y −Y

∣∣∣. Therefore ∀Y ∈ g (ExptX)
∗
Y = Y, i.e. [X, Y] = 0.

It contradicts to the absence of center in g.

This contradiction proves the existence of only finite number of local isometries from U to U
belonging to the pseudogroup Z(M). As it was shown in [8], it easily follows from it that the set S is an
analytic subset of codimension not less than 2.

By Lemma 2, the manifold M\S is connected.

Lemma 3. Let M be an analytic Riemannian manifold satisfying the property of unique extension of Killing
vector fields and whose Lie algebra of all Killing vector fields has no center. Then there is a locally isometric
covering map from M\S to an analytic Riemannian manifold M1, which also satisfies the property of unique
extension of Killing vector fields, and whose pseudogroup Z(M1) consists only of the identity transformation.
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Proof. Let us factorize the variety M\S by the pseudogroup Z(M). It follows from the proof of Lemma 2
that for every point x ∈ M\S there is a neighborhood U1x ⊂ M\S of the point x that does not admit
nonidentical orientation-preserving local isometries from U1x to U1x belonging to the pseudogroup
Z(M). This proves that the quotient map π projecting the manifold M\S into the set M1 = M\S/Z(M)

is a covering map. Hence, for each point x ∈ M, there is a neighborhood Ux ⊂ M1 of it and an open
set Vx ⊂ π−1(Ux), such that the mapping π establishes a homeomorphism between the sets Vx and
Ux. Let us define a Riemannian scalar product. If necessary, going to subset of the set Vx ⊂ M\S,
we will assume that Vx is a coordinate neighborhood of the point y ∈ π−1(Ux) ⊂ M\S. Then we
declare the set Ux ⊂ M1 as a coordinate neighborhood of the point x ∈ M1. Consider two such
neighborhoods U1, U2 ⊂M1, U1 ∩U2 , ∅. Let the sets V1, V2 ⊂M\S corresponds to the sets U1, U2.
Put π−1(U1 ∩U2) ∩ V1 = V10, π−1(U1 ∩U2) ∩ V2 = V20. Then there is an isometry α : V10 ≈ V20.
Let ψ1 and ψ2 be coordinate mappings on V1 and V2, respectively. Then ψ1π−1 and ψ2π−1 will be
coordinate maps to U1 and U2.

Let us consider an arbitrary point x ∈M1 and arbitrary vectors X, Y ∈ TxM1. Let us also consider
some point y ∈ π−1(x) ⊂ M\S and vectors X1, Y1 ∈ TyM such that π∗X1 = X, π∗Y1 = Y. Let us
define the Riemannian scalar product 〈X, Y〉 equal to the Riemannian scalar product 〈X1, Y1〉 on
TxM. If we take another point z ∈ π−1(x) and vectors X2, Y2 ∈ TzM such that π∗X2 = X, π∗Y2 = Y,
then there exists a local isometry ϕ ∈ Z(M) such that that ϕ(z) = y, ϕ∗X2 = X1, ϕ∗Y2 = Y1. Therefore,
〈X1, Y1〉 = 〈X2, Y2〉. This proves the correctness of the definition of the Riemannian metric on M1.

The constructed Riemannian manifold M1 does not admit nonidentical orientation-preserving
local isometries that induce the identity transformation on the algebra of Killing vector fields g.
The projection π : M\S→M1 is a locally isometric covering map. It remains to prove the property
of unique extension of Killing vector fields to M1. Consider a Killing vector field X defined on some
open set U ⊂ M1 and open sets U0 ⊂ U and V0 ⊂ M\S such that the covering map π establishes an
isometry between the sets V0 and U0. Then the vector field π−1

∗ X extends uniquely from the set V0 ⊂M
to the whole manifold M and defines a vector field Y on M. Let points y, z ∈ M\S be such that π (x)
= π (y) and π∗Y(z) = π∗ϕ∗Y(y). Since π·ϕ = π by the definition of π, then π∗·ϕ∗ = π∗. Therefore,
π∗Y(z) = π∗ϕ∗Y(y) = π∗Y(y). This proves that the mapping π uniquely projects the vector field Y,
given on M, onto the vector field π∗Y, given on the manifold M1. The resulting vector field π∗Y will be
the analytic extension of the vector field X to the entire manifold M1.

Theorem 3. An arbitrary Riemannian analytic manifold M whose Lie algebra of Killing vector fields has no
center is locally isometric to a quasicomplete manifold.

Proof. Let us consider an arbitrary Riemannian analytic manifold M′, the Lie algebra of Killing vector
fields of which has no center and construct for it the manifold M′1 similarly to the construction of the
manifold M1 in the proof of Lemma 3. M′1 does not admit local isometries in itself that preserve the
orientation and vector Killing fields. Then a quasicomplete manifold M will be some maximal analytic
extension of the manifold M′1. We will assume that all the manifolds that we will consider in the proof
of the theorem have the property of unique analytic extension of Killing vector fields, that is, the Lie
algebra of all Killing vector fields is the same for all manifolds and is equal to g. If M′ satisfies this
property, then the manifold M′1 also satisfies it.

Let us consider the set Λ consisting of analytic extensions Mα of the manifold M1 that satisfy the
property of unique extension of Killing vector fields and do not admit local isometries that are identical
on the algebra of all Killing vector fields. We mark a point on a manifold M1 and a basis of tangent
space at this marked point, and also mark the images of this point and this basis in the manifolds
Mα ∈ Λ. Let us introduce the following order relation on this set. Mα ≤ Mβ if there is an isometric
embedding iαβ : Mα →Mβ which transfers the marked point to the marked and marked basis of
the tangent space to the marked one. As a result, Λ becomes a partially ordered set. Consider an
arbitrary linearly ordered subset ∆ of the set Λ. Let us construct the direct limit of the family of
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manifolds Mα ∈ ∆ and mappings iαβ. We obtain a manifold M0 with the following properties. For any
manifold Mα ∈ ∆ there is an isometric embedding iα : Mα →M0 and iα(Mα) ⊂ iβ

(
Mβ

)
, if Mα ≤ Mβ.

M0 = ∪Mα∈∆(Mα). Let us prove that M0 ∈ Λ. An arbitrary vector field X on the manifold M1 with the
help of the imbeddings i1α : M1 →Mα and iα : Mα →M0 is transferred to the manifold iα(Mα) ⊂M0,
moreover, (iα·i1α)∗X =

(
iβ·i1β

)
∗
X to iα(Mα) ∩ iβ

(
Mβ

)
and the Killing vector field (iα·i1α)∗X uniquely

extends from the submanifold iα(Mα) ⊂M0 to any submanifold iβ
(
Mβ

)
⊂M0, Mβ ≥Mα and therefore,

to the whole manifold M0. Thus, a Killing vector field defined on an arbitrarily small open set U ⊂M0

can be uniquely extended to a Killing vector field on M0.
Let us consider now a local isometry ϕ ∈ Z(M0). Let the point x0 ∈ M0 belong to the domain

of the isometry ϕ. Then the points x0 and ϕ(x0) lie in some submanifold iα(Mα) ⊂ M0. Therefore,
ϕ ∈ Z(iα(Mα)) and therefore ϕ is the identity transformation. Hence, the pseudogroup Z(M0) consists
only of the identity transformation. For an arbitrary linearly ordered subset ∆ ⊂ Λ we have constructed
the supremum. By Zorn’s lemma, the set Λ has a maximal element. We assert that the manifold M,
which is a maximal element, is the required quasicomplete manifold. It is required to prove that M is
not extendable.

Suppose the opposite and denote by N a nontrivial extension of the manifold M. Let S ⊂ N as
above denote the set of fixed points of all possible local isometries from the pseudogroup Z(N). Let us
factorize the manifold the manifold N\S in exactly the same way as in the proof of Lemma 3, the way
manifold M\S was factorized. As a result, we obtain a manifold L that satisfies the property of unique
extension of Killing vector fields and does not admit local isometries that preserve the orientation
and all Killing vector fields. Let i denote the embedding i : M→ N . Let us prove that i(M)∩ S = ∅.
If x ∈ i(M) then some normal ball B centered at x belongs to i(M). If, in addition x ∈ S then there
is a local isometry ϕ ∈ Z(M) satisfying the condition ϕ(x) = x. This isometry defines the isometry
of the ball B into itself, given in normal coordinates by a linear map—the differential of isometry ϕ,
but the existence of such an isometry contradicts the triviality of the pseudogroup Z(M). Thus, i gives
an embedding i : M→ N\S . The chain mapping π→ i : M→ L where π : N\S→ L is the covering
mapping constructed in the proof of Lemma 3 and is also an embedding. Since, if π·i(x) = π·i(y) then
there is a local isometry ϕ ∈ Z(M) such that ϕ(x) = ϕ(y), hence x = y. Since M is a maximal element
of the set Λ, π·i is an isometry, and N\S covers M.

We have a covering map π : N\S→M and an embedding i : M→ N\S where i(M) is open
subset in N\S. Let there be a sequence of points xn ∈ i(M) converging to x ∈ N\S. Then the sequence
yn = π(xn) also converges to some point y ∈ M. Since xn = i(yn) then x = i(y) ∈ i(M). This proves
that i(M) is closed in N\S. So N\S is disconnected or N\S = M, but the disconnectedness of N\S
contradicts Lemma 2. Therefore N\S = M. Let us prove that S = ∅. Suppose the opposite and consider
a normal ball B centered at some point x ∈ S ⊂ N. There is nontrivial isometry of the ball B into itself.
This isometry does not leave fixed points from B\S and, therefore, is a nonidentical local isometry from
the pseudogroup Z(N\S), but since N\S = M this contradicts the triviality of the pseudogroup Z(M).
This proves that S = ∅, N = M and M is nonextendable.

Theorem 4. Let ϕ be a local isometry from a quasicomplete manifold M to a quasicomplete manifold N. Then ϕ
extends to an isometry ϕ : M ≈ N.

Proof. Let us consider an arbitrary point x ∈M and a smooth curve γ(t), 0 ≤ t ≤ 1, γ(0) ∈ D(ϕ) ⊂M,
γ(1) = x. Let us prove that the isometry ϕ defined in the neighborhood U = D(ϕ) ⊂M of the point
x0 = γ(0) can be extended along the curve γ. Suppose there is no such extension. Let number t1 ∈ [0; 1]
be the minimum among the numbers t such that the isometry ϕ does not extend to a neighborhood
of the point γ(t) along the curve γ. Let us prove, nevertheless, that, contrary to the assumption,
there exists an extension of ϕ to some neighborhood of the point γ(t1) along the curve γ.

By the assumption made about t1 ∀t ∈ [0; t1) the isometry ϕ is defined in some neighborhood
of the point γ(t). So the curve δ(t) = ϕ(γ(t)), 0 ≤ t ≤ t1, is defined on N. Let x1 = γ(t1) and
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ε > 0 be such that the neighborhood Uε =
{
x ∈M, ρ(x; x1) < ε

}
is a normal neighborhood of

each of its points. Since ∀y ∈ N ∀ε0 > 0 ∃α such that ∀t′, t′′ ∈ [0; t1) under the condition
|t1 − t′| < α, |t1 − t′′ | < α the following inequalities hold:

∣∣∣ρ(y; δ(t′)) − ρ(y; δ(t′′ ))
∣∣∣ ≤ ρ(δ(t′); δ(t′′ )) ≤∫ t′′

t′
√〈
δ′(t); δ′(t)

〉
dt =

∫ t′′

t′
√〈
γ′(t);γ′(t)

〉
dt < ε0. Hence ∀y ∈ N there exists lim

t→t1
ρ(y; δ(t)) = ρ1(y).

Let us consider the set Vε =
{
y ∈ N

∣∣∣ ρ1(y) < ε
}
. There is an isometry ψ = ϕ−1 of some neighborhood

VD ⊂ Vε of the set D =
{
y ∈ N

∣∣∣ y = δ(t), t2 ≤ t < t1
}

to the neighborhood UD ⊂ Uε of the set
B =

{
x ∈M

∣∣∣ x = γ(t), t2 ≤ t < t1
}
. Let us prove that ψ can be extended to isometry ψ : Vε ≈ Uε.

Let us prove first thatψ can be extended along any curve ν(s), 0 ≤ s ≤ 1 on Vε, ν(0) ∈ VD, ν(1) = y is an
arbitrary point on Vε. If we assume that this is not the case, then there is a minimum number s1 among
the numbers u ∈ [0; 1] with the property: ψ does not extend along the curve ν(s) to some neighborhood
of the point ν(u). Let σ > 0 and s2 < s1 be such that the set Bσ =

{
y ∈ N

∣∣∣ ρ(y; ν(s2)) < σ
}

is a normal
neighborhood of the point ν(s2) and ρ(ν(s2); ν(s1)) <

σ
2 . Therefore, ν(s1) ∈ Bσ. Using the linearity of

the map ψ in normal coordinates, one can extend the isometry ψ defined on some neighborhood of the
point ν(s2) to the isometry ψ defined on the whole set Bσ which is a neighborhood of the point ν(s1).
This refutes the assumption that ψ cannot be extended along the curve ν(s).

Let us prove now that the extension of the isometry ψ to all possible curves to Vε gives a map
ψ : Vε → Uε . Suppose the opposite. Then there is a closed curve ν(t), 0 ≤ t ≤ 1, ν(0) = ν(1), on Vε
such that the curve β(t) = ψ(ν(t)) on Uε will be nonclosed, β(0) , β(1). But since all possible
analytic extensions of the isometry ψ induce the same maps on the algebra of Killing vector fields,
the isometry of the form ψ·ψ−1 that maps β(0) to β(1) belongs to the pseudogroup Z(M) and this
contradicts the fact that M is a quasicomplete manifold. Similarly, it is proved that the extension of the
local isometry ϕ = ψ−1 from Uε to Vε defines a map on the set ϕ(Vε) ⊂ Uε. So, we have an isometric
embedding ψ : Vε → Uε . Let us prove that it is a surjective mapping. If we assume the opposite,
then gluing the manifolds N and Uε using the map ψ, we obtain a nontrivial extension of the manifold
N, which contradicts its nonextendability. Therefore, we have an isometry ψ : Vε → Uε . The inverse
isometry ψ−1 : Uε → Vε gives an extension of the isometry ϕ to the neighborhood Uε of the point
γ(t1) along the curve γ, contrary to the initial assumption about t1.

Thus, we have proved that the local isometry ϕ from M to N extends to any point x ∈M along an
arbitrary curve on M. Just as above, we proved that the extension of the isometry ψ along all possible
curves to Vε yields a one-to-one mapping defined on the whole V, it can be proved that the extension
of ϕ along all possible curves to M gives an isometric embedding ϕ : M→ N .

Corollary 1. An arbitrary Riemannian analytic manifold whose Lie algebra of all Killing vector fields has no
center is locally isometric to a unique quasicomplete manifold. That is, a locally given Riemannian analytic
metric whose Lie algebra of Killing vector fields has no center can be uniquely extended to a quasicomplete
manifold.

Proof. Let a quasicomplete manifold M be locally isometric to the manifold M′ and let N be another
quasicomplete manifold locally isometric to the manifold M′. Then there is a local isometry ϕ from N
to M′ and a local isometry ψ from M′ to M. The superposition of the isometry ϕ and ψ is a locally
isometry from N to M. By Theorem 4, the local isometry ψ·ϕ extends to the isometry M ≈ N.

Corollary 2. Let g be the Lie algebra of all Killing vector fields in a Riemannian analytic manifold M′

diffeomorphic to a ball, and let h be its stationary subalgebra. Let G be a simply connected group generated by the
algebra g and H its subgroup generated by the subalgebra h. If g has no center, then H is closed in G.

Proof. Since M′ is diffeomorphic to a ball, its Killing vector fields can be uniquely analytically extended
on it. By Theorem 3, the manifold M′ is locally isomorphic to a quasicomplete manifold M having the
same Lie algebra g of all Killing vector fields and the same stationary subalgebra h. For an arbitrary
vector field X ∈ g, for all values of the parameter t less than a certain number δ, the elements of the
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one-parameter transformation group ExptX are local isometries of M. By Theorem 4, they extend to
isometries of the entire manifold M. But then the isometries ExpntX = (ExptX)n are defined. Thus,
the group G acts on M, and H is its stationary subgroup. This means that the orbit of the group G on M
is covered by the homogeneous manifold G/H. Consequently, H is closed in G.

Note that quasicomplete manifolds are the most compressed, that is, universally attracting objects
in the category of all locally isometric manifolds. For any analytic Riemannian manifold M′, the algebra
of Killing vector fields of which has no center, there exists a locally isometric map from M′\S′ ’to
a quasicomplete manifold M defined on the whole M′\S′, where S′ Is the set of fixed points of all
orientation-preserving and Killing vector fields of local isometries of the manifold M′.

A quasicomplete manifold is unique in the class of all analytic extensions of a given germ and has
remarkable properties [9]. First of all, it has the property of maximum symmetry, that is, any local
isometry f : U→ V from a quasicomplete manifold M into itself can be analytically extended to an
isometry f : M→M . However, the concept of a quasicomplete manifold has not only the disadvantage
that it is not defined for all locally given Riemannian analytic metrics, but it is also not, in a certain
sense, “the most complete.” Namely, there is a germ of a Riemannian analytic manifold that can be
extended to a complete manifold, the canonical extension of which to a quasicomplete manifold is not
a complete manifold.

Example 1. Let us consider an ellipsoid in three-dimensional space, given by the equation x2

a2 +
y2

b2 + z2

c2 = 1.
In order to obtain a quasicomplete manifold in the class of all Riemannian analytic manifolds locally isometric to
an ellipsoid, it is necessary to remove 6 points of intersection with the coordinate axes from the ellipsoid and
factor, with a resulting manifold of the group of rotations by 180 degrees around all coordinate axes.

Nonetheless, it turns out to be possible to give a generalization of the notion of completeness,
which leads to the “most complete” manifold for an arbitrary germ of an analytic Riemannian manifold.

Definition 7. A Riemannian analytic simply connected manifold M is called pseudocomplete if it has the
following properties.

M is nonextendable.
There is no locally isometric covering map f ; M→ N , where N is a simply connected Riemannian

analytic manifold and f (M) is an open subset of N that is not equal to N.
Let us investigate the analytic extension to a pseudocomplete manifold for various classes of

germs of analytic Riemannian manifolds. First of all, one should establish the fact that an analytic
extension to a pseudocomplete manifold exists for any germ of an analytic Riemannian manifold.
At the same time, in the general case, this extension is not unique, however, different analytic extensions
of the same germ do not differ very significantly.

Theorem 5. Any locally given Riemannian analytic manifold admits an analytic extension to a pseudocomplete
manifold. If there is a complete manifold in the class of locally isometric Riemannian analytic manifolds, then this
manifold is the only pseudocomplete manifold in this class.

Proof. On the set of all simply connected analytic extensions of a given germ of an analytic Riemannian
manifold, we introduce the following order relation. A manifold M is greater than or equal to a
manifold N, M < N, if there exists a locally isometric map f ; N→M . Thus, the set of simply connected
Riemannian analytic manifolds that are locally isometric to each other becomes a partially ordered
set. By Zorn’s lemma, this set contains a maximal element. By definition, this element will be a
pseudo-complete manifold.

Let us consider a complete Riemannian analytic manifold M. If we assume that M is not
pseudocomplete, then there exists a locally isometric map f ; M→ N such that some point x ∈ N,
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x < f (M). Let γ(t). 0 ≤ t ≤ 1, be a geodesic connecting point y ∈ f (M) with point x. Then the preimage
of this geodesic for 0 ≤ t ≤ δ does not extend to a geodesic for all t on the manifold M, which contradicts
the completeness of this manifold.

A pseudo-complete manifold is not unique in the class of all locally isometric Riemannian
analytic manifolds.

Example 2. Let us consider a germ A of a two-dimensional analytic Riemannian manifold represented by
a sphere with metric ds2 =

f (z, z)
√

1+|z|6
dzdz, where f (z, z) is an analytic function on the sphere satisfying the

condition f (z, z) ,
∣∣∣A′(z)∣∣∣2 f (A(z), A(z)) for any linear fractional transformation A(z).

Such a metric has a singularity at the point z = ∞. A sphere with this metric is a pseudocomplete
manifold. Eliminate the singularity at the point z = ∞ using the transformation z = w2 + a,
a ∈ C. As a result, we obtain a sphere that is double covering the original one and has the metric

ds2 =
4|w| f(w2+a,w2+a)√

1+|w2+a|
2

dwdw. This metric has a singularity at the point w = 0 which is natural, since the

sphere w branches over the sphere z at the point z = a corresponding to the point w = 0. For different
a. we obtain different pseudocomplete manifolds with coordinate w.

Example 2 shows that there are many not very natural pseudocomplete manifolds. In order to
avoid such unnatural irregularities we will define regular pseudocomplete manifold.

Definition 8. A Riemannian analytic simply connected manifold M is called a regular pseudocomplete manifold
if there is no covering locally isometric map f : M\S→ N into another pseudocomplete manifold N locally
isometric to the manifold M.

Theorem 6. A local isometry from a regular pseudocomplete manifold M to a regular pseudocomplete manifold
N extends analytically along continuous curves to any point M except for an analytic subset S of codimension at
least 2.

Proof. We present the proof for the case when the Lie algebra of all Killing vector fields has no center.
Consider the subsets S ⊂M and S′ ⊂ N consisting of all fixed points of local isometries preserving the
orientation of Killing vector fields. The sets S and S′ are analytic subsets of the manifolds M and N of
codimension at least 2, [8,9]. Let M0 be a quasicomplete manifold locally isometric to the varieties M
and N. Then there exist covering locally isometric mappings f : M\S→M0 . and g : N\S′ →M0 [8,9].
Moreover, it follows from the definition of a regular pseudocomplete manifold that f (M\S) = M0 and
g(N\S′) = M0. Let us consider an arbitrary curve γ(t) ⊂M\S such that domain of the initially given
local isometryϕ between the manifolds M and N contains the point γ(0), its image δ(t) = f (γ(t)) ⊂M0.
and the connected component β(t) of the inverse image g−1(δ(t)) ⊂ N\S′. containing the point ϕ(γ(0)).
Then the initially given local isometry ϕ analytically continues to the isometry of some neighborhood
of the curve γ(t), 0 ≤ t ≤ 1, to some neighborhood of the curve β(t), 0 ≤ t ≤ 1, belonging to N\S′.

Let M be a regular pseudocomplete Riemannian analytic manifold whose Lie algebra of all vector
fields has no center, S be the set of fixed points of all local isometries of the manifold M preserving
orientation and Killing vector fields, M0 be a quasicomplete manifold locally isometric to M, M̃0 be
simply connected covering of the manifold M0. Then there are analytic locally isometric coverings
M̃0 →M\S→ M0.

For an arbitrary oriented Riemannian analytic manifold M, we denote by Z(M) the pseudogroup
consisting of all local isometries of the manifold M that preserve the orientation and all Killing
vector fields. Let us consider the factor manifold KM of the manifold M\S by the pseudogroup Z(M).
We define the union of the manifolds KM and KN by gluing them over the set KM∩N. By the intersection
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M ∩N we mean the identification of maximal subsets to which the initially given local isometry
between the simply connected coverings M̃ and Ñ of the manifolds M and N is extended.

Let us consider the distribution z⊥ on a manifold M\S, consisting of vectors perpendicular to the
center z of the Lie algebra g of all Killing vector fields.

Theorem 7. Let M be pseudocomplete analytic Riemannian manifold, z⊥ the distribution of tangent vectors
perpendicular to the center z of the algebra of all Killing vector fields, S be the set of fixed points of local isometries
preserving the orientation and all Killing vector fields. If z⊥ is involutive, then the simply connected covering
M̃\S of the manifold M\S is isometric to the direct product of the Euclidean space and the simply connected
covering K̃ of the totally geodesic submanifold K ⊂M tangent to z⊥. M̃\S ≈ Rk

× K̃.

Proof. Since the distributions z and z⊥ are involutive, some neighborhood U of the marked point p ∈M
has the form U = V ×W where V is an open subset of the integral submanifold of the distribution z and
W is an open subset of the integral submanifold of the distribution z⊥. Let x1; x2; . . . ; xk be coordinates on
V, and y1; y2; . . . ; ym be coordinates on W. Then in coordinates x1; x2; . . . ; xk; y1; y2; . . . ; ym components
gi j do not depend on x1; x2; . . . ; xk, and since the submanifolds V and W are perpendicular, the
components dxidy j are equal to 0. Therefore, the metric on is ds2 = ds2

1(y) + fi j(y)dxidx j. Since the
pseudocomplete manifold M\S is nonextendable, it contains complete integral submanifold of the
distribution z that is direct products of the Euclidean space and the torus Rs

× Tl. Therefore M\S is a
fiber bundle over K′ ⊂ K with fibers Rs

× Tl. Since the distribution z⊥ is involutive, this fiber bundle
contains the section K′, and therefore it is trivial M\S = Rs

× Tl
×K′. Since M is not extendable then

K′ = K. Therefore the simply connected covering of the manifold is isometric to the direct product of
simply connected spaces M̃\S ≈ Rk

× K̃.

Corollary. 3 Let us consider a Riemannian analytic manifold M′ of dimension n whose Lie algebra g is
commutative, that is, coincides with its center z and dimg = dimz = n − 1. Then there are at most two
pseudocomplete manifolds locally isometric to M′.

Proof. Since codimz = 1, dimz⊥ = 1 and z⊥ is involutive. By Theorem 5, for a pseudocomplete manifold
M locally isometric to the manifold M′, the decomposition M\S = Rs

× Tl
× K holds. A completely

geodesic submanifold K is isometric to a line R or a circle S1 or a ray (a;∞) or an interval (a; b). Let us
consider the factor set K = M/Z(M). If K = R or K = S1 then K = K. If K = (a;∞), then K = [a;∞) or
K = K = (a;∞). If K = (a; b) then K = [a; b) or K = (a; b] or K = [a; b] or K = K = (a; b).

If K = R or K = S1 then the corresponding germ of an analytic Riemannian manifold has a
unique extension to a pseudocomplete manifold, and this manifold is isometric to a Euclidean space.
The extension of a germ to a pseudocomplete manifold will be unique in the case S = ∅ that is K = K.

Let K = (a;∞) and K = [a;∞). Then the points of the subset S ⊂ M are mapped under the
factorization K = M/Z(M) to the point a ∈ K . A point x ∈ S is a singular point of some field X ∈ z,
X(x) = 0 and any isometry ϕ from M into itself such that ϕ(x) = x has the form ϕ = ExpY, Y ∈ z.
Let us consider a subalgebra z0 ⊂ z consisting of Killing vector fields X ∈ z that vanish at the point x,
X(x) = 0. Then z0 generates the isometry group of some ball B extending analytically to the isometry
group of the manifold M and isomorphic to the quotient group of the group z0 = Rs by some lattice Γ
acting on the manifold M. Then M is a complete manifold isometric to the space Rs

× Tl. A similar
construction is applicable to the case when K = (a; b) and K = [a; b) or K = (a; b] that is, when K is
obtained from by adding one point a or b. In this case, the pseudocomplete manifold is also unique
and isometric to the manifold Rs

× Tl
×K however this manifold is no longer complete.

Finally, let us consider the case K = (a; b), K = [a; b]. It means that K is obtained from K by adding
two points a and b. Consider a pseudocomplete manifold M1 and points of the set S1 ⊂M1 projecting
to a point a ∈ K. Then, as in the consideration of the previous cases, consider the variety M′1 obtained
by joining the set S1 to the quotient variety of the manifold M\ S by some lattice Γ1 ⊂ z = Rn−1 so that
M′1 = Rs

× Tl
×K1 where K1 = [a; b). Similarly, consider the pseudocomplete manifold M2 and points
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of the set S2 ⊂M2 projecting to the point b ∈ K. The manifold M2 is obtained by joining the set S2 to
the quotient manifold of the manifold M\ S by some lattice Γ2 ⊂ z = Rn−1 so that M′2 = Rs

× Tl
×K2

where K2 = (a; b]. If the lattices Γ1 and Γ2 do not coincide, then the manifolds M1 = M′1 and M2 = M′2
are two different pseudocomplete manifolds. If the lattices Γ1 and Γ2 coincide, then the manifolds M1

and M2 are isometric and define the complete manifold M = M1 = M2.

Let us turn to the description of pseudocomplete manifolds of small dimensions.
Let us consider a germ A of a two-dimensional Riemannian real analytic manifold. The Lie

algebra g of Killing vector fields of a two-dimensional manifold has dimension at most 3. If dimg = 3
then the germA is a germ of a manifold of constant curvature and extends to a complete manifold that
is a sphere, a plane, or a hyperbolic plane. If dimg = 2 then the germA is the germ of the left-invariant
Riemannian metric on the two-dimensional Lie group, which is the extension of this germ to the
complete manifold. The case dimg = 1 is described in the corollary to Theorem 5 just proved.

Let us consider completely inhomogeneous two-dimensional analytic Riemannian manifolds.
The factor manifold K, constructed earlier as the union of all factor varieties locally isometric to each
other, by the pseudogroup of all local isometries that preserve all Killing vector fields and orientation,
is nothing more than a quasicomplete variety. Let us consider the set K = K ∪ T obtained by adding
to the manifold the images of points under the quotient mappings π : Mα → Mα/Z(Mα) = Kα ⊂ K
defined on all possible analytic extensions Mα of the germ. Then the subset T ⊂ K consists of
isolated points, and on K one can introduce the structure of an analytic manifold. Let us consider
a point z0 ∈ T ⊂ K. Then there is a sufficiently small ball U0 centered at the point x0 ∈ U0 such
that the quotient mapping π : U0 → K is a factorization of the ball U0 by a finite group of rotations
centered at x0 ∈ U0, π(x0) = z0. Let z be a complex coordinate on U0 such that the point x0 has
coordinate 0. Then the mapping has the form z→ w = zm and the metric on the set V0 = π(U0) ⊂ K
is ds2 = |w|−2(m−1)/mds2

1(w; w) where ds2
1(w; w) is an analytic Riemannian metric on the ball V0 ⊂ K.

We denote by K̃ the simply connected covering of the set K. Then the preimage T̃ ⊂ K̃ of the set
T ⊂ K is the discrete set of points ai ∈ K̃. An analytic Riemannian metric is uniquely defined on K̃\T̃ so
that the covering is locally isometric. Then the metric in the neighborhoods of the points ai has the
form ds2 = |w|−2(m−1)/mds2

1(w; w), if the complex coordinate w is chosen so that point ai has coordinate
0. A simply connected maifold K̃ is diffeomorphic to a complex plane, circle, or sphere.

Let us consider the case when K̃ is identified with the complex plane C. Then there exists a
function f (z) holomorphic on K̃\T̃ with branch points ai of order mi. This function f (z) is called the

Weierstrass function. f (z) =
∞∏

i=1

mi

√
1− z

ai
e

1
mi

( z
ai
+ 1

2 (
z
ai
)2+...+ 1

pi
( z

ai
)pi ), where the numbers pi ∈ N are such

that ∀z ∈ C the series
∞∑

i=1

(
z
ai

)pi converges. Let us consider the Riemann surface M of the function f (z).

The surface M covers the complex plane C so that the covering map π : M→ C has a branching of
order mi over the points ai ∈ C and is not r branching at other points. We define a Riemannian metric on
Mg(X; Y) = g(π∗X;π∗Y) where X, Y ∈ TxM, π∗X,π∗Y ∈ Tπ(x)K. This metric has no singularities at the
points xi ∈M such that π(xi) = ai. It is easy to prove that for any simply connected manifold N locally
isometric to M, any local isometry ϕ from N to M can be analytically extended to a locally isometric
map ϕ : N→M . So M is the only analytic extension of this germ to a pseudocomplete manifold.

In case then K̃ is a circle a unique analytic extension of this germ to a pseudocomplete manifold
can be constructed similarly to the case of the complex plane. This manifold is also a Riemann
surface of a holomorphic function f (z) on K̃ with branching of order mi over the points ai ∈ T̃ ⊂ K̃.

f (z) =
∞∏

i=1

mi

√
z−ai
z−αi

e

qi∑
k=1

(ai−αi)
k

k(z−αi)
k where αi is the point on the boundary of the circle closest to ai and the

numbers qi ∈ N are such that

∣∣∣∣∣∣ln z−ai
z−αi

+
qi∑

k=1

(ai−αi)
k

k(z−αi)
k

∣∣∣∣∣∣ < 1
2i .
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Let us consider the case when K̃ is a sphere. Here the set T̃ ⊂ K̃ consists of a finite number of points
α0,α1, . . . ,αl at each of which the metric has a singularity of the form ds2 = |w|−2(m−1)/mds2

1(w; w).

The function f (z) =
l∏

i=1

mi

√
z−ai
z−α0

on the sphere has branching of order mi at the points ai, i = 1; 2; . . . ; l,

and branching of order m at the point α0. As above, consider the Riemann surface M of the function
f (z). The covering map π : M→ K̃ = S2 is a covering over K̃\T̃ and has branching of order mi over
the points ai ∈ T̃ ⊂ K̃, i = 1; 2; . . . ; l, and branching of some order m into point α0. Then the metric
on M induced by the metric on K̃ and the covering map π has no singularity at the points π−1(ai),
but the case where m , m0 has a singularity at the point π−1(a0). The resulting manifold is a regular
pseudocomplete manifold. Instead of the point ao ∈ T̃ ⊂ K̃, we can take any other point a j ∈ T̃ ⊂ K̃ and
construct another regular pseudocomplete manifold in the way described above. Thus, we obtain all
analytic extensions to the pseudocomplete manifold of the given germ.

Let us pass to the description of three-dimensional pseudo-complete manifolds. As before,
we will denote by z the center of the Lie algebra g of all Killing vector fields on the manifolds under
consideration. If dimz = 3 then the germ of a Riemannian manifold is homogeneous and, according to
a result of Mostov, [4], it can be extended to a homogeneous manifold. If dimz = 2 then, according
to the proved corollary to Theorem 5, there are at most two analytic extensions of a given germ to a
regular pseudocomplete variety. The case when the algebra g has no center, dimz = 0, was analyzed in
the proof of Theorem 4.

Let us consider the case when dimz = 1. First, consider the case when K̃ is diffeomorphic to the
plane. Let us consider the manifold M0 ≈ K̃ × z. Let U0 be a small ball equipped with an initially given
Riemannian metric on V0 = U0/Z(U0) ⊂ K̃. We extend the metric defined on U0 to the manifold V0 × z.
Let x1; x2; x3 be coordinates on V0 × z such that x1; x2 are coordinates on V0 and x3 is a coordinate
on z. The components of the metric tensor gi j

(
x1; x2

)
are independent of x3. The functions gi j

(
x1; x2

)
extend analytically along any curve on K̃ and define a metric on M0 ≈ K̃ × z. Then M0/Z(M0) = K,
hence Z(M0) = K × Γ where Γ is the group of covering K̃→ K . Then, for a regular pseudocomplete
manifold M the manifold M\S = K × z/Γ0 where Γ0 is a discrete subgroup of the group z.

Let us now consider the case when the quotient variety K is diffeomorphic to a sphere. Let us
split K into a union of two open disks K = K1 ∪ K2. We construct, as above, the Riemannian
manifolds M1 = K1 ×R and M2 = K2 ×R which are analytic extensions of the originally given germ,
whose‘submanifolds R are integral curves of the vector field X ∈ z. Local isometries f from M1 to
M2 extend along any curve on (K1 ∩K2) ×R. If such an extension is unique, we get a complete
manifold M ≈ S2

×R which is an extension of a given germ. Suppose now that there exists a closed
curve γ(t), 0 ≤ t ≤ 1, on (K1 ∩K2) ×R, the extension of the isometry f along which is ambiguous,
f (γ(0)) = y1 , y2 = f (γ(1)). Let x1; x2; x3 are coordinates on M1 such that x1; x2 form coordinates on
K1 and x3 is a coordinate on R, and y1; y2; y3 are coordinates on M2 such that y1; y2 form coordinates
on K2 and y3 is a coordinate on R. Since x3 and y3 are coordinates on the Lie algebra z the isometry
f in coordinates x1; x2; x3; y1; y2; y3 have the form y1 = y1

(
x1; x2

)
, y2 = y2

(
x1; x2

)
, y3 = x3 + f

(
x1; x2

)
where the functions y1; y2 are the transition functions from the map on K1 to the map on K2 on sphere
and therefore are unambiguous. The function f

(
x1; x2

)
continues ambiguously along the closed curve

δ(t), 0 ≤ t ≤ 1, to K1 ∩K2. Let f (δ(1)) − f (δ(0)) = a ∈ R. Let’s consider the circle S1 = R/Z. Then the
extension of the function f along the curve δ will be unique if we assume that f takes values not on
the line R, but on the circle S1. Then, there will also be a unique extension of the function f along the
curves δn, n ∈ Z. But, since any curve on K1 ∩ K2 is homotopic to the curve δn the extension of the
function f : U0 → S1 along all possible curves is unique on K1 ∩K2. In this case, the function f is the
transition function of the bundle into circles over the sphere S2 and we have compact lens spaces as
analytic extensions of a given germ.
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3. Locally Homogeneous Pseudo-Riemannian Manifolds, the Algebra of Killing Vector Fields
Which Has a Nontrivial Center

Let us investigate the case when the algebra g has a nonzero center z and indicates the properties
of the algebras g, h, and z that ensure the closeness of the subgroup H in G.

Let us define a local group of local isometries. Let us consider an arbitrary Riemannian analytic
manifold g, a Lie algebra G consisting of all Killing vector fields on it, and a Lie group G with Lie
algebra g. By a local group (chunk of a group) we mean a small neighborhood of the identity of the
group U ⊂ G. It consists of local isometries of the manifold M. Consider a normal ball B2δ of radius 2δ
centered at p ∈M. The neighborhood of the identity U in the group G consists of elements g ⊂ G that
define isometries from the ball Bδ of radius δ centered at a marked point p ∈M to the ball B2δ of radius
2δ centered at p ∈ M. Note that H ⊂ U. The Lie algebra g as a rule does not generate the isometry
group of the manifold M but generates the pseudogroup U of local isometries. The orbit of the local
group of local isometries of the manifold M is a locally homogeneous manifold N. Note also that the
subgroup H generated by the stationary subalgebra h forms the isometry group of the ball Bδ centered
at a marked point of M.

Let us study some properties of the local group of local isometries from the point of view
of abstract transformation groups. Let us consider a local group U ⊂ G as a subgroup of the
group of local diffeomorphisms of a manifold M with a marked point p, G ⊂ Di f f M. We call an
element ñ ∈ G ⊂ Di f f M right multiplication if there exists an element n ∈ G such that for all x ∈ M
such that x = g(p), ñ(x) = gn(p). Since ∀h ∈ H·gh(p) = g(p) = x then ñ(x) = gn(p) = ghn(p).
Therefore n(p) = hn(p)⇒ p = n−1hn(p)⇒ n−1hn ∈ H . Thus, right multiplication by an element n is
well defined if ∀h ∈ H ∃h1 ∈ H is such that for any local isometry g ∈ G the equality ghn = gnh1 holds.
In other words, n belongs to the normalizer N(H) of the group H in G. Let N denote the local group
consisting of elements n ∈ G right multiplication by which in the group G generate local isometries of
the manifold M and by its Lie algebra. Then h C n ⊂ g. Note that the multiplications themselves on
the right, that is, the elements ñ as well as the elements of the center Z of the local group G belong to
N. Let V denote the orbit of the marked point p of the local group N on M. The adjoint action of the
elements n ∈ N, g 7→ n−1gn defines local isometries on V.

Let us find a subgroup G0 ⊂ G consisting of “multiplications on the left.” Consider a mapping f
from a group G defined as the group of transformations of a set G into itself, defined by the formula
f (g) = g(e) = ge where e is the identity local isometry. Then, since ñ(e) = ñe = en = n we will
assume that f (̃n) = n. Strictly speaking f (̃n) is the coset nh but all elements nh, h ∈ H define the same
local isometry of the manifold M. On the set f (G) we define the multiplication g1g2 = g1(e)g2(e).
The multiplication thus defined turns f (G) into a subgroup G0 ⊂ G. Left multiplications g ∈ G0

are supplemented by right multiplications ñ that is, any element g ⊂ G ⊂ Di f f G, g(x) = gx ∀x ∈ G
can be represented as g = g0ñ, g0ñ(x) = g0xn ∀x ∈ G Since the elements n, nh and n ∈ N, h ∈ H,
using multiplications on the right in the group G define the same local isometry on M the group of
“multiplications on the right” is identified with the factor group Ñ = N/H and the Lie algebra of this
group is identified with the factor algebra n/h. Therefore G = G0Ñ, g = g0 + ñ.

Let us consider V ⊂ B2δ that the orbit of the marked point p of the local isometry group Ñ.
The group of “left multiplications” N ⊂ G0 (more precisely, its neighborhood of unity) acts on V;
moreover n, hn and nh, n ∈ N, h ∈ H define the same local isometry on V by means of left multiplications
in the group N then the group of “left multiplications” in the group N is also identified with the
quotient group Ñ = N/H, and the Lie algebra ñ of this group is identified with the quotient algebra
n/h.

Thus, the inner automorphisms of the group Ñ are isometries of V and generate the adjoint
representation of the group Ñ in the algebra and form the adjoint group Int (̃n) of the algebra ñ.
Since Ñ = N/H acts on V transitively, then ñ can be identified with the tangent space TpV and Int (̃n)
is a closed subgroup of the group GL

(
TpV

)
of linear transformations of the space TpV. But, since Int (̃n)
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preserves a nondegenerate positive definite Riemannian form on TpV then Int (̃n) is a closed subgroup
of the compact group of orthogonal transformations SO

(
TpV

)
and therefore is compact.

The group Int (̃n) is isomorphic to the group Ñ/Z
(
Ñ

)
where Z

(
Ñ

)
is the center of the group Ñ.

Therefore, the group Ñ/Z
(
Ñ
)

is compact and the Lie algebra ñ is a compact algebra [1]. Therefore ñ is
decomposed into the direct sum of its center z and the commutant [̃n; ñ], ñ = z⊕ [̃n; ñ]. Since all “right
multiplications” commute with all “left multiplications”, then z coincides with the center of the entire
algebra of Killing vector fields g. Thus there is a direct sum decomposition g = g0 ⊕ z ⊕ [̃n; ñ]. [̃n; ñ]
generates “pure right multiplications” that do not coincide with “left multiplications.

Theorem 8. Let g be the Lie algebra of all Killing vector fields on a locally homogeneous pseudo-Riemannian
analytic manifold M, h be its stationary subalgebra, z be the center of g. Let G be a simply connected subgroup
generated by the algebra g and H its subgroup generated by the subalgebra h. If h∩ (z+ [g, g]) = h∩ [g, g] then
H is closed in G.

Proof. Suppose the opposite. Let us consider the closure H of the group H in G and the subalgebra h ⊂ g
of the subgroup H ⊂ G. The subalgebra h is a normal subalgebra of the algebra h [3]. We will assume,
passing if necessary to the conjugate group g−1Hg which for a marked point ∈M X ∈ h⇔ X(p) = 0 .
Let us consider the one-parameter subgroup ht ∈ H, ht < H defined by the vector field X < h, X < h.
As proved in [3], there exists a torus T in a simple compact subgroup P ∈ G such that H ∩ T is an
everywhere dense winding of the torus T. Therefore, we can assume that ht ∈ T ⊂ P. Then the Killing
vector field of tangent vectors to the orbits of the local one-parameter group ht belongs to the algebra t
of the group T and, therefore X ∈ t ⊂ p where p is the Lie algebra of the group P. Let us consider a
neighborhood of unity U in the group G and the ball Bδ of radius δ centered at the marked point p ∈M
such that all elements g ∈ U of the group G define local isometries from the ball Bδ to the ball B2δ of
radius 2δ centered at p ∈ M. Note that H ⊂ U. Since the elements ht belong to the closure H of H in

G for each small t the inner automorphism x 7→ htxh
−1
t of the group G is the limit of the sequence of

inner automorphisms x 7→ hnxh−1
n , hn ∈ H. For small t and large n these automorphisms define local

isometries of the ball hnBδ into the ball B2δ.
Inner automorphisms x 7→ hnxh−1

n , hn∈ H generating the same local isometries as multiplication
by hn define isometries of the ball Bδ. Since the elements ht belong to the normalizer of the group H the

inner automorphisms x 7→ htxh
−1
t define maps on the ball Bδ that are limits of isometries, they also

define the isometry of the ball Bδ into the ball Bδ. Then, since the local isometry x 7→ htx of the ball

Bδ into the ball B2δ is defined for all sufficiently small t, the local isometry x 7→ xh
−1
t = xh−t is also

defined, and thus the local one-parameter group of isometries generated by multiplications on the
right by the elements h−t is defined.

All right multiplications commute with left multiplications that are with the elements of the
group G0. However they may not commute with each other. Let us prove that local isometry h−t

commutes with all right multiplications. To this end, we prove that the action of the element h−t in the

group of inner automorphisms of the group G, g 7→ h
−1
t ght defines the identity map on the orbit V

of the marked point p of the group Ñ. Let us consider a sequence hn∈ H converging to h
−1
t . Since N

is a normal subgroup in N then nhn = hn nh′n where h′n ∈ H then nH = h−1
n nhnH. Hence, the inner

automorphisms g 7→ h−1
n ghn induce the identity map on V. Passing to the limit, we see that the inner

automorphism g 7→ h
−1
t ght induces the identity map on V.

The vector field Z of tangent vectors to the orbits of the local one-parameter group zt of
multiplications on the right by ht is a Killing vector field and belongs to the center of the algebra of all
Killing vector fields on M, Z ∈ z. It follows from the decomposition g = g0 ⊕ z⊕ [̃n; ñ] that Z < [g; g].
Therefore X + Z < [g; g] but X + Z ∈ h. This proves the theorem by contradiction.
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Since the vector field X generating the local one-parameter group h
−1
t belongs to a compact

subalgebra of the algebra g then X belongs to the commutator subalgebra [g; g] of the algebra g.

Theorem 9. Let g be the Lie algebra of all Killing vector fields on a locally homogeneous pseudo-Riemannian
analytic manifold M, h is its stationary subalgebra, z is the center of g, and r is its radical. Let G be a simply
connected subgroup generated by the algebra g and H its subgroup generated by the subalgebra h. Then, if for
any semisimple algebra p ⊂ g such that p+ r = g there is the equality (p+ z)∩ h = p∩ h then H is closed in G.

Proof. Suppose the opposite and consider the closure H of the group H in G. As in the proof of Theorem
5, let us consider the one-parameter subgroup zt generated by right multiplication by elements of the
one-parameter group of local isometries ht in G. Let X be the Killing vector field of tangent vectors to

orbits of the local one-parameter group of local isometries h
−1
t and Z is the Killing vector field of the

local one-parameter group of local isometries zt.
Let p be a semisimple subalgebra of the algebra g containing the vector field X, X ∈ p ⊂ g. Let us

prove that Z + X ∈ h and Z + X < p. In a simply connected Lie group G, consider the radical R
(the subgroup corresponding to the subalgebra r) and the semisimple subgroup P corresponding to the
subalgebra p. Then R is a normal subgroup in G r is a normal subalgebra in g, R∩ P = e, r∩ p = 0 and
the Levi-Maltsev decomposition G = RP holds.

The group G contains an open neighborhood of the identity (chunk of a group) acting as a
local group of local isometries in a neighborhood of the marked point p ∈ M. Since zt belongs to
the center of the group G, then zt ∈ R and since the subgroup H is a normal divisor of the group

H, [3], then h
−1
t ztH = h

−1
t H ht = H. Consequently, the local isometries h

−1
t zt leave the point p fixed

and, therefore, belong to the stationary subgroup H. But, since X ∈ p, and Z < p then
(
Z + X

)
< p.

Since
(
Z + X

)
∈ h this means that the statement (p+ z) ∩ h , p ∩ h holds for the chosen maximal

semisimple algebra p. This proves the theorem by contradiction.

4. Discussion

Let us point to the questions related to the generalization of the completeness of a Riemannian
analytic manifold that require a solution. First, we would like to give necessary and sufficient conditions
for the closeness of a stationary subgroup of the group of local isometries on a Riemannian manifold.
Moreover, these conditions must be expressed in local terms, that is, as properties of the Lie algebra of
all Killing vector fields. In addition, it is suitable to develop a theory of generalized complete manifolds
in the case of the existence of a nontrivial center in the Lie algebra of all Killing vector fields to give
a definition of a quasicomplete manifold in the general case. It is also desirable to describe in more
detail pseudocomplete manifolds in the general case and for specific Riemannian metrics. Theorems 8
and 9 give necessary and “almost sufficient” conditions for the closeness of a stationary subgroup.
It would be nice to find necessary and sufficient conditions for the closeness of a stationary subgroup
in a simply connected Lie group generated by all Killing vector fields.
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