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Abstract: We establish a connection between random set theory and Boolean valued analysis by
showing that random Borel sets, random Borel functions, and Markov kernels are respectively
represented by Borel sets, Borel functions, and Borel probability measures in a Boolean valued
model. This enables a Boolean valued transfer principle to obtain random set analogues of available
theorems. As an application, we establish a Boolean valued transfer principle for large deviations
theory, which allows for the systematic interpretation of results in large deviations theory as versions
for Markov kernels. By means of this method, we prove versions of Varadhan and Bryc theorems,
and a conditional version of Cramér theorem.

Keywords: Boolean valued analysis; random sets; Markov kernels; large deviations

1. Introduction

A situation which often arises in probability theory is the necessity to generalize a known
unconditional theorem to a setting which is not unconditional any more. Instead, there is an infinity of
models depending on some parameter ω ∈ Ω, for a probability space (Ω,F ,P), and the theorem has
to be applied simultaneously to ‘almost all’ ω ∈ Ω. The formalization of this approach has motivated
new developments in probability theory such as [1,2]. In [3], the connection between the algebra of
conditional sets [1,4] and Boolean valued analysis [5] was provided. In the present paper, we provide
a similar connection for the framework of random set theory [2]. We aim to show that the well-known
set-theoretic techniques of Boolean valued analysis are perfectly suited to the type of applications of
random set theory. The advantage is that the present approach allows for applying the full power
of the set-theoretical methods. In particular, the so-called transfer principle of Boolean valued models
provides a tool for expanding the content of already available theorems to non-obvious analogues in
random set theory.

To reach this aim, we study the Boolean valued representation of different objects in random set
theory. First, we study the Boolean valued representations of random sets. The notion of a random
set gives meaning to random objects X whose realizations X(ω), ω ∈ Ω, take values as subsets of
some space X ; see [2]. These objects have an important role in mathematical finance and stochastic
optimization; see e.g., [6–10]. By considering the Boolean valued model associated with the underlying
probability space, we show that a random set corresponds to a Borel set in this model. Moreover,
we characterize when a random set corresponds to an open set, a closed set, or a compact set in the
model. Similar connections are provided for random Borel functions. Second, we study the Boolean
valued representation of Markov kernels in the model. Namely, we prove that a Markov kernel
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corresponds to a Borel probability measure in the model. Moreover, the Lebesgue integral of a random
Borel function with respect to a Markov kernel corresponds to the Lebesgue integral of a real-valued
function with respect to the corresponding Borel probability measure in the model. Third, we study
the Boolean valued representation of Markov kernels that stem from regular conditional distributions
of real-valued random variables. Namely, we show that a random variable corresponds to a random
variable in a Boolean valued model so that its regular conditional probability corresponds to its
probability distribution in the model. Moreover, this correspondence preserves arithmetic operations,
almost sure convergence, and sends conditionally independent random variables to (unconditional)
independent random variables in the model.

In probability theory, large deviations theory concerns the asymptotic behavior of sequences of
probability distributions; see, e.g., [11]. By means of the previous Boolean valued representations and
the Boolean valued transfer principle, we prove versions for sequences of Markov kernels of basics
results in large deviations theory. Namely, we obtain versions of Varadhan’s and Bryc’s theorems
and a conditional version of Cramér’s theorem for the sequence of sample means of a conditionally
independent identically distributed sequence of real-valued random variables. We emphasize that
these results are just instances of application of the transfer principle, whose number can be easily
increased. We point out that large deviations results for Markov kernels are particularly important in
the theory of random walks in random media and are called ‘quenched’ large deviations principles;
see, e.g., [12].

The paper is organized as follows: in Section 2, we recall some basics of Boolean valued analysis.
Section 3 is devoted to some preliminaries on random sets. In Section 4, we study the Boolean valued
representation of random sets and random functions. In Section 5, we study the Boolean valued
representation of Markov kernels. In Section 6, we study the Boolean valued representation of regular
conditional probability distributions. Finally, in Section 7, a Boolean valued transfer principle for large
deviations of sequences of Markov kernels is provided.

2. Basics of Boolean Valued Analysis

The main tool of Boolean valued analysis is Boolean valued models of set theory. The precise
formulation of Boolean valued models requires some familiarity with the basics of set theory and logic,
and, in particular, with first-order logic, ordinals and transfinite induction. For the convenience of the
reader, we will give some background. All the principles and results in this section are well-known,
and details can be found in [5].

Let us consider a universe of sets V satisfying the axioms of the Zermelo–Fraenkel set theory
with the axiom of choice (ZFC), and a first-order language L, which allows for the formulation of
statements about the elements of V. In the universe V, we have all possible mathematical objects
(real numbers, topological spaces, and so on). The language L consists of names for the elements
of V together with a finite list of symbols for logic symbols (∀, ∧, ¬, and parentheses), variables,
and the predicates = and ∈. Though we usually use a much richer language by introducing more
and more intricate definitions, in the end, any usual mathematical statement can be written using
only those mentioned. The elements of the universe V are classified into a transfinite hierarchy:
V0 ⊂ V1 ⊂ V2 ⊂ · · ·Vω ⊂ Vω+1 ⊂ · · · , where V0 = ∅, Vα+1 = P(Vα) is the family of all sets whose
elements come from Vα, and Vβ =

⋃
α<β Vα for limit ordinal β.

In the following, we consider an underlying probability space (Ω,F ,P), which is a member of
the universe V. Then, the associated measure algebra F := F/P−1(0) is a complete Boolean algebra
with ‘unity’ Ω̄ and ‘zero’ ∅̄, where Ω̄ := Ω/P−1(0) and ∅̄ := ∅/P−1(0), and Boolean operations

(A/P−1(0)) ∨ (B/P−1(0)) = (A ∪ B)/P−1(0), (A/P−1(0)) ∧ (B/P−1(0)) = (A ∩ B)/P−1(0),

(A/P−1(0))c := (Ω− A)/P−1(0)
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for A, B ∈ F . As usual, we write A ≤ B whenever A ∧ B = A. Furthermore, F has the countable chain
condition, that is, any partition of the unity Ω̄ by elements of F is at most countable. Although
we focus on the case of the measure algebra associated with a probability space, the following
constructions and principles work for any complete Boolean algebra, by replacing countable partitions
by arbitrary partitions.

The Boolean valued universe V(F ) is constructed by transfinite induction over the class Ord of
ordinals of the universe V. We start by defining V(F )

0 := ∅. If α + 1 is the successor of the ordinal

α, we define V(F )
α+1 to be the set of all functions u : D → F with D ⊂ V(F )

α . If α is a limit ordinal,

V(F )
α :=

⋃
β<α V(F )

β . Finally, let V(F ) :=
⋃

α∈Ord V(F )
α . Given u in V(F ), we define its rank as the least

ordinal α such that u is in V(F )
α+1 .

We consider a first-order language which allows us to produce statements about V(F ). Namely,
let L(F ) be the first-order language which is the extension of L by adding names for each element in
V(F ). Throughout, we will not distinguish between an element in V(F ) and its name in L(F ). Thus,
hereafter, the members of V(F ) will be referred to as names.

Suppose that ϕ is a formula in set theory, that is, ϕ is constructed by applying logical symbols
to atomic formulas u = v and u ∈ v. If ϕ does not have any free variable and all the constants in ϕ

are names in V(F ), then we define its Boolean truth value, say JϕK, which is a member of F and is
constructed by induction in the length of ϕ by naturally giving Boolean meaning to the predicates = and
∈, the logical connectives, and the quantifiers. Namely, the Boolean truth value of the atomic formulas
u ∈ v and u = v for u and v in V(F ) is defined by transfinite recursion as follows:

Ju ∈ vK =
∨

t∈dom(v)

v(t) ∧ Jt = uK,

Ju = vK =
∧

t∈dom(u)

(u(t)⇒ Jt ∈ vK) ∧
∧

t∈dom(v)

(v(t)⇒ Jt ∈ uK) ,

where, for A, B ∈ F , we denote A⇒ B := Ac ∨ B. For nonatomic formulas, we have

J(∃x)ϕ(x)K :=
∨

u∈V(F)

Jϕ(u)K and J(∀x)ϕ(x)K :=
∧

u∈V(F)

Jϕ(u)K;

Jϕ ∨ ψK := JϕK∨ JψK, Jϕ ∧ ψK := JϕK∧ JψK, Jϕ⇒ ψK := JϕKc ∨ JψK and J¬ϕK := JϕKc.

We say that a formula ϕ is satisfied in the model V(F ), whenever it is true with the Boolean truth
value, i.e., JϕK = Ω̄. Say that two names u, v are equivalent when Ju = vK = Ω̄. It is not difficult
to verify that the Boolean truth value of a formula is not affected when we change a name by an
equivalent one. However, the relation Ju = vK = Ω̄ does not mean that the functions u and v coincide.

In order to overcome these difficulties, we will consider the separated universe. Namely, let V(F ) be the
subclass of V(F ) defined by choosing a representative of the least rank in each class of the equivalence
relation {(u, v) : Ju = vK = Ω̄}.

In the model V(F ), we have all possible mathematical objects (real numbers, topological spaces,
and so on), and a full mathematical discussion is possible. For instance, if a name u satisfies that
Ju is a vector spaceK = Ω̄, we will say that u is a vector space in the model V(F ). If f , u, and v are names
such that J f : u→ vK = Ω̄, we will say that f is a function from u to v in the model V(F ). Throughout,
we will use this terminology for different mathematical objects without further explanations.

2.1. Principles in the Universe V(F )

Next, we recall some important principles.

Theorem 1. (Transfer Principle) If ϕ is a theorem of ZFC, then ϕ holds in the model V(F ).
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The transfer principle tells us that any available theorem holds true in the model V(F ).

Theorem 2. (Maximum Principle) Let ϕ(x0, x1, . . . , xn) be a formula with free variables x0, x1, . . . , xn

and suppose that u1, . . . , un ∈ V(F ). Then, there exists u0 ∈ V(F ) such that J(∃x)ϕ(x, u1, . . . , un)K =

Jϕ(u0, u1, . . . , un)K.

Theorem 3. (Mixing Principle) Let (Ak) ⊂ F be a countable partition of Ω̄ and (uk) a sequence of names.
Then, there exists a unique member u of V(F ) such that Ak ≤ Ju = ukK for all k ∈ N.

Given a countable partition (Ak) ⊂ F of Ω̄ and a sequence (uk) of elements of V(F ), we denote

by ∑ uk Ak, the unique name u in V(F ) satisfying Ak ≤ Ju = ukK for all k ∈ N.

2.2. Descent Operation

Given a member u of V(F ) with Ju 6= ∅K = Ω̄ we define its descent by

u↓ := {v ∈ V(F ) : Jv ∈ uK = Ω̄}.

2.3. Ascent Operation

Consider a nonempty set X of members of V(F ). We define the ascent X↑ of X to be the unique

representative in V(F ) of the name given by the function

X → F , u 7→ Ω.

Then, it is satisfied that X↑↓ =
{

∑ xk Ak : (Ak) ⊂ F is a countable partition of Ω̄, (xk) ⊂ X
}

.

2.4. Boolean Valued Representation

Definition 1. A nonempty set X is called a stable F -set if a function ∆ : X× X → F exists such that:

1. ∆(x, y) = ∆(y, x);
2. ∆(x, y) = Ω iff x = y;
3. ∆(x, z) ≥ ∆(x, y) ∧ ∆(y, z);
4. for every countable partition (Ak) ⊂ F of Ω̄ and sequence (xk) ⊂ X, there exists a unique x ∈ X such

that ∆(xk, x) ≥ Ak for all k ∈ N.

Given a sequence (xk) ⊂ X and a countable partition (Ak) ⊂ F of Ω̄, we denote by ∑ xk Ak the
unique element given by (4) above.

Remark 1. 1. The requirement in (4) above that x is unique is superfluous as the uniqueness can be proven
from (1) above; for more details, see, e.g., ([5], Section 3.4.2).

2. A stable F -set can be reformulated as a Boolean metric space by considering the Boolean metric
d(x, y) := ∆(x, y)c.

3. If u ∈ V(F ) satisfies that Ju 6= ∅K = Ω̄, then, due to the mixing principle, u↓ is a stable F -set for
∆(x, y) := Jx = yK.

Definition 2. Suppose that X, Y are stable F -sets. A function f : X → Y is said to be stable if f (∑ xk Ak) =

∑ f (xk)Ak for every sequence (xk) ⊂ X and countable partition (Ak) ⊂ F of Ω̄.
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A name u ∈ V(F ) is said to be a Boolean valued representation of the stable F -set X (or that X is a
Boolean valued interpretation of u) if there exists a stable bijection

X → u↓, x 7→ x•.

Proposition 1. Every stable F -set X admits a Boolean valued representation X↑, which is unique up to
bijections in the model V(F ).

Let X and Y be stable F -sets with Boolean valued representations X↑ and Y↑, respectively.

• Suppose that (X↑×Y↑)F is a name for the Cartesian product of X↑ and Y↑ in the model V(F ).
Then, (X×Y)↑ := (X↑×Y↑)F is a Boolean representation of the stable F -set X×Y. (Notice that
X×Y is a stable F -set by setting ∆X×Y((x, y), (x′, y′)) = ∆X(x, x′) ∧ ∆Y(y, y′).) More precisely,
there exists a bijection (x, y) 7→ (x, y)• : X×Y → (X↑×Y↑)F such that
J(x, y)• = (x•, y•)K = Ω̄ for all (x, y) ∈ X×Y.

• A nonempty subset S ⊂ X is said to be stable if for every countable partition (Ak) ⊂ F of Ω̄
and sequence (xk) ⊂ S it holds that ∑ xk Ak is again an element of S. Given a stable set S ⊂ X,
we define S↑ := {x• : x ∈ S}↑. Then, S↑ is a nonempty subset of X↑ in the model V(F ). Due to
the mixing principle, one has that x 7→ x• is a stable bijection between S and S↑↓. In addition,
the correspondence S 7→ S↑ is a bijection between the class of stable subsets of X↑ and the class of

names for nonempty subsets of X in the model V(F ).

• Suppose that f : X → Y is stable. Then, there exists a unique member f↑ of V(F ) such that f↑ is a
function from X↑ to Y↑ in the model V(F ) with J f↑(u•) = f (u)•K = Ω̄ for all u ∈ X.

Remark 2. The notion of stability plays a key role in related frameworks. In Boolean valued analysis, the
terminology cyclic or universally complete A -sets is used (here A is a complete Boolean algebra, for instance,
we can take A = F ), see [5]. In conditional set theory, the terminology stable set, stable function, and stable
collection are used, see [4]. In fact, the notion of conditional set is a reformulation of that of cyclic A -set;
see ([3], Theorem 3.1) and ([3], Remark 3.1). In the theory of L0-modules, the notion of stability is called
countable concatenation property; see [13], and, in random set theory, is called countable decomposability;
see [2].

2.5. Manipulation of Boolean Truth Values

We recall some useful rules to manipulate Boolean truth values. Suppose that X is a stable F -set.
Given a nonempty subset Y of X, we define the stable hull of Y to be

s(Y) :=
{
∑ yk Ak : (Ak) ⊂ F is a countable partition of Ω̄, (yk) ⊂ Y

}
.

Then, s(Y) is the smallest stable subset of X that contains Y. In particular, we can consider the
bijection y 7→ y• of s(Y) into its Boolean valued representation s(Y)↑.

Proposition 2. Let ϕ(x0, x1, . . . , xn) be a formula with free variables x0, x1, . . . , xn, and X a stable F -set.
Then, given a nonempty subset Y of X and u1, . . . , un ∈ V(F ),

J(∀x ∈ s(Y)↑)ϕ(x, u1, . . . , un)K =
∧

y∈Y
Jϕ(y•, u1, . . . , un)K,

J(∃x ∈ s(Y)↑)ϕ(x, u1, . . . , un)K =
∨

y∈Y
Jϕ(y•, u1, . . . , un)K.

is satisfied.
Moreover, it holds that
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1. J(∀x ∈ s(Y)↑)ϕ(x, u1, . . . , un)K = Ω̄ if and only if Jϕ(y•, u1, . . . , un)K = Ω̄ for all y ∈ Y;
2. J(∃x ∈ s(Y)↑)ϕ(x, u1, . . . , un)K = Ω̄ if and only if Jϕ(y•, u1, . . . , un)K = Ω̄ for some y ∈ s(Y).

2.6. Boolean Valued Numbers

Denote by L0(F ;N), L0(F ;Q), L0(F ;R) and L0(F ;R) the spaces of classes of equivalence
of P—almost surely equal F -measurable random variables with values in the natural numbers,
rational numbers, real numbers, and extended real numbers, respectively. Given η, ξ ∈ L0(F ;R),
the inequalities η ≤ ξ and η < ξ are understood in the almost sure sense. It is well known that
any nonempty subset S of L0(F ;R) has a (unique) supremum in L0(F ;R) for the particular other
≤, which we denote by ess.supS; see e.g., ([14], Section A.5). In particular, L0(F ;R) is a Dedekind
complete ring lattice for the partial order ≤. Similarly, we denote by ess.infS the infimum of S.
For η, ξ ∈ L0(F ;R), we set

1. {η = ξ} := {ω : η0(ω) = ξ0(ω)}/P−1(0),
2. {η ≤ ξ} := {ω : η0(ω) ≤ ξ0(ω)}/P−1(0),

where η0, ξ0 are representatives arbitrarily chosen of η, ξ, respectively.
By applying the maximum and transfer principles, there exist names NF , QF , RF , and RF for

the sets of natural numbers, rational numbers, real numbers, and extended real numbers, respectively,
in the model V(F ). Takeuti [15] proved that RF is a Boolean valued representation of L0(F ;R).
This fact amounts to the following; see [3,16]. There exists a bijection

ιF : L0(F ;R)→ RF ↓, ξ 7→ ξ•

such that

(R1) (∑ 1Ak ξk)
• = ∑ ξ•k Ak for every sequence (ξk) ⊂ L0(F ;R) and countable partition (Ak) ⊂ F of

Ω̄. (Here, by convention we set 0(±∞) := 0.)
(R2) J0• = 0K = Ω̄, Jn• = nK = Ω̄ for every n ∈ N.
(R3) ιF bijects L0(F ;N) into NF ↓.
(R4) ιF bijects L0(F ;Q) into QF ↓.
(R5) ιF bijects L0(F ;R) into RF ↓.
(R6) Jξ• + η• = ς•K = {ξ + η = ς}, and Jξ•η• = ς•K = {ξη = ς} for every ξ, η, ς ∈ L0(F ;R).
(R7) Jξ• = η•K = {ξ = η}, and Jξ• ≤ η•K = {ξ ≤ η} for every ξ, η ∈ L0(F ;R).
(R8) If S ⊂ L0(F ;R) is stable; then,

J(ess.supS)• = sup S↑K = Ω̄, J(ess.infS)• = inf S↑K = Ω̄.

Remark 3.

1. Since N and Q are countable, we have that L0(F ;N) = s(N) and L0(F ;Q) = s(Q). Then, in view
of Proposition 2, we can reduce all essentially countable quantifiers in the model V(F ), like ∀n ∈ N,
∃q ∈ Q..., to check constant names for n ∈ N, q ∈ Q,... This type of manipulation of Boolean truth values
will be done throughout without further explanations.

2. Consider a member u of V(F ) with Ju 6= ∅K = Ω̄. Suppose that (vn) is a sequence of elements of u↓.
For any n ∈ L0(F ;N), define vn := ∑

k∈N
vk{n = k}. The function

v· : NF ↓ → u↓, n• 7→ vn

is well-defined due to (R3) and stable due to (R1). Then, we can consider v·↑, which is a name for a
sequence in the model V(F ) such that Jv·↑(n•) = vnK = Ω̄ for all n ∈ N. Conversely, suppose that w is a
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sequence of elements of v in the model V(F ), i.e., Jw : N→ uK = Ω̄. Then, we can consider a sequence
(un) ⊂ v↓ with Jun = w(n•)K = Ω̄ for each n ∈ N.

Remark 4. A fundamental result in Boolean valued analysis is the so-called Gordon’s theorem, which states that
the field of real numbers of a Boolean valued universe (associated with an arbitrary complete Boolean algebra) is
the Boolean valued representation of a universally complete vector lattice [17]. This result was complemented by
Kusraev and Kutateladze by establishing that any universally complete vector lattice is the interpretation of the
field of real numbers in a suitable Boolean valued universe; see e.g., ([5], Section 5.2). In the particular case of
the model V(F ), the universally complete vector lattice L0(F ;R) is the interpretation of the field of real numbers
RF in the model V(F ), which was fruitfully exploited by Takeuti [15]. For more details about the Gordon’s
theorem, we refer to [18].

3. Preliminaries on Random Sets

We next recall some basics of random sets, for a detailed account, we refer to [2]. Hereafter,
(Ω,F ,P) is a complete probability space. (If (Ω,F ,P) is not complete, we can always consider the
completion F̃ := F ∨ P−1(0) and the corresponding extension P̃ of P on F̃ . Notice that F and F̃
produce the same measure algebra F and, consequently, the same model V(F ).) Throughout, X is an
infinite Polish space (i.e., a separable completely metrizable topological space). We denote by L0(F ;X )

the space of classes of equivalence of F -measurable random variables with values in X , and by
B(X ) the Borel σ-algebra of X . For a sequence (ξn) ⊂ L0(F ;X ), we write limn ξn = ξ whenever
limn ξn(ω) = ξ(ω) for a.e. ω ∈ Ω.

We consider the product σ-algebra F ⊗B(X ). Under the present assumptions, projections onto
Ω are measurable and measurable selectors exist. Namely, the following proposition holds true;
see, e.g., ([19], Theorem 5.4.1).

Proposition 3. for every M ∈ F ⊗ B(X ) the following is satisfied:

(A) the projection πΩ(M) onto Ω is an element of F ;
(B) there exists ξ ∈ L0(F ;X ) such that ξ(ω) ∈ Mω for a.e. ω ∈ πΩ(M), where Mω = {x : (ω, x) ∈ M}

denotes the ω-section of M.

A set-valued mapping X : Ω ⇒ X is said to be an F -measurable random Borel set (shortly, random
Borel set) if its graph

Gph(X) := {(ω, x) ∈ Ω×X : x ∈ X(ω)}

is an element of F ⊗B(X ). Throughout, we identify two random Borel sets X, Y whenever X(ω) =

Y(ω) for a.e. ω ∈ Ω. We denote by BF (X ) the set of all (equivalence classes of) random Borel sets.
Given X ∈ BF (X ), we say that ξ ∈ L0(F ;X ) is an a.s. F -measurable selector of X if ξ(ω) ∈ X(ω)

for a.e. ω ∈ Ω. We denote by L0(F ; X) the set of all a.s. F -measurable selectors of X. Due to (B) in
Proposition 3, L0(F ; X) is nonempty whenever X is a.s. nonempty. Regarding a set E ∈ B(X ) as a
constant set-valued mapping, we denote by L0(F ; E) the set of classes of equivalence of F -valued
variables with values in E. Suppose that X ∈ BF (X ):

• Say that X is a random closed set if X(ω) is closed for a.e. ω ∈ Ω;
• say that X is a random open set if X(ω) is open for a.e. ω ∈ Ω;
• say that X is a random compact set if X(ω) is compact for a.e. ω ∈ Ω.

Suppose that ξ ∈ L0(F ;X ) and X, Y ∈ BF (X ) and let ξ0, X0, Y0 be representatives arbitrarily
chosen of ξ, X, Y, respectively. We write

1. {ξ ∈ X} := {ω ∈ Ω : ξ0(ω) ∈ X0(ω)}/P−1(0);
2. {X = Y} := {ω ∈ Ω : X0(ω) = Y0(ω)}/P−1(0);
3. {X ⊂ Y} := {ω ∈ Ω : X0(ω) ⊂ Y0(ω)}/P−1(0).
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We say that a function F : Ω×X → R is:

• A random Borel function if F is measurable, where Ω×X and R are endowed with the σ-algebras
F ⊗B(X ) and B(R), respectively;

• essentially bounded if there exists η ∈ L0(F ;R) such that, for every ξ ∈ L0(F ;X ),

|F(ω, ξ(ω))| ≤ η(ω) for a.e. ω ∈ Ω.

holds.

Two random Borel functions F, G are identified whenever F(ω, ·) = G(ω, ·) for a.e. ω ∈ Ω.
We denote by BRF (X ) the set of (equivalence classes of) random Borel functions, and by BRb,F (X ) the
set of (equivalence classes of) functions F ∈ BRF (X ) which are essentially bounded.

Given F, G ∈ BRF (X ), we write F � G whenever F(ω, ·) ≤ G(ω, ·) for a.e. ω ∈ Ω. Then,
the binary relation ≤ is a partial order on BRF (X ).

Given a sequence (Fn) in BRF (X ), we write limn Fn = F for F ∈ BF (X ) if for a.e. ω ∈ Ω it is
satisfied that limn F(ω, x) = F(ω, x) for all x ∈ X .

We say that F ∈ BRF (X ) is random continuous if, for every sequence (ξn) ⊂ L0(F ;X ), we have

lim
n

F(ω, ξn(ω)) = F(ω, ξ(ω)) for a.e. ω ∈ Ω

whenever
lim

n
ξn(ω) = ξ(ω) for a.e. ω ∈ Ω.

Denote by CR
F (X ) (resp. CR

b,F (X )) the set of all random continuous functions F in BRF (X )

(resp. BRb,F (X )).

4. Boolean Valued Representation of Random Sets and Random Functions

For every sequence (ξk) ⊂ L0(F ;X ) and countable partition (Ak) ⊂ F of Ω̄, denote by ∑ 1Ak ξk
the unique member ξ ∈ L0(F ;X ) such that ξ(ω) = ξk(ω) for a.e. ω ∈ Ak, for all k ∈ N. Then,
the space L0(F ;X ) is a stable F -set by defining ∆(ξ, η) := {ξ = η}. Therefore, due to Proposition 1,
L0(F ;X ) admits a Boolean valued representation, say L0(F ;X )↑. More specifically, there exists a
bijective mapping

L0(F ;X )→ L0(F ;X )↑, ξ 7→ ξ•

such that
(
∑ 1Ak ξk

)•
= ∑ ξ•k Ak for all countable partition (Ak) ⊂ F of Ω̄ and sequence (ξk) ⊂

L0(F ;X ).

4.1. Boolean Valued Representation of Random Borel Sets

Takeuti [15] showed that the elements of the product σ-algebra F ⊗B(R) correspond to real Borel
sets in the model V(F ). Next, we extend this result to an arbitrary Polish space X by showing that
each random Borel set X ∈ BF (X ) corresponds to a Borel subset of L0(F ;X )↑ in the model V(F ).
Furthermore, we characterize open, closed, and compact sets of L0(F ;X )↑ in the model V(F ).

Given X ∈ BF (X ), we denote by X? the unique element of V(F ) equivalent to the name given by
the function

L0(F ;X )↑ → F , ξ• 7→ {ξ ∈ X}.

If X is a.s. nonempty, then L0(F ; X) is a stable set. In that case, it is not difficult to show that
JL0(F ; X)↑ = X?K = Ω̄. A manipulation of Boolean truth values shows the following.

Proposition 4. Suppose that X, Y, Z ∈ BF (X ), then:

1. Jξ• ∈ X?K = {ξ ∈ X} for all ξ ∈ L0(F ;X );
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2. JX? ⊂ Y∗K = {X ⊂ Y};
3. JX? ∪Y? = Z?K = {X ∪Y = Z};
4. JX? ∩Y? = Z?K = {X ∩Y = Z};
5. J(X?)c = Z?K = {Xc = Z}.

Due to (2) in Remark 3, every sequence (Xn) ⊂ BF (X ) corresponds to a sequence X·↑ of subsets
of L0(F ;X )↑ in the model V(F ). A manipulation of Boolean truth values bearing in mind (1) in
Remark 3 yields the following.

Proposition 5. Let (Xn) ⊂ BF (X ) be a sequence and Y ∈ BF (X ). Then,

1. J
⋃

n X?
n = Y?K = {⋃n Xn = Y};

2. J
⋂

n X?
n = Y?K = {⋂n Xn = Y}.

Let d : X ×X → R be any metric compatible with the topology of X . Consider the random metric

d̃ : L0(F ;X )× L0(F ;X )→ L0(F ;R),

given by d̃(ξ, η)(ω) := d(ξ(ω), η(ω)) for a.e. ω ∈ Ω. Then, d̃ is a stable function and therefore we can
consider a name d̃↑ with Jd̃↑ : L0(F ;X )↑ × L0(F ;X )↑ → RK = Ω̄. Furthermore, a manipulation of
Boolean truth values shows that, in the model V(F ), d̃↑ is a metric on L0(F ;X )↑.

Suppose that (ξn) ⊂ S is a sequence in a stable subset S. Due to (2) in Remark 3, ξ·↑ is a name for
a sequence in S↑ in the model V(F ). As a consequence of Takeuti ([15], Proposition 2.2.1), we have
the following.

Lemma 1. Let (ξn) be a sequence in L0(F ;X ). Then, limn d̃(ξn, ξ) = 0 iff Jlimn d̃↑(ξ•n, ξ•) = 0K = Ω̄.

Lemma 2. Let X, Y ∈ BF (X ) be a.s. nonempty. If L0(F ; X) = L0(F ; Y), then X(ω) = Y(ω) for
a.e. ω ∈ Ω.

Proof. Let X0, Y0 be representatives of X, Y, respectively. Define

M := {(ω, x) ∈ Ω×R : x ∈ X0(ω), x /∈ Y0(ω)}.

Due to (A) in Proposition 3, the projection πΩ(M) is an element of F . Then, P(πΩ(M)) = 0.
Otherwise, due to (B) in Proposition 3, we can find ξ ∈ L0(F ; X) such that ξ /∈ L0(F ; Y),
which contradicts our assumption.

Definition 3. We say that a subset S ⊂ L0(F ;X ) is sequentially closed if for every sequence (ξn) ⊂ S such
that limn→∞ d̃(ξn, ξ) = 0 it holds that ξ ∈ S.

In the case X = Rd (d ∈ N), Kabanov and M. Safarian ([19], Proposition 5.4.3) proved that a stable
set is sequentially closed if and only if it is the set of measurable selectors of a random closed set.
This was generalized in [20], Theorem 5.1 to an arbitrary Polish space X ; see also ([16], Theorem 5.4.1).
We complement this result by providing the corresponding Boolean valued representation.

Proposition 6. Suppose that S ⊂ L0(F ;X ) is stable. The following conditions are equivalent:

1. There exists a random closed set X such that S = L0(F ; X);
2. S is sequentially closed;
3. JS↑ ⊂ L0(F ;X )↑ is closedK = Ω̄.

In that case, if L0(F ; X) = L0(F ; Y), then X(ω) = Y(ω) for a.e. ω ∈ Ω.
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Proof. (1) ⇔ (2) is precisely ([20], Theorem 5.1). (2) ⇔ (3) follows by a manipulation of Boolean
truth values taking into account Lemma 1 and Remark 3.

Definition 4. We say that S ⊂ L0(F ;X ) is open if for every ξ ∈ S there exists ε ∈ L0(F ; (0,+∞)) such
that {η ∈ L0(F ;X ) : d̃(ξ, η) ≤ ε} ⊂ S.

Proposition 7. Suppose that S ⊂ L0(F ;X ) is stable. The following conditions are equivalent:

1. There exists a random open set X such that S = L0(F ; X);
2. S is open;
3. JS↑ ⊂ L0(F ;X )↑ is openK = Ω̄.

In that case, if L0(F ; X) = L0(F ; Y), then X(ω) = Y(ω) for a.e. ω ∈ Ω.

Proof. (2)⇔ (3) is verified by a manipulation of Boolean truth values.
(1) ⇒ (3): Let M := Gph(Xc). Due to (A) in Proposition 3, Ω0 := πΩ(M) is an element of F .

Consider the random Borel set Y where Y(ω) := Xc(ω) for a.e. ω ∈ Ω0 and Y(ω) := X for a.e. ω ∈ Ωc
0.

Then, Y is a random closed set and, consequently, L0(F ; Y)↑ is a closed set in the model V(F ) due to
Proposition 6. On the one hand, we have

JL0(F ; X)↑c = L0(F ; Yc)↑K = Ω̄0.

On the other hand, JL0(F ; X)↑c = ∅K = Ω̄c
0. Thus, JL0(F ; X)↑c is closedK = Ω̄, hence L0(F ; X)↑

is an open set in the model V(F ).
(3)⇒ (1): If JS↑ is openK = Ω̄, then JS↑c is closedK = Ω̄. Define

C := {ξ ∈ L0(F ;X ) : Jξ• ∈ S↑cK = A}

where A := JS↑c 6= ∅K. Then, C is a stable set such that JC↑ is closedK = Ω̄. Therefore, there exists
a random closed set Y such that C = L0(F ; Y) due to Proposition 6. Let X ∈ BF (X ) be such that
X(ω) := Yc(ω) for a.e. ω ∈ A and X(ω) := X for a.e. ω ∈ Ac. Then, X is a random open set such that
S = L0(F ; X).

Definition 5. We say that S ⊂ L0(F ;X ) is stably compact if S is stable and, for every sequence (ξn) ⊂ S,
there exist ξ ∈ S and a sequence (nk) ⊂ L0(F ;N) with n1 < n2 < . . . such that limk d̃(ξnk , ξ) = 0. Here,
ξn = ∑k∈N ξk{n = k} for n ∈ L0(F ;N).

The notion of stable compactness is standard in Boolean valued analysis. Usually, the terminology
cyclical compactness is employed. It is well known that stable compact sets are represented by compact
sets in the Boolean valued model; see, e.g., [21,22], which amount to the equivalence (1)⇔ (2) below
in the present context. In conditional set theory, it is used the terminology conditional compactness;
see [3,4,20]. In particular, it was proven in ([23], Theorem 5.12) and ([16], Theorem 5.4.2) that, in the
case that X = R (d ∈ N), a set is stably compact if and only it is the set of measurable selectors of a
random compact set. All these known results amount to the following.

Proposition 8. Suppose that S ⊂ L0(F ;X ) is stable. The following conditions are equivalent:

1. S is stably compact;
2. JS↑ ⊂ L0(F ;X )↑ is compactK = Ω̄.

If X = Rd with d ∈ N, the conditions (1) and (2) are equivalent to

3. There exists a random compact set X such that S = L0(F ; X).

In that case, if L0(F ; X) = L0(F ; Y), then X(ω) = Y(ω) for a.e. ω ∈ Ω.
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The following result was obtained by Takeuti [15] in the case X = R. For the general case, we need
to rely on Proposition 7.

Proposition 9. u ∈ V(F ) is a Borel subset of L0(F ;X )↑ in the model V(F ) if and only if there exists
X ∈ BF (X ) such that JX? = uK = Ω̄.

Proof. Consider the collection

H := {u ∈ V(F ) : ∃X ∈ BF (X ) s.t. Ju = X?K = Ω̄}.

Notice that H ⊂ V(F ) is stable. Moreover, H↑ is a collection of subsets of L0(F ;X )↑ in the
model V(F ). Then, due to Propositions 4 and 5,H↑ is a σ-algebra in the model V(F ). Furthermore, due

to Proposition 7,H↑ contains all the open subsets of L0(F ;X )↑ in the model V(F ). We conclude that,

for every u which is a Borel set in the model V(F ), there exists X ∈ BF (X ) such that Ju = X?K = Ω̄.
For the converse, consider the collection

H′ := {M ∈ F ⊗ B(X ) : JM?
· is a Borel setK = Ω̄}

where M· denotes the random Borel set ω 7→ Mω . If M = A×O with A ∈ F and O ⊂ X open, we have
that M?

· = L0(F ; O)↑Ā + ∅Āc, which is an open set in the model V(F ) due to Proposition 7. Due to
Propositions 4 and 5,H′ is a σ-algebra. It follows thatH′ = F ⊗B(X ). The proof is complete.

By noting that, if X ∈ BF (X ) is a.s. nonempty, then JL0(F ; X)↑ = X?K = Ω̄, we can rewrite
Proposition 9 in terms of sets of a.s. measurable selectors.

Corollary 1. Suppose that S ⊂ L0(F ;X ) is stable. The following conditions are equivalent:

1. There exists a random Borel set X such that S = L0(F ; X);
2. JS↑ ⊂ L0(F ;X )↑ is a Borel setK = Ω̄.

In that case, if X, Y are random Borel sets such that S = L0(F ; X) = L(F ; Y), then X(ω) = Y(ω) for
a.e. ω ∈ Ω.

4.2. Boolean Valued Representation of Random Borel Functions

In the following, we connect random Borel functions and random continuous functions with
Borel functions and continuous functions, respectively, in the model V(F ). Takeuti [15] established
a similar connection between the so-called pseudo-Baire functions and (R to R) Baire functions in the
model V(F ). Since the class of Baire functions equals the class of Borel functionals in the R to R case,
the connections provided below extends the results in [15] to the case of a general Polish space X
instead of R.

For F ∈ BRF (X ), we define F̃ : L0(F ;X ) → L0(F ;R), where for each ξ ∈ L0(F ;X ) we set
F̃(ξ)(ω) := F(ω, ξ(ω)) for a.e. ω ∈ Ω. Since F̃ : L0(F ;X ) → L0(F ;R) is stable, we can define F̃↑,
which is a function from L0(F ;X )↑ to R in the model V(F ).

Lemma 3. Let F, G ∈ BRF (X ). If F̃(ξ) ≤ G̃(ξ) for all ξ ∈ L0(F ;X ), then F � G. In particular, if F̃ = G̃,
then F = G.

Proof. Fix F0, G0 representatives of F, G, respectively. Define

M :=
{
(ω, x) ∈ Ω×X : F0(ω, x) > G0(ω, x)

}
.
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Due to (A) in Proposition 3, the projection πΩ(M) is an element of F . Then, P(πΩ(M)) = 0.
Otherwise, due to (B) in Proposition 3, we can find ξ ∈ L0(F ;X ) such that F̃(ξ)(ω) > G̃(ξ)(ω) for
a.e. ω ∈ P(πΩ(M)), which contradicts our assumption.

Proposition 10. Suppose that F, G ∈ BF (X ), then the following conditions are equivalent:

1. F � G;
2. F̃(ξ) ≤ G̃(ξ) for every ξ ∈ L0(F ;X );
3. J(∀x)F̃↑(x) ≤ G̃↑(x)K = Ω̄.

Proof. (2)⇔ (3) follows by manipulation of Boolean truth values.
(1)⇒ (2) is clear, and (2)⇒ (1) is Lemma 3.

Due to Remark 3, any sequence (Fn) ⊂ BRF (X ) corresponds to a sequence F·↑ of functions in the
model V(F ).

Proposition 11. Suppose that F, Fn ∈ BF (X ) for every n ∈ N. The following conditions are equivalent:

1. limn Fn = F;
2. limn F̃n(ξ) = F̃(ξ) for every ξ ∈ L0(F ;X );
3. J(∀x) limn F̃n↑(x) = F̃↑(x)K = Ω̄.

Proof. (2)⇔ (3) follows by manipulation of Boolean truth values.
(1)⇒ (2) is clear.
(2)⇒ (1): Fix F0, G0 representatives of F, G, respectively. Define

M :=
{
(ω, x) ∈ Ω×X : lim sup

n
F0

n(ω, x) 6= F0(ω, x)
}

.

Due to (A) in Proposition 3, the projection πΩ(M) is an element of F . Then, P(πΩ(M)) = 0.
Otherwise, due to (B) in Proposition 3, we can find ξ ∈ L0(F ;X ) such that lim supn F̃(ξ)(ω) 6= F̃(ξ)(ω)

for a.e. ω ∈ P(πΩ(M)), which contradicts our assumption. The argumentation for the limit inferior
is similar.

The following lemma was proven in ([15], Proposition 2.4.1) in the case X = R. The general case
follows by the same argument.

Lemma 4. Suppose that (Fn) ⊂ BRF (X ). If J(∀x) limn Fn↑(x) = u(x)K = Ω̄, then there exists F ∈ BRF (X )

such that limn Fn = F and JF̃↑ = uK = Ω̄.

Proposition 12. Let f : L0(F ;X )→ L0(F ;R) be a stable function. The following conditions are equivalent:

1. There exists F ∈ BRF (X ) such that f = F̃;
2. J f↑ is Borel measurableK = Ω̄.

In that case, if f = F̃ = G̃ for F, G ∈ BRF (X ), then F = G.

Proof. 1⇒ 2: Define
H :=

{
F̃↑ : F ∈ BRF (X )

}
.

Notice thatH ⊂ V(F ) is stable. Then,H↑ is a collection of functions from L0(F ;X )↑ to R in the
model V(F ). We prove that H↑ contains all the Borel measurable functions from L0(F ;X )↑ to R in

the model V(F ). Supposing that u ∈ V(F ) is a characteristic function on a Borel subset of L0(F ;X )↑
in the model V(F ), then Ju = 1X?K = Ω̄ for some X ∈ BF (X ), due to Proposition 9. In that case,
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Ju = F̃↑K = Ω̄ with F = 1Gph(X). In the model V(F ), H↑ is closed under linear combinations and,
due to Lemma 4, is also closed under limits. Therefore,H↑ contains all the Borel measurable functions
in the model V(F ).

2⇒ 1: Define
H := {F ∈ BRF (X ) : JF̃↑ is Borel measurableK = Ω̄}.

We prove that BRF (X ) ⊂ H. If F = 1M for some M ∈ F ⊗ B(X ), then JF̃↑ = 1(M·)?K = Ω̄,
where M· : ω 7→ Mω . The collectionH is closed under linear combinations. In addition, if F = limn Fn

with (Fn) ⊂H , then for any ξ ∈ L0(F ;X )

lim
n

F̃n↑(ξ•) =
(

lim
n

F̃n(ξ)
)•

= (F̃(ξ))• = F̃↑(ξ•)

in the model V(F ). Then, F̃↑ is limit of Borel function, hence it is Borel measurable in the
model V(F ).

The following result is proven word by word as in the case X = R; see ([15], Theorem 2.3.2).

Proposition 13. Let f : L0(F ;X )→ L0(F ;R) be a stable function. The following conditions are equivalent:

1. There exists F ∈ CR
F (X ) such that f = F̃;

2. J f↑ is continuousK = Ω̄.

In that cases, if f = F̃ = G̃ for F, G ∈ CR
F (X ), then F = G.

5. Boolean Valued Representation of Markov Kernels

Next, we recall the notion of Markov kernel, which is a fundamental object in probability theory.

Definition 6. Let κ : Ω×B(X )→ [0, 1] be a function.

• κ is called an essential Markov kernel if:

1. κ(·, E) : Ω→ [0, 1] is F -measurable for all E ∈ B(X );
2. κ(ω,X ) = 1, κ(ω, ∅) = 0 for a.e. ω ∈ Ω;
3. If (En) ⊂ B(X ) and Ei ∩ Ej for i 6= j, then κ (ω,

⋃
En) = ∑ κ(ω, En) for a.e. ω ∈ Ω.

• An essential Markov kernel κ is called a Markov kernel if κ(ω, ·) : B(X ) → [0, 1] is a probability
measure for all ω ∈ Ω.

Lemma 5. ([24], Theorem 1) If µ is an essential Makov kernel, there exists a Markov kernel κ such that
µ(ω, E) = κ(ω, E) for a.e. ω ∈ Ω, for all E ∈ B(X ).

Lemma 6. Let κ : Ω× B(X ) → [0, 1] be a Markov kernel and X ∈ BF (X ). If X0 is a representative of X,
then ω 7→ κ(ω, X0(ω)) is measurable.

Proof. Define
H := {M ∈ F ⊗ B(X ) : κ(·, M·) is measurable} .

Above, M· denotes ω 7→ Mω. First, if M = A× E with A ∈ F and E ∈ B(X ), we have that
κ(·, M·) = 1Aκ(·, E), which is measurable. Hence, F ×B(X ) ⊂ H. In particular, we have Ω×X ∈ H.
We prove thatH is a Dynkin system, i.e.,H is closed under proper differences and under the unions of
increasing sequences of sets. If L, M ∈ H with L ⊂ M, we have that κ(·, (M− L)·) = κ(·, M· − L·) =
κ(·, M·)− κ(·, L·) is measurable. If (Mn) is an increasing sequence of elements of H, then it follows
that κ(·, (⋃n Mn)·) = limn κ(·, (Mn)·) is measurable. Finally, since F ×B(X ) is a π-system (i.e., closed
under finite intersections), we conclude thatH = F ⊗B(X ) by Dynkin’s π-λ theorem; see, e.g., ([25],
Theorem 1.6.2).
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Given a Markov kernel κ : Ω×B(X )→ [0, 1], we define

κ̃ : BF (X )→ L0(F ; [0, 1]),

where κ̃(X)(ω) = κ(ω, X(ω)) for a.e. ω ∈ Ω. Note that κ̃ is well-defined due to Lemma 6. Then,
the function

{X? : X ∈ BF (X )} → RF ↓, X? 7→ κ̃(X)•

is stable. Notice that, due to Proposition 9, {X? : X ∈ BF (X )} is the descent of the Borel σ-algebra on
L0(F ;X )↑ in the model V(F ). We can consider a name κ̃↑ that satisfies Jκ̃↑ : B(L0(F ;X )↑)→ [0, 1]K =
Ω̄ and

Jκ̃(X)• = κ̃↑(X?)K = Ω̄ for all X ∈ BF (X ).

Then, a manipulation of Boolean truth values bearing in mind Propositions 4 and 5 proves
the following.

Proposition 14. Let κ : Ω×B(X ) → [0, 1] be a Markov kernel. Then, κ̃↑ is a Borel probability measure in
the model V(F ).

In a converse direction, we have the following.

Proposition 15. Suppose that Q is a Borel probability measure in the model V(F ). Then, there exists a Markov
kernel κ : Ω × B(X ) → [0, 1] such that JQ = κ̃↑K = Ω̄. Moreover, if κ, τ are Markov kernels such that
JQ = κ̃↑ = τ̃↑K = Ω̄, then κ(ω, ·) = τ(ω, ·) for a.e ω ∈ Ω.

Proof. Given E ∈ B(X ), we denote again by E the (class of the) constant random set ω 7→ E.
Take ξE ∈ L0(F ;X ) such that Jξ•E = Q(E?)K = Ω̄. By choosing a representative of ξE for each
E ∈ B(X ), we can define µ : Ω×B(X )→ [0, 1] such that µ(·, E) isF -measurable and µ(ω, E) = ξE(ω)

for a.e. ω ∈ Ω. Then, µ is an essential Markov kernel. Due to Lemma 5, there exists a Markov kernel κ

such that κ(ω, E) = µ(ω, E) for a.e. ω, for all E ∈ B(X ). Define

H := {M ∈ F ⊗ B(X ) : Jk̃↑(M?
· ) = Q(M?

· )K = Ω̄}.

For M = A × E with A ∈ F and E ∈ B(X ), we have that κ(ω, Mω) = 1A(ω)κ(ω, E) =

1A(ω)µ(ω, E) = 1A(ω)ξE(ω) for a.e. ω. In the model V(F ), it holds that

κ̃↑(M?
· ) = ξ•E Ā + 0Āc = Q(E?)Ā + Q(∅)Āc = Q(M?

· ).

By Propositions 4 and 5,H is a σ-algebra, henceH = F ⊗B(X ).
Finally, suppose that κ, τ are Markov kernels with JQ = κ̃↑ = τ̃↑K = Ω̄. If E ∈ B(X ), then, in the

model V(F ), it holds
κ̃(E)• = κ̃↑(E?) = τ̃↑(E?) = τ̃(E)•.

Hence, κ(ω, E) = τ(ω, E) for a.e. ω, for every E ∈ B(X ). Define A := {ω ∈ Ω : κ(ω, ·) 6=
τ(ω, ·)}. Since X is second countable, then there exists a countable π-system D := {E1, E2, . . .} with
σ(D) = B(X ) (it suffices to take the collection of finite intersections of a countable topological base).
For each n ∈ N, define An: = {ω : κ(ω, En) 6= τ(ω, En)}. Then, A =

⋃
n An, by the Dynkin’s π-λ

theorem. Hence, A ∈ F , and P(A) = 0 since P(An) = 0. Then, the assertion follows.

Remark 5. A related connection of the above reciprocal relations in Propositions 14 and 15 is given
in ([1], Theorem 4.1) using the language of conditional sets.
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Suppose that κ : Ω × B(X ) → [0, 1] is a Markov kernel and F ∈ BRF (X ). If F(ω, ·) is
κ(ω, ·)-integrable for a.e. ω ∈ Ω, we denote by

∫
Fdκ the unique element η ∈ L0(F ;R) such that

η(ω) =
∫

F(ω, x)κ(ω, dx) for a.e. ω ∈ Ω.

Proposition 16. Let κ : Ω × B(X ) → [0, 1] be a Markov kernel and F ∈ BRF (X ). Then, F(ω, ·) is
κ(ω, ·)-integrable for a.e. ω ∈ Ω if and only if JF̃↑ is κ̃↑-integrableK = Ω̄. In that case,

s(∫
Fdκ

)•
=
∫

F̃↑dκ̃↑
{
= Ω̄. (1)

Proof. We prove (1) for F � 0. It is not difficult to show the equality for F = 1M with M ∈ F ⊗ B(X ).
By linearity, (1) holds for F simple. Finally, for F ∈ BRF (X ) arbitrary, take a sequence F1 � F2 � . . . of
simple functions with limn Fn = F. Then, in the model V(F ), by monotone convergence one has(∫

Fdκ

)•
=

(
lim

n

∫
Fndκ

)•
= lim

n

∫
F̃n↑dκ̃↑ =

∫
F̃↑dκ̃↑.

The proof is complete.

Denote by P(X ) the set of all Borel probability measures on the Polish space X . We endow P(X )

with the Prokhorov metric, which is defined by

π(P, Q) := inf {ε > 0 : P(C) ≤ Q(Cε) + ε, Q(C) ≤ P(Cε) + ε, ∀C ⊂ X closed} ,

where Cε := {x ∈ X : (∃y ∈ C)d(x, y) < ε}. Recall that the metric π induces the topology of weak
convergence of probability measures. Namely, a sequence (Qn) ⊂ P(X ) converges to Q if and only if
limn

∫
f dQn =

∫
f dQ for every f ∈ Cb(X ), where Cb(X ) denotes the set of all bounded continuous

functional f : X → R. In addition, the set P(X ), endowed with the Prokhorov metric, is a Polish
space and the metric π is compatible with the weak topology σ(P(X ), Cb(X )). For further details,
see [26,27]. Since P(X ) is Polish, it is possible to apply the results studied in the previous section to
any Boolean valued representation of L0(F ;P(X )).

Markov kernels can be regarded as P(X )-valued random variables. Namely, we have
the following.

Lemma 7. ([28], Theorem A.5.2) If κ : Ω × B(X ) → [0, 1] is a Markov kernel, then there exists ν ∈
L0(F ;P(X )) such that ν(ω) = κ(ω, ·) for a.e. ω ∈ Ω. If ν ∈ L0(F ;P(X )), then there exists a Markov
kernel κ : Ω×B(X )→ [0, 1] such that ν(ω) = κ(ω, ·) for a.e. ω ∈ Ω.

In virtue of Lemma 7, in the following, an element κ ∈ L0(F ;P(X )) is regarded as an equivalence
class of Markov kernels.

Denote by P(L0(F ;X )↑)F a name for the Borel probability measures on L0(F ;X )↑, in the
model V(F ). Proposition 14 and 15 tell us that

L0(F ;P(X ))→ P(L0(F ;X )↑)F ↓, κ 7→ κ̃↑

is a stable bijection. In other words,P(L0(F ;X )↑)F is a Boolean valued representation of L0(F ;P(X )).
In particular, we can apply the relations provided in the previous section to the Prokhorov metric π,
and its randomized version π̃ can be defined as

π̃(κ1, κ2)(ω) := π(κ1(ω), κ2(ω)) for a.e. ω ∈ Ω,

for every κ1, κ2 ∈ L0(F ;P(X )).
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6. Boolean Valued Representation of Regular Conditional Probability Distributions

In the following, we assume that (Ω, E ,P) is a probability space and F is a sub-σ-algebra of E
that contains all the P-null sets.( If F does not contain all the null sets, we can complete E and F by
considering the σ-algebras E∗ := E ∨ P−1(0) and F ∗ := F ∨ P−1(0).) Conditional expectations are
commonly defined for random variables with finite expectation, but we can naturally extend this to a
more general setting. Namely, for ξ ∈ L0(E ;R) with limn EP[|ξ| ∧ n|F ] < +∞ we define the extended
conditional expectation of ξ by

EP[ξ|F ] := lim
n

EP[ξ
+ ∧ n|F ]− lim

n
EP[ξ

− ∧ n|F ] ∈ L0(F ;R).

Next, we study a Boolean valued representation of L0(E ;R) in the model V(F ). Gordon [29]
established that the conditional expectation is the Boolean valued interpretation of the usual
expectation. Further relations can be found in ([16], Chapter 4). We start by briefly recalling how
a probability space (Ω, E ,P) can be made into a probability space in the model V(F ); the details
can be found in ([16], Chapter 4). This construction is valid for a general probability space even
if it is not complete. Consider the measure algebra E := E/P−1(0). Then, E is a stable F -set,
where ∆(E, F) :=

∨{A ∈ F : A ∧ E = A ∧ F} for E, F ∈ E (see e.g., ([30], Section 1.10)). Therefore,
we can consider the bijection

E → E ↑, E 7→ E•

of E into its Boolean valued representation E ↑. In addition, it is shown that E ↑ is a complete Boolean
algebra in the model V(F ). Furthermore, the conditional probability

P(·|F ) : E → L0(F ; [0, 1]), P(E|F ) := E[1E|F ]

is a stable function and it can be shown that P(·|F )↑ is a probability measure on E ↑, in the
model V(F ). By applying first the transfer principle to the Stone representation theorem for measure

algebras ([31], 321J) and then the maximum principle, we can find members Ω̃, Ẽ , and P̃ of V(F )

such that:

J(Ω̃, Ẽ , P̃) is a probability spaceK = Ω̄, and
JE ↑ = Ẽ/P̃−1(0) and P(·|F )↑ = P̃/P̃−1(0)K = Ω̄.

Furthermore, let L0(Ẽ ;R)F be a name with JL0(Ẽ ;R)F = L0(Ẽ ;R)K = Ω̄. Then, as shown
in ([16], Proposition 4.1.6), it is possible to find a bijection

ιE : L0(E ;R)→ L0(Ẽ ;R)F ↓, ξ 7→ ξ•

such that:

(S1) ιE and ιF coincide on L0(F ;R);
(S2) For every sequence (ξk) ⊂ L0(E ;R) and countable partition (Ak) ⊂ F of Ω̄, (∑ 1Ak ξk)

• =

∑ ξ•k Ak holds;
(S3) Jξ• = η•K =

∨{A ∈ F : 1Aξ = 1Aη};
(S4) Jξ• ≤ η•K =

∨{A ∈ F : 1Aξ ≤ 1Aη};
(S5) Jξ• + η• = (ξ + η)•K = Ω̄;
(S6) J{ξ• = η•} = {ξ = η}•K = Ω̄;
(S7) J{ξ• ≤ η•} = {ξ ≤ η}•K = Ω̄;
(S8) J(1E)

• = 1E•K = Ω̄ for all E ∈ E ;
(S9) JP(ξ ≤ η|F )• = P̃(ξ• ≤ η•)K = Ω̄ for all η ∈ L0(F ;R);

(S10) JEP[ξ|F ]• = EP̃[ξ
•]K = Ω̄ for all ξ with E[|ξ||F ] < +∞.
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Given X ∈ BF (R) and ξ ∈ L0(E ;R), we define {ξ ∈ X} to be the class in E of the set {ω ∈
Ω : ξ0(ω) ∈ X0(ω)}, where ξ0 and X0 are arbitrary representatives of ξ and X, respectively. In addition,
in the model V(F ), we can similarly consider {ξ• ∈ X?} for the random variable ξ• and the Borel
set X?.

Proposition 17. Suppose that ξ ∈ L0(E ;R). Then, it holds

J{ξ ∈ X}• = {ξ• ∈ X?}K = Ω̄

for all X ∈ BF (R). In particular, if X is a.s. nonempty

J{ξ ∈ X}• = {ξ• ∈ L0(F ; X)↑}K = Ω̄.

Proof. The collection
H := {X? : {ξ ∈ X}• = {ξ• ∈ X?}}

is well-defined and stable. Then, H↑ is a collection of real Borel sets in the model V(F ), due to
Proposition 9. Moreover, in the model V(F ),H is a σ-algebra that contains the real intervals (−∞, r]
due to (S7). Therefore, JH↑ = B(R)K = Ω̄, and the assertion follows.

If ξ ∈ L0(E ;R), it is well known that there exists a Markov kernel κξ|F : Ω × B(R) → [0, 1]
such that

P(ξ ∈ E|F )(ω) = κξ|F (ω, E) for a.e. ω ∈ Ω,

for all E ∈ B(R). (Actually, it is a consequence of Lemma 5.) The Markov kernel κξ|F above is called
a regular conditional distribution of ξ given F ; see, e.g., [32]. The following result tells us that the
conditional distribution of a real-valued random variable can be interpreted as the distribution of a
real-valued random variable in the model V(F ).

Proposition 18. Suppose that ξ ∈ L0(E ;R). Then,

JP(ξ ∈ X|F )• = P̃(ξ• ∈ X?)K = Ω̄

holds for every X ∈ BF (R). In particular, if X is a.s. nonempty

JP(ξ ∈ X|F )• = P̃(ξ• ∈ L0(F ; X)↑)K = Ω̄

Proof. Suppose that κξ|F is a regular conditional distribution of ξ given F . We have that Jκ̃ξ|F↑(X?) =

P(ξ ∈ X|F )•K = Ω̄ for all X ∈ BF (R). In the model V(F ), the probability measure

P̃(ξ• ∈ ·) : B(R)→ [0, 1], E 7→ P̃(ξ• ∈ E)

agrees with κ̃ξ|F↑ on real intervals (−∞, r] due to (S9). Therefore, κ̃ξ|F↑ = P̃(ξ• ∈ ·) in the
model V(F ).

A sequence (ξn) in L0(E ;R) is said to be:

• Conditionally independent if it is satisfied that

P
(

n∧
i=1

{ξi ≤ xi}
∣∣∣F) =

n

∏
i=1

P
(

ξi ≤ xi

∣∣∣F)
for all N ∈ N and x1, . . . , xn ∈ R.
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• Conditionally identically distributed if

P(ξ1 ≤ x|F ) = P(ξn ≤ x|F )

for all x ∈ R and n ∈ N.

Given a sequence (ξn) ⊂ L0(E ;R), by stability, we can find a sequence ξ·↑ of elements of L0(Ẽ) in
the model V(F ).

Proposition 19. ([33], Proposition 4.6) Suppose that (ξn) is a sequence in L0(E ;R) such that
ess.supn∈N|ξn| < +∞. Then,

J(lim sup
n

ξn)
• = lim sup

n
ξ•nK = Ω̄ J(lim inf

n
ξn)
• = lim inf

n
ξ•nK = Ω̄.

In particular, limn ξn exists iff Jlimn ξ•n existsK = Ω̄. In that case, J(limn ξn)• = limn ξ•nK = Ω̄.

A manipulation of Boolean truth values bearing in mind (S9) above shows the following result,
which holds true even if the underlying probability space is not complete.

Proposition 20. Suppose that (ξn) is a sequence in L0(E ;R). Then, the following properties hold:

1. (ξn) is conditionally independent iff J(ξ•n) is independentK = Ω̄;
2. (ξn) is conditionally identically distributed iff J(ξ•n) is identically distributedK = Ω̄.

7. A Transfer Principle for Large Deviations of Markov Kernels

As an application of the connections provided in the previous sections, we next develop a transfer
principle that allows for the interpretation of results in large deviations theory as versions for sequences
of Markov kernels. Let us first recall some basics of large deviations theory. For a thorough account,
we refer to [11]. Suppose that I : X → [0,+∞] is a rate function (i.e., a not identically +∞ lower
semicontinuous function). Let (Qn) be a sequence in P(X ).

• Say that (Qn) satisfies the large deviation principle (LDP) with rate function I if

− inf
x∈O

I(x) ≤ lim inf
n

1
n

log Qn(O) for all nonempty O ⊂ X open,

− inf
x∈C

I(x) ≥ lim sup
n

1
n

log Qn(C) for all nonempty C ⊂ X closed.

• Say that (Qn) satisfies the Laplace principle (LP) with rate function I if

lim
n

1
n

log
∫

en f (x)Qn(dx) = sup
x∈X
{ f (x)− I(x)}

for every bounded continuous function f : X → R.
• Say that (Qn) is exponentially tight if, for every n ∈ N, there exists a compact set K ⊂ X such that

lim
n

1
n

log Qn(Kc) ≤ −n.

Next, we introduce analogues for Markov kernels of the notions above.

Definition 7. A function I : L0(F ;X ) → L0(F ; [0,+∞]) is called a conditional rate function, if the
following holds:

1. I is stable;
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2. there exists ξ ∈ L0(F ;X ) such that I(ξ) < +∞;
3. I(ξ) ≤ lim infn I(ξn) whenever limn d̃(ξn, ξ) = 0.

Definition 8. Suppose that (κn) is a sequence of Markov kernels κn : Ω×B(X )→ [0, 1] and I : L0(F ;X )→
L0(F ; [0,+∞]) is a conditional rate function.

1. Say that (κn) satisfies the conditional large deviation principle (cLDP) with conditional rate function
I if:

− ess.inf
η∈L0(F ;O)

I(η) ≤ lim inf
n

1
n

log κ̃n(O)

for all a.s. nonempty random open set O ∈ BF (X ),

− ess.inf
η∈L0(F ;C)

I(η) ≥ lim sup
n

1
n

log κ̃n(C)

for all a.s. nonempty random closed set C ∈ BF (X ).
2. Say that (κn) satisfies the conditional Laplace principle (cLP) with conditional rate function I if

lim
n

1
n

log
∫

enFdκn = ess.sup
η∈L0(F ;X )

{F̃(η)− I(η)}

for all F ∈ CR
b,F (X ).

3. Say that (κn) is conditionally exponentially tight if for every n ∈ N there exists K ∈ BF (X )

a.s. nonempty such that L0(F ; K) is stably compact and

lim sup
n

1
n

log κ̃n(Kc) ≤ −n.

As a consequence of (R8) above, we have the following.

Lemma 8. Suppose that I : L0(F ;X )→ L0(F ; [0,+∞]) is a stable function, then:

1. For every a.s. nonempty X ∈ BF (X ), it holds that

t(
ess.inf

ξ∈L0(F ;X)
I(ξ)

)•
= inf

x∈L0(F ;X)↑
I↑(x)

|

= Ω̄;

2. for every F ∈ BRF (X ), it holds that

u

v
(

ess.sup
ξ∈L0(F ;X )

{F̃(ξ)− I(ξ)}
)•

= sup
x∈L0(F ;X )↑

{F̃↑(x)− I↑(x)}

}

~ = Ω̄.

Given a conditional rate function I : L0(F ;X )→ L0(F ; [0,+∞]), we can find a name I↑ such that
JI↑ : L0(F ;X )↑ → [0,+∞]K = Ω̄. Moreover, I↑ is a rate function in the model V(F ). Then, the Boolean
valued representations provided in Sections 4 and 5 give all the elements to show the following by
means of a simple manipulation of Boolean truth values.

Theorem 4. Suppose that (κn) is a sequence of Markov kernels κn : Ω×B(X )→ [0, 1] and I : L0(F ;X )→
L0(F ; [0,+∞]) a conditional rate function. Then,

1. (κn) satisfies the cLDP with conditional rate function I iff

J(κ̃n↑) satisfies the LDP with rate function I↑K = Ω̄;
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2. (κn) satisfies the cLP with conditional rate function I iff

J(κ̃n↑) satisfies the LP with rate function I↑K = Ω̄;

3. (κn) is conditionally exponentially tight iff J(κ̃n↑) is exponentially tightK = Ω̄.

The Interpretation of Basic Theorems

By the transfer principle, if ϕ is a known theorem, then the assertion JϕK = Ω̄ is also a
theorem. This provides a technology for expanding the content of the already available theorems.
In the following, we use this method to expand large deviations results on sequences of probability
distributions to new large deviations results on sequences of Markov kernels.

We derive the following version of Varadhan’s large deviations theorem.

Theorem 5. Let (κn) be a sequence of Markov kernels κn : Ω × B(X ) → [0, 1] and I : L0(F ;X ) →
L0(F ; [0,+∞]) a conditional rate function. If (κn) satisfies the cLDP with conditional rate function I, then (κn)

satisfies the cLP with conditional rate function I.

Consider the classical Varadhan’s theorem; see, e.g., ([34], Theorem III.13, p. 32). Then, in view
of Theorem 4, the statement above is a reformulation of JVaradhan’s theoremK = Ω̄, which is also a
theorem due to the transfer principle. Similarly, we have the following version of the Bryc’s large
deviations theorem ([11], Theorem 4.4.2).

Theorem 6. Let (κn) be a sequence of Markov kernels κn : Ω×B(X )→ [0, 1] such that the limit

φ(F) := lim
n

1
n

log
∫

enFdκ

exists for all F ∈ CR
b,F (X ). If (κn) is conditionally exponentially tight, then (κn) satisfies the cLDP and the

cLP with conditional rate function I : L0(F ;X )→ L0(F ; [0,+∞]),

I(η) := ess.sup
F∈CR

b,F (X )

{F̃(η)− φ(F)}.

Suppose now that, as in Section 6, (Ω, E ,P) is a complete probability space and F is a
sub-σ-algebra of E that contains all the null sets. If ηn := 1

n (ξ1 + . . . + ξn), n ∈ N is the sequence
of sample means for some conditionally i.i.d. sequence (ξn) ⊂ L0(E ;R), then, due to (S5) and
Proposition 20, η·↑ is the sequence of a sample means of an i.i.d. sequence ξ·↑ in the model V(F ). Then,
the following conditional version of Cramér’s large deviation theorem follows by a Boolean valued
interpretation of its unconditional version ([11], Theorem 2.2.3) bearing in mind Proposition 18.

Theorem 7. Let (ξn) ⊂ L0(E ;R) be conditionally i.i.d.. Suppose that κn : Ω× B(R) → [0, 1] is a regular
conditional distribution of 1

n ∑n
i=1 ξi given F , for each n ∈ N. Then, (κn) satisfies the cLDP with a conditional

rate function I : L0(F ;R)→ L0(F ; [0,+∞]),

I(η) := ess.sup
ς∈L0(F ;R)

{ης−Λ(ς)},

where Λ(ς) := logE[exp(ςξ1)|F ].

Obviously, all these theorems are just some examples: we can state a version of any theorem ϕ on
large deviations theory, and it immediately renders a version for Markov kernels of the form JϕK = Ω̄.

We finish this section by pointing out that several results in the literature involving sample
means of conditional independent random variables can be easily proven by means of the transfer
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principle. For limitation of space, we focus on a few of them. Recall the strong law of large numbers,
which asserts that the sequence of sample means of a i.i.d. sequence of random variables converges
a.s. to the mean of their common distribution. As explained above, the sequence of sample means
of a c.i.i.d. sequence of random variables are represented by the sequence of sample means of a i.i.d.
sequence of random variables in the model V(F ). Then, bearing in mind Proposition 19, the law
of large numbers in the model V(F ) is interpreted as the following known conditional law of large
numbers (see ([35], Proposition 2.3)), which holds true due to the transfer principle.

Theorem 8. Suppose that (ξn) ⊂ L0(E ;R) is a conditionally i.i.d. sequence such that EP[|ξ1||F ] < +∞.
Then, limn

1
n ∑n

i=1 ξi = EP[ξ1|F ].

In addition, the conditional versions of the law of large numbers obtained in [36] (see Theorems 3.5
and 4.2) are also interpretations of their classical versions. The same applies to the main result in [37]
(see Theorem 2.1), which is a conditional version of the Kolmogorov–Feller weak law of large numbers
and follows by the Boolean valued interpretation of its unconditional version.

8. Conclusions

As shown in Sections 4–6, all the basic objects in random set theory have a natural Boolean
valued representation in the model V(F ). Namely, random sets, random functions, Markov kernels,
and regular conditional distributions are respectively represented by Borel sets, Borel functions,
Borel probability measures, and probability distributions in the model V(F ). On the other hand,
Boolean valued analysis provides a technology for expanding the content of the already available
theorems. Namely, each known theorem involving Borel sets, Borel functions, Borel probability
measures, and/or probability distributions automatically has a non-obvious random set analogue
involving respectively random sets, random functions, Markov kernels, and/or regular conditional
distributions. This is a powerful tool to formalize and prove results in random set theory,
and potentially applicable to large deviations, stochastic optimization, and mathematical finance.
This is illustrated in Section 7 with the new limits results for Markov kernels easily obtained by means
of this method, namely, Theorems 5–7. Nevertheless, these results are just examples of applications,
and the number of instances of applications can be easily increased.
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