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1. Introduction

The concentration-compactness principle (CCP) by Lions [1] has been a fundamental tool to study
solutions of different kinds of elliptic PDEs with critical growth (in the sense of Sobolev embeddings),
see [2–5] for some of its applications. Later on, in [6,7] Lions CCP was generalized by considering a
general growth at infinity.

Consider
−4p(x)v = g(x, v), (1)

where 4p(x)v := div(|∇v|p(x)−2∇v) is known as p(x)−Laplacian operator. The above problem
naturally arises in studying models like electroheological fluids. Many researchers studied it with
different boundary conditions (Neumann, Dirichlet, nonlinear, etc.), see [8–12] and references therein.

Let Ω be a bounded sub domain of RN , for an exponent p(x) we will use p− := infx∈Ω p(x),
p+ := supx∈Ω p(x) and p∗(x) := Np(x)

N−p(x) when p(x) < N. An exponent q(x) ≤ p∗(x) is said to be
critical if x ∈ C := {x ∈ Ω : q(x) = p∗(x)}. In order to deal with the critical growth at infinity of the
source function g that is

|g(x, s)| ≤ c(1 + |s|q(x)), (2)

with q(x) ≤ p∗(x), Bonder and Silva [13] and Yongqiang [14] extended Lions CCP to variable exponent
settings, independently. Their method of proof followed the same lines as the ones that originated in
Lions work.

Let G : R → R be an upper semicontinuous, not zero in L1 sense and satisfying the
growth condition

0 ≤ G(s) ≤ c min
{
|s|q+ , |s|q−

}
for s ∈ R, (3)
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where p ≤ q ≤ p∗, 1 < p− ≤ p(x) ≤ p+ < N. This paper aims to study the Problem (1) with a general
growth at infinity by extending the work of Flucher and Müller [6] to variable exponent Lebesgue
spaces Lp(x)(Ω) and W1,p(x)(Ω). To be more precise, we study the concentration/compactness of the
sequence G(vε) for vε ∈W1,p(x)

0 (Ω) (closure of the set of test functions in variable exponent Sobolev
space), whereas, Bonder and Silva [13] studied |vε|q(x). Thus, our work considerably contributes to the
existing literature and it allows us to study Bernoulli’s free-boundary problem, plasma problem and
others in the variable exponent settings, see [7] for more details. We prove that in a extreme case either
the sequence of measures concentrate to a dirac measure or have a convergent subsequence.

In addition, we analyse the asymptotic behaviour of solutions of the following variational problem,
related to low energies

G∗ε (p(.), q(.), Ω) := sup
{∫

Ω

G(v)
εq(x)

dx : v ∈W1,p(x)
0 (Ω), ‖∇v‖Lp(x)(Ω) ≤ ε

}
, (4)

when ε → 0. Problem (4) and its other variants for a constant exponent were rigorously studied,
see [6,7,15–17] and references therein. To establish the concentration or compactness of low energy
extremals, another version of CCP is proved for the variable exponent Lebesgue spaces. When G is
smooth i.e., G′ = g, solutions of (4) satisfy the following Dirichlet problem{

−4p(x)v = g(v), in Ω;
v = 0, on ∂Ω.

For a detailed study on nonlinear PDEs with variable exponent, we refer [18].
Organisation of this paper: Section 2 collects some necessary primary results to be used in later

sections. Section 3 deals with the proof of generalized CCP and concentration/compactness result.
Section 4 is committed to the variational problem of low energy extremals. Finally, Section 5 ends the
manuscript with some concluding remarks.

2. Preliminary and Known Results

We present some preliminary concepts of variable exponent Lebesgue and Sobolev spaces. Let p :
Ω → [1, ∞] be a measurable function and Ω be a bounded smooth subset of RN . Then Lp(x)(Ω) is
defined as

Lp(x)(Ω) = {v ∈ L1
loc(Ω) :

∫
Ω
|v(x)|p(x)dx < ∞},

endowed with the norm

‖v‖Lp(x)(Ω) = inf{λ > 0 :
∫

Ω

∣∣∣∣v(x)
λ

∣∣∣∣p(x)
≤ 1}.

In addition, p′(x) = p(x)/(p(x)− 1) is known as conjugate exponent of p(x), further

p− := inf
Ω

p(x), p+ := sup
Ω

p(x)

will be used throughout the paper and

p∗(x) :=

{
Np(x)

N−p(x) , if p(x) < N;

∞, if p(x) ≥ N.

The exponent p(x) is called log-Hölder continuous if

sup
x,y∈Ω

|(p(x)− p(y)) log(|x− y|)| < ∞. (5)
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Let ρ(v) :=
∫

Ω |v(x)|p(x)dx then the following proposition proved in [19] is quite useful.

Proposition 1. For v ∈ Lp(x)(Ω) and {vn}n∈N ⊆ Lp(x)(Ω), we have

v 6= 0⇒
(
‖v‖Lp(x)(Ω) = λ⇔ ρ

( v
λ

)
= 1

)
. (6)

‖v‖Lp(x)(Ω) < 1(= 1;> 1)⇔ ρ(v) < 1(= 1;> 1). (7)

‖v‖Lp(x)(Ω) > 1⇒ ‖v‖p−

Lp(x)(Ω)
≤ ρ(v) ≤ ‖v‖p+

Lp(x)(Ω)
. (8)

‖v‖Lp(x)(Ω) < 1⇒ ‖v‖p+

Lp(x)(Ω)
≤ ρ(v) ≤ ‖v‖p−

Lp(x)(Ω)
. (9)

lim
n→∞

‖vn‖Lp(x)(Ω) = 0⇔ lim
n→∞

ρ(vn) = 0. (10)

lim
n→∞

‖vn‖Lp(x)(Ω) = ∞⇔ lim
n→∞

ρ(vn) = ∞. (11)

The variable exponent Sobolev space W1,p(x)(Ω) is defined as

W1,p(x)(Ω) = {v ∈W1,1
loc : u ∈ Lp(x)(Ω) and |∇v| ∈ Lp(x)(Ω)}.

Moreover, the norm for variable exponent Sobolev spaces is known as

‖v‖W1,p(x)(Ω) = ‖v‖Lp(x)(Ω) + ‖∇v‖Lp(x)(Ω).

W1,p(x)
0 (Ω) is defined to be the closure of C∞

0 (Ω) in W1,p(x)(Ω). If 1 < p− ≤ p+ < ∞ then all the

spaces Lp(x)(Ω), W1,p(x)(Ω) and W1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

Proposition 2 (Holder-type inequality). Let u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω). Then,∫
Ω
|u(x)v(x)|dx ≤ Cp‖u‖Lp(x)(Ω)‖v‖Lp′(x)(Ω)

.

Proposition 3 (Sobolev embedding). Let p, q ∈ C(Ω) be log-Hölder continuous and 1 ≤ q(x) ≤ p∗(x) for
all x ∈ Ω. Then,

W1,p(x)(Ω) ↪→ Lq(x)(Ω),

also, the above embedding is compact if infΩ(p∗(x)− q(x)) > 0.

Proposition 4 (Poincaré inequality). For all v in W1,p(x)
0 (Ω) we have

‖v‖Lp(x)(Ω) ≤ C‖∇v‖Lp(x)(Ω).

By the above proposition for W1,p(x)
0 (Ω) both norms ‖∇v‖Lp(x)(Ω) and ‖v‖W1,p(x)(Ω) are equivalent.

Lastly, we present a localized sobolev type inequality from [14]. By Br(x) we mean a ball of radius r
centered at x in Ω.
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Proposition 5. Take x0 in Ω. For every δ > 0 there is a constant k(δ) independent of x in Ω such that if
0 < r < R with r

R < k(δ) then there is a cut-off test function φR
r in W1,p(x)

0 (Ω) with φR
r = 1 in Br(x0),

φR
r = 0 outside BR(x0) and∫

BR(x0)
|∇(φR

r v)|p(x)dx ≤
∫

BR(x0)
|∇v|p(x)dx + δ max

{
‖∇v‖p+

Lp(x)(Ω)
, ‖∇v‖p−

Lp(x)(Ω)

}
, (12)

for all v in W1,p(x)
0 (Ω).

3. Generalized Concentration-Compactness Principle

The exponent q(.) is critical when x ∈ C. The version of CCP proved in [14], only considered
the critical case, whereas, in [13] q(.) was allowed to be subcritical as well. Later on, in [20] CCP was
refined a bit to study immersion problem for the variable exponent Sobolev space.

Now, we introduce some more notations in order to present the main results.

• Best Sobolev constant

S(p(.), q(.), Ω) = sup
{∫

Ω
|v|q(x)dx : v ∈W1,p(x)

0 (Ω), ‖∇v‖Lp(x)(Ω) ≤ 1
}

. (13)

• Generalized Sobolev constant

G∗(p(.), q(.), Ω) := sup
{∫

Ω
G(v)dx : v ∈W1,p(x)

0 (Ω) and ‖∇v‖Lp(x)(Ω) ≤ 1
}

. (14)

•

G+
0 := lim sup

s→0

G(s)
|s|q+

, G−0 := lim inf
s→0

G(s)
|s|q+

,

G+
∞ := lim sup

|s|→∞

G(s)
|s|q−

, G−∞ := lim inf
|s|→∞

G(s)
|s|q−

,

moreover, denote G0 := G+
0 = G−0 and G∞ := G+

∞ = G−∞ in case of equality.

By Sobolev embedding and Poincaré inequality for all v ∈W1,p(x)
0 (Ω)∫

Ω
|v(x)|q(x)dx ≤ S max

{
‖∇v‖q+

Lp(x)(Ω)
, ‖∇v‖q−

Lp(x)(Ω)

}
. (15)

By Growth condition (3) and Inequality (15), we have∫
Ω

G(v)dx ≤ G∗max
{
‖∇v‖q+

Lp(x)(Ω)
, ‖∇v‖q−

Lp(x)(Ω)

}
, (16)

for all v ∈W1,p(x)
0 (Ω). Now, we present the generalized CCP in form of following theorem. LetM(Ω)

be a set of all nonnegative finite Borel measures on Ω and ηε
∗
⇀ η in the sense of measure if

∫
Ω φηεdx →∫

Ω φηdx for all φ in C(Ω).

Theorem 1. Let p and q be log-Hölder continuous exponents with

1 < p− ≤ p+ < N, p ≤ q ≤ p∗ in Ω and C =: {x ∈ Ω : q(x) = p∗(x)} 6= ∅.

Let {vε} be a sequence in W1,p(x)
0 (Ω) with ‖∇vε‖Lp(x)(Ω) ≤ 1. If

• vε ⇀ v weakly in W1,p(x)
0 (Ω),

• |∇vε|p(x) ∗⇀ η in the sense of measure inM(Ω),
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• G(vε)
∗
⇀ ζ in the sense of measure inM(Ω).

Then, for a countable index set J

η = |∇v|p(x) + η + ∑
j∈J

ηjδxj , η(Ω) ≤ 1, (17)

ζ = h + ∑
j∈J

ζ jδxj , ζ(Ω) ≤ G∗, (18)

where {xj}j∈J ⊆ C, η is a positive nonatomic measure inM(Ω) and h ∈ L1(Ω). Moreover, atomic and regular
parts satisfy the following generalized Sobolev type inequalities

ζ j ≤ G∗max

{
η

q+

p−
j , η

q−
p+

j

}
, (19)

ζ(Ω) ≤ G∗max

{
η(Ω)

q+

p− , η(Ω)
q−
p+

}
, (20)

∫
Ω

hdx ≤ G∗max


(∫

Ω
|∇v|p(x)dx + η(Ω)

) q+

p−
,
(∫

Ω
|∇v|p(x)dx + η(Ω)

) q−
p+

 . (21)

The strategy of the proof is analogous to that of [6,7], adapted to the variable exponent settings.
In order to prove generalized CCP, first we prove two types of local generalized Sobolev inequalities,
given in the following lemma.

Lemma 1. Take δ > 0 and r < R satisfying r
R ≤ k(δ) as in the Proposition 5. For x0 ∈ Ω and G satisfying

the growth condition (3) following inequalities hold

∫
Br(x0)

G(v)dx ≤ G∗max


(∫

BR(x0)
|∇v|p(x)dx + δ max

{
‖∇v‖p+

Lp(x)(Ω)
, ‖∇v‖p−

Lp(x)(Ω)

}) q+

p−
,

(∫
BR(x0)

|∇v|p(x)dx + δ max
{
‖∇v‖p+

Lp(x)(Ω)
, ‖∇v‖p−

Lp(x)(Ω)

}) q−
p+

 ,

(22)

∫
Ω\BR(x0)

G(v)dx ≤ G∗max


(∫

Ω\Br(x0)
|∇v|p(x)dx + δ max

{
‖∇v‖p+

Lp(x)(Ω)
, ‖∇v‖p−

Lp(x)(Ω)

}) q+

p−
,

(∫
Ω\Br(x0)

|∇v|p(x)dx + δ max
{
‖∇v‖p+

Lp(x)(Ω)
, ‖∇v‖p−

Lp(x)(Ω)

}) q−
p+

 .

(23)

Proof. Without loss, assume x0 = 0 and let φR
r be a cutoff test function as in Proposition 5 i.e., φR

r = 1
in Br(0) and φR

r = 0 outside BR(0). Then, for v in W1,p(x)
0 (Ω)∫

Br(0)
G(v)dx ≤

∫
BR(0)

G(φR
r v)dx ≤ G∗max

{
‖∇(φR

r v)‖q+

Lp(x)(BR(0))
, ‖∇(φR

r v)‖q−

Lp(x)(BR(0))

}
.
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If ‖∇(φR
r v)‖Lp(x)(BR(0))

≥ 1 then

‖∇(φR
r v)‖q+

Lp(x)(BR(0))
≤
(∫

BR(0)
|∇(φR

r v)|p(x)dx
)q+/p−

≤
(∫

BR(x0)
|∇v|p(x)dx + δ max

{
‖∇v‖p+

Lp(x)(Ω)
, ‖∇v‖p−

Lp(x)(Ω)

}) q+

p−
.

Similarly, for ‖∇(φR
r v)‖Lp(x)(BR(0))

< 1 we have

‖∇(φR
r v)‖q−

Lp(x)(BR(0))
≤
(∫

BR(x0)
|∇v|p(x)dx + δ max

{
‖∇v‖p+

Lp(x)(Ω)
, ‖∇v‖p−

Lp(x)(Ω)

}) q−
p+

.

For the cutoff function ψ = (1− φR
r )φ

R2
R1

with 0 < r < R < R1 < R2

∫
BR1 (0)\BR(0)

G(v)dx ≤
∫

BR2 (0)\Br(0)
G(ψv)dx

≤G∗max


(∫

BR2 (0)\Br(0)
|∇v|p(x)dx + δ max

{
‖∇v‖p+

Lp(x)(Ω)
, ‖∇v‖p−

Lp(x)(Ω)

}) q+

p−

,

(∫
BR2 (0)\Br(0)

|∇v|p(x)dx + δ max
{
‖∇v‖p+

Lp(x)(Ω)
, ‖∇v‖p−

Lp(x)(Ω)

}) q−
p+

 .

Inequality (23) follows by letting R1 → ∞, R2 → ∞ in a way that R2/R1 → ∞ and extending v as
zero outside Ω.

Now, we proceed to prove generalized CCP.

Proof of Theorem 1. Step 1: (Estimations of atomic part)
Let {xj}j∈J be atoms of ζ. For x ∈ Ω by Lemma 1

G(vε)(Br(x)) ≤ G∗max

{(
|∇vε|p(x)(BR(x)) + δ

) q+

p− ,
(
|∇vε|p(x)(BR(x)) + δ

) q−
p+

}
,

passing the limits

ζ({x}) ≤ ζ(Br(x)) ≤ G∗max

{(
η(BR(x)) + δ

) q+

p− ,
(
η(BR(x)) + δ

) q−
p+

}
,

taking r → 0, R→ 0 and δ→ 0

ζ({x}) ≤ G∗max

{
η({x})

q+

p− , η({x})
q−
p+

}
.

In particular

ζ j ≤ G∗max

{
η

q+

p−
j , η

q−
p+

j

}
,
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where ζ j = ζ({xj}) and ηj = η({xj}). Therefore, all the atoms of ζ are atoms of η. By Inequality (16)∫
Ω

G(vε)dx ≤ G∗max
{
‖∇vε‖q+

Lp(x)(Ω)
, ‖∇vε‖q−

Lp(x)(Ω)

}
,

≤ G∗max


(∫

Ω
|∇vε|p(x)dx

) q+

p−
,
(∫

Ω
|∇vε|p(x)dx

) q−
p+

 .

Taking ε goes to zero

ζ(Ω) ≤ G∗max

{
η(Ω)

q+

p− , η(Ω)
q−
p+

}
.

Step 2: (Decomposition of η)
Consider a functional Q : W1,p(x)

0 (Ω)→ R

Q(v) =
∫

Ω
|∇v|p(x)φdx,

for a fix test function φ. It is differentiable and convex and hence weakly semicontinuous. Thus,∫
Ω
|∇v|φdx ≤ lim inf

ε→0

∫
Ω
|∇vε|p(x)φdx.

Therefore, η ≥ |∇v|p(x) and η := η − |∇v|p(x) −∑j∈J ηjδxj is a positive nonatomic measure.
Step 3: (Decomposition of ζ)
There is a subsequence such that |vε|q(x) ∗

⇀ ζ∗ in M(Ω). By the CCP ([13], Theorem 1.1),
we know that

ζ∗ = |v|q(x) + ∑
j∈J

ζ∗j δxj ,

with xj ∈ C for all j ∈ J. By Growth condition (3) ζ ≤ cζ∗ and ζ is absolutely continuous with respect
ζ∗. Thus, by Radon-Nikodym theorem there is h in L1(Ω) such that

ζ = h + ∑
j∈J

ζ jδxj .

Step 4: (Estimation of regular part)
Fix δ > 0, choose j0 such that ∑j0<j ηj < δ and take R in a way that BR(xj) are disjoints for all

j ≤ j0. Consider,
ψ = φR2

R1 ∏
j≤j0

(1− φR
r (.− xj)),

where φR
r is a cutoff test function having support in BR(0), as in Proposition 5 and 0 < R1 < R2. Then,

support of ψ is in BR2(0)\
⋃

j≤j0 BR(xj). By Lemma 1
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∫
BR1 (0)\

⋃
j≤j0

BR(xj)
h dx ≤ ζ

BR1(0)\
⋃

j≤j0

BR(xj)



≤ G∗max


η

BR2(0)\
⋃

j≤j0

BR(xj)

+ δ


q+

p−

,

η

BR2(0)\
⋃

j≤j0

BR(xj)

+ δ


q−
p+


≤ G∗max


(∫

Ω
|∇v|p(x)dx + η(Ω) + δ

) q+

p−
,

(∫
Ω
|∇v|p(x)dx + η(Ω) + δ

) q−
p+

 .

Taking R → 0, R1 → ∞ and δ → 0, we get our desired generalized Sobolev type inequality for
regular part.

Like in [13,14], generalized CCP can be used to prove the existence of solutions of different
kinds of PDEs, but here we focus on the concentration/compactness of the maximizing sequence of
generalized Sobolev constant G∗ i.e.,∫

Ω
G(vε)dx → G∗ when ε→ 0.

As we know ζ(Ω) ≤ G∗, but when we have equality, then there are two possibilities, either the
limit measure is non-atomic, or the sequence concentrates to a single point, see the following result.
Our idea is to use a type of convexity argument to prove it.

Theorem 2. In addition to assumptions of Theorem 1, if ζ(Ω) = G∗ then η(Ω) = 1 and one of the following
statements are true.

(a) Concentration: for some x0 in Ω η = δx0 , ζ = G∗δx0 and v = 0.
(b) Compactness: v is an extremal of G∗, η = |∇v|p(x), vε → v in W1,p(x)

0 (Ω) and G(vε)→ G(v) in L1(Ω).

Proof. Let η0 :=
∫

Ω |∇v|p(x)dx + η(Ω) and ζ0 =
∫

Ω hdx. By Inequality (20)

G∗ = ζ(Ω) ≤ G∗max

{
η(Ω)

q+

p− , η(Ω)
q−
p+

}
≤ G∗.

Thus, η(Ω) = η0 + ∑j∈J ηj = 1, further, if more than one ηj for j ∈ J′ := J ∪ {0} are less than one,
then due to strict convexity of function sn for n > 1 and s ∈ [0, 1]

1 =max


∑

j∈J′
ηj


q+

p−

,

∑
j∈J′

ηj


q−
p+

 =
ζ(Ω)

G∗
=

1
G∗ ∑

j∈J′
ζ j

≤ ∑
j∈J′

max

{
η

q+
p−
j , η

q−
p+

j

}
< ∑

j∈J′
ηj = 1,
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therefore, only one of the ηj is equal one and the rest of them are zeros. Statement (a) follows if η0 = 0
otherwise, we prove statement (b). Let η0 6= 0 then ηj = ζ j = 0 for all j ∈ J,

∫
Ω |∇v|p(x)dx + η(Ω) = 1

and
∫

Ω hdx = G∗. There is a subsequence vε
pointwise−−−−−→ v a.e in Ω and |v|q(x) ∗⇀ ζ∗ inM(Ω). As G is

upper semicontinuous, we have
G(v) = lim sup

ε→0
G(vε) a.e. (24)

Fatou’s lemma applied to sequence c|vε|q(x) − G(vε) gives us

G∗ = lim
ε→0

∫
Ω

G(vε)dx ≤
∫

Ω
lim sup

ε→0
G(vε)dx ≤

∫
Ω

G(v)dx

≤G∗max
{
‖∇v‖q+

Lp(x)(Ω)
, ‖∇v‖q−

Lp(x)(Ω)

}
≤ G∗.

Hence, ‖∇v‖Lp(x)(Ω) = 1, η = 0 and
∫

Ω G(v) = G∗. As, we have already discussed ζ∗ =

|v|q(x). So, ∫
Ω
|∇vε|p(x)dx →

∫
Ω
|∇v|p(x)dx and

∫
Ω
|vε|q(x)dx →

∫
Ω
|v|q(x)dx.

Then vε → v strongly in W1,p(x)
0 (Ω) and Lq(x)(Ω) due to the fact that vε ⇀ v in W1,p(x)

0 (Ω).
In other wards, |vε|q(x) → |v| in L1(Ω) and Growth condition (3) implies the sequence G(vε)

is equi-integrable and hence weakly compact due to the Dunford–Pettis compactness theorem,
whereas G(vε)

∗
⇀ h implies there is a subsequence such that

G(vε) ⇀ h weakly in L1(Ω). (25)

Upper semicontinuity of G gives us h ≤ G(v), but on the other hand
∫

Ω G(w)dx = G∗ =
∫

Ω hdx
which implies equality h = G(v) a.e. in Ω. Moreover, (24) implies [G(vε)− G(v)]+ → 0 a.e., G(vε) ≤
c|vε|q(x) due to Growth condition (3) and |vε|q(x) → |v|q(x) in L1(Ω). So, by Lebesgue dominated
convergence theorem ∫

Ω
[G(vε)− G(v)]+ dx → 0.

In addition, due to the weak convergence (25)∫
Ω
[G(vε)− G(v)]− dx =

∫
Ω
[G(vε)− G(v)] dx−

∫
Ω
[G(vε)− G(v)]+ dx → 0.

Together ∫
Ω
|G(vε)− G(v)| dx → 0,

the proof is complete.

4. Generalized Concentration Compactness Principle for Low Energies

In a model without external energy source, internal energies will run out eventually. We deal
with possible limit of low energy extremals of (4) and determine its shape. For v in W1,p(x)

0 (Ω) with
‖∇vε‖Lp(x)(Ω) ≤ ε, consider w := v/ε then by Growth condition (3) and Sobolev embedding (15)

∫
Ω

G(v)
εq(x)

dx ≤ G∗ε max{‖∇w‖q+

Lp(x)(Ω)
, ‖∇w‖q−

Lp(x)(Ω)
}. (26)

Theorem 3. Let p and q be log-Hölder continuous exponents with

1 < p− ≤ p+ < N, p ≤ q ≤ p∗ in Ω and C =: {x ∈ Ω : q(x) = p∗(x)} 6= ∅.
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Let {vε} be a sequence in W1,p(x)
0 (Ω) with ‖∇vε‖Lp(x)(Ω) ≤ ε. Take wε := vε/ε, If

• wε ⇀ w weakly in W1,p(x)
0 (Ω),

• |∇wε|p(x) ∗⇀ η in the sense of measure inM(Ω),
• ε−q(x)G(vε)

∗
⇀ ζ in the sense of measure inM(Ω).

Then, for a countable index set J

η = |∇w|p(x) + η + ∑
j∈J

ηjδxj , η(Ω) ≤ 1, (27)

ζ = h + ∑
j∈J

ζ jδxj , ζ(Ω) ≤ G∗, (28)

where {xj}j∈J ⊆ C, η is a positive nonatomic measure inM(Ω) and h ∈ L1(Ω). Moreover, atomic and regular
parts satisfy the following generalized Sobolev type inequalities

ζ j ≤ G∗max

{
η

q+

p−
j , η

q−
p+

j

}
, (29)

ζ(Ω) ≤ G∗max

{
η(Ω)

q+

p− , η(Ω)
q−
p+

}
, (30)

∫
Ω

hdx ≤ G∗max


(∫

Ω
|∇w|p(x)dx + η(Ω)

) q+

p−
,
(∫

Ω
|∇w|p(x)dx + η(Ω)

) q−
p+

 , (31)

h ≤ G+
0 |w|

q(x) a.e. in Ω, (32)

∫
Ω

hdx ≤ G+
0 S max


(∫

Ω
|w|p(x)dx

) q+

p−
,
(∫

Ω
|w|p(x)dx

) q−
p+

 . (33)

In order to prove generalized CCP of low energies, first we prove couple of auxiliary lemmas.

Lemma 2. Consider G∗(p(.), q(.),RN) and ε < 1. Then:

(a) G∗ε (p(.), q(.), Ω) ≤ G∗;
(b) G∗ = limε→0 G∗ε (p(.), q(.), Ω).

Proof. Take v ∈ W1,p(x)
0 (Ω) with ‖v‖Lp(x)(Ω) ≤ ε. Consider w = v(εq+/N x), then w is admissible for

G∗ and we have

G∗ ≥
∫
RN

G(w)dx = ε−q+
∫

Ω
G(v)dx ≥

∫
Ω

G(v)
εq(x)

dx,

taking supremum for all such v gives us (a) and

lim sup
ε→0

G∗ε (p(.), q(.), Ω) ≤ G∗.

On the other hand fix δ > 0, x0 in Ω. There exists w in W1,p(x)
0 (Ω) such that∫

RN
G(w)dx ≥ G∗ − δ.
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For sufficiently large r > 0 ∫
Br(0)

G(w)dx ≥ G∗ − 2δ.

By Proposition 5 there exist a cutoff test function φR
r , supported in BR(0) with∫

BR(0)
|∇(φR

r w)|p(x)dx ≤ 1 + δ.

Define

v := (φR
r w)

((
(1 + δ)1/(N−p+)

εq−/N

)
(x− x0)

)
,

for sufficiently small ε, v is supported in Ω and ‖∇v‖Lp(x)(Ω) ≤ ε. Now,

G∗ε (p(), q(), Ω) ≥
∫

Ω

G(v)
εq(x)

dx ≥ 1
εq−

∫
Ω

G(v)

=(1 + δ)
−N

N−p+
∫

BR(0)
G(φR

r w)dx ≥ (1 + δ)
−N

N−p+ (G∗ − 2δ).

Hence,
lim inf

ε→0
G∗ε (p(), q(), Ω) ≥ G∗.

Lemma 3. Let v in W1,p(x)
0 (Ω) with ‖∇v‖Lp(x)(Ω) ≤ ε. Take w = v/ε, δ > 0 and r < R satisfying r

R ≤ k(δ)
as in the Proposition 5. For x0 ∈ Ω and G satisfying the growth condition (3), following inequalities hold

∫
Br(x0)

G(v)
εq(x)

dx ≤ G∗ε max


(∫

BR(x0)
|∇w|p(x)dx + δ max

{
‖∇w‖p+

Lp(x)(Ω)
, ‖∇w‖p−

Lp(x)(Ω)

}) q+

p−
,

(∫
BR(x0)

|∇w|p(x)dx + δ max
{
‖∇w‖p+

Lp(x)(Ω)
, ‖∇w‖p−

Lp(x)(Ω)

}) q−
p+

 ,

(34)

∫
Ω\BR(x0)

G(v)
εq(x)

dx ≤ G∗ε max


(∫

Ω\Br(x0)
|∇w|p(x)dx + δ max

{
‖∇w‖p+

Lp(x)(Ω)
, ‖∇w‖p−

Lp(x)(Ω)

}) q+

p−
,

(∫
Ω\Br(x0)

|∇w|p(x)dx + δ max
{
‖∇w‖p+

Lp(x)(Ω)
, ‖∇w‖p−

Lp(x)(Ω)

}) q−
p+

 .

(35)

Proof. The proof is similar as of Lemma 1.

The generalized CCP for low energies is proved in the same manner of Theorem 1.

Proof of Theorem 3. Steps 1–4 are analogous with the use of Lemmas 2 and 3, as in proof of Theorem 1,
we just need to prove pointwise estimate (32) and Inequality (33) for the regular part. Indeed,
there exists a subsequence such that

|wε|q(x) ∗⇀ ζ∗ = |w|q(x) + ∑
j∈J

ζ∗j δxj or |wε − w|q(x) ∗⇀ ∑
j∈J

ζ∗j δxj .
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For A ⊆ Ω and s > 0∫
A

hdx ≤ζ(A) ≤ lim inf
ε→0

∫
A

G(vε)

εq(x)
dx

≤ lim sup
ε→0

∫
A∩{|wε |<s}

G(εwε)

εq(x)|wε|q(x)
|wε|q(x) + c lim sup

ε→0

∫
A∩{|wε |≥s}

|wε|q(x)dx

≤(G+
0 + o(1))ζ∗(A) + c lim sup

ε→0

(∫
A∩{|wε |≥s}

|w|q(x)dx +
∫

A
|wε − w|q(x)dx

)
.

However, as we know
lim
s→∞
|{x ∈ A : |wε| ≥ s}| = 0,

it yields that ∫
A

hdx ≤ G+
0 ζ∗(A) + c ∑

xj∈A

ζ∗j ≤ G+
0

∫
A
|w|q(x)dx + (1 + c) ∑

xj∈A

ζ∗j .

By Radon–Nikodym theorem, we deduce that h ≤ G+
0 |w|q(x) a.e. in Ω. Lastly, Inequality (33)

follows from integration and Sobolev inequality (15).

Lastly, we know ζ(Ω) ≤ G∗, but in case of equality and G−0 = G+
0 , in comparison to Theorem 2

compactness of low energies results into an approximation of Sobolev constant S i.e.,

∫
Ω

∣∣∣vε

ε

∣∣∣q(x)
dx → S when ε→ 0.

Theorem 4. In addition to assumptions of Theorem 3, if ζ(Ω) = G∗ then, η(Ω) = 1 and one of the following
statements hold.

(a) Concentration: for some x0 in Ω η = δx0 , ζ = G∗δx0 and w = 0.
(b) Compactness:

η = |∇w|p(x) + η, (36)

wε → w in Lq(x)(Ω), G∗ ≤ c
∫

Ω
|w|q(x)dx, (37)

ε−q(x)F(vε) ⇀ h weakly in L1(Ω), G∗ =
∫

Ω
hdx ≤ G+

0 S. (38)

If in addition G+
0 = G−0 then wε → w in W1,p(x)

0 (Ω), G∗ = G0S and w is an extremal for S.

Proof. Let η0 :=
∫

Ω |∇v|p(x)dx + η(Ω) and ζ0 =
∫

Ω hdx. By similar arguments in proof of Theorem 2,
η(Ω) = 1 and only one of the ηj in J′ = J ∪ {0} is one, and rest of them are zeros. If η0 = 0 then we
deduce (a). Let η0 6= 0 then ηj = ζ j = 0 for all j in J.

∫
Ω |∇v|p(x)dx + η(Ω) = 1 and

∫
Ω hdx = G∗.

There is a subsequence vε
pointwise−−−−−→ v a.e in Ω and |v|q(x) ∗⇀ ζ∗ inM(Ω). Then, ζ∗ = |w|q(x) and

wε → w strongly in Lq(x)(Ω).

By Growth condition (3)

G∗ =
∫

Ω
hdx ≤ c

∫
Ω
|w|q(x)dx and sequence ε−q(x)G(vε) is equi-integrable.

Therefore, by Dunford–Pettis compactness theorem for a subsequence

ε−q(x)G(vε) ⇀ h weakly in L1(Ω),
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in comparison with Theorem 2, convergence is not strong, the main reason for which is L1 norm is not
strictly convex.

Let that G+
0 = G−0 = G0 > 0, G0 cannot be zero. By Fatou’s lemma, we have G−0 S ≤ G∗ and

together with Inequality (33) yield

G∗ = ζ0 ≤ G∗max


(∫

Ω
|w|p(x)dx

) q+

p−
,
(∫

Ω
|w|p(x)dx

) q−
p+

 ≤ G∗.

The equality in above implies ‖∇w‖Lp(x)(Ω) = 1, therefore η = |w|p(x) and wε → w strongly in

W1,p(x)
0 (Ω). Fix s > 0

∫
Ω

G(vε)

εq(x)
dx ≤

∫
{|wε |<s}

G(εwε)

εq(x)
dx + c

∫
{|wε |≥s}

|wε|q(x)dx

≤ (G+
0 + o(1))

∫
Ω
|wε|q(x)dx +

∫
Ω

gs(wε)dx,

where for v in W1,p(x)
0 (Ω)

gs(v) =

{
|v|q(x), if |v| ≥ s;
0, otherwise.

Indeed, gs is upper semicontinuous, in a way that if vε
pointwise−−−−−→ v a.e in Ω then

gs(v) = lim sup
ε→0

gs(vε) a.e. in Ω.

Applying Fatou’s lemma to |wε|q(x) − gs(wε) results into

lim sup
ε→0

∫
Ω

gs(wε)dx ≤
∫

Ω
lim sup

ε→0
gs(wε)dx

≤
∫

Ω
gs(w)dx =

∫
{|w|≥s}

|w|q(x)dx.

Therefore, taking s→ ∞

G−0 S ≤ G∗ = lim
ε→0

∫
Ω

G(vε)

εq(x)
dx ≤ G+

0 lim
ε→0

∫
Ω
|wε|q(x)dx ≤ G+

0 S.

Hence,
lim
ε→0

∫
Ω
|wε|q(x)dx = S.

5. Conclusions and Future Work

The main work of this paper is to study a class of elliptic equations with general growth at
infinity for variable exponent Lebesgue spaces. The main results nicely determine the limit measures.
Therefore, with the proposed work, we can study several models in variable exponent settings,
for many fields like plasma physics, fluid mechanics and control systems. As future lines of research,
one can also explored concentration compactness principles for fractional Sobolev spaces and fractional
PDEs, we refer [21–26] for basic theory. One can also study the convergence of low energy extremals
with variational methods.
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