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Abstract: Simultaneous feature selection and classification have been explored in the literature to
extend the support vector machine (SVM) techniques by adding penalty terms to the loss function
directly. However, it is the kernel function that controls the performance of the SVM, and an
imbalance in the data will deteriorate the performance of an SVM. In this paper, we examine a new
method of simultaneous feature selection and binary classification. Instead of incorporating the
standard loss function of the SVM, a penalty is added to the data-adaptive kernel function directly to
control the performance of the SVM, by firstly conformally transforming the kernel functions of the
SVM, and then re-conducting an SVM classifier based on the sparse features selected. Both convex
and non-convex penalties, such as least absolute shrinkage and selection (LASSO), moothly clipped
absolute deviation (SCAD) and minimax concave penalty (MCP) are explored, and the oracle property
of the estimator is established accordingly. An iterative optimization procedure is applied as there
is no analytic form of the estimated coefficients available. Numerical comparisons show that the
proposed method outperforms the competitors considered when data are imbalanced, and it performs
similarly to the competitors when data are balanced. The method can be easily applied in medical
images from different platforms.

Keywords: classification; data-adaptive kernel; feature selection; penalty; predictive model;
simultaneous classification; support vector machine

1. Introduction

As one of the most critical tasks in data mining with high dimensions, the performance of
a classification model relies on selecting the most appropriately relevant features while removing
irrelevant ones. This offers advantages, including a lower risk of overfitting, less model complexity
(and hence the improvement of the generalization capability) and less computational cost [1].
In scientific research, classification models have served as useful tools of artificial intelligence in
various areas such as financial credit risk assessment [2], signal processing and pattern recognition [3].
In these tasks, the fundamental goal is the accuracy of prediction in various situations.

The support vector machine (SVM) offers a method of classification that has adequate generalizing
ability, fewer local minima with limited dependence on only a few parameters [4], and has achieved
success in applications as a powerful classifier of high accuracy with flexibility; see, e.g., [5]. However,
the method described in the standard formulation settings cannot decide the importance from different
features [6], while its performance may be severely deteriorated when redundant variables are used
in determining the decision rule, even those as poor as random guessing due to the accumulation
of random noise, especially in a high dimensional space [7,8]. Consequently, the development of
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several approaches for selecting features with SVMs has been motivated, e.g., in [8–11], which provide
various ways of feature ranking or selection. One of the main directions, known as the filter method,
filters out features with poor information based on statistical properties of features, usually done
before applying any classification models, such as in [12]. Another framework, called the wrapper
method, scores the whole set of features based on their predictive powers, and then selects a subset
of variables with the highest scores. The wrapper method shows more accuracy than the filter
method. The most popular wrapper method for SVMs may be the Recursive Feature Elimination SVM,
proposed in [13], which attempted to find the best subset of r features among m variables (r < m),
on the basis of a sequential backward selection technique. However, they all have the drawback
of not taking into consideration the combination of features that optimize the performance of the
classifier simultaneously.

Correspondingly, the embedded methods are created so that the selection of features can be
performed during the model construction. A typical way of achieving this goal is to add some extra
term that penalizes the cardinality of the selected subset of features to the standard cost function,
named as the hinge loss, of the support vector machines, generally with an appropriate sparsity penalty
proposed by [14]. This framework is a unified method that achieves variable selection and prediction
simultaneously. The standard SVM is well known to fit in the regularization framework of loss plus
penalty with the hinge loss and L2 norm penalty and, to generalize its usefulness, quite a few attempts
have been employed to select features for the SVM by using other forms of penalty. For example,
L1 norm penalty is applied in [15–17]; [18,19] proposed the elastic net penalty for the SVM, and the
adaptive LASSO penalty form was proposed to penalize the SVM; [20] suggested a F∞ norm SVM
so that groups of predictors could be selected simultaneously. In recent research, [21] studied the
smoothly clipped absolute deviation (SCAD) proposed by [14] and proved the oracle property of the
SVM with a fixed number of predictors penalized by SCAD.

The aforementioned penalized feature selection methods for SVMs are all based on the predictors
in the original input space. However, there are possibilities that those features which have been
penalized and eliminated in the input space with the above methods might be useful in the projected
feature space generated by the kernel function in solving the SVM, and hence the classifier will lose
some useful information accordingly. Actually, when the SVM projects the original input space into a
higher dimensional feature space, the performance of an SVM will depend directly on the so-called
kernel function, as is pointed out in, for example, [22–24]; thus, a natural idea is to penalize the
kernel function directly, so that the features that are useful in the feature space can be selected and the
classification can be achieved simultaneously.

Another issue is the imbalance in data that cannot be simply ignored in real classification
applications. When the sizes of different classes are incomparable, the performance of the standard
SVM or other popular classifiers tend to be unstable (see details in, e.g., [22–24]). To deal with the
problem, SVMs with data-adaptive kernels can be applied. One specific idea is to adopt a two-stage
approach of constructing data-adaptive kernels is proposed. The method locally adapts the kernel
function to the data locations based on the skewness of the class boundary, and hence enlarges the
magnification effect directly on the Riemannian manifold in the feature space. Even when the data are
extremely imbalanced, the performance of the SVM constructed accordingly is satisfactory.

In this paper, we propose a new method of simultaneous feature selection and classification by
penalizing data-adaptive kernels in SVMs. Instead of penalizing the standard cost function of SVMs,
the penalty will be directly added to the data-adaptive kernel function that controls the performance
of an SVM, by first transforming the kernel functions of the SVM and then re-conducting the SVM
formulation optimization, then, finally, getting the classification result with sparse features selected.
Different penalty terms such as SCAD, minimax concave penalty (MCP) and L1 norm penalties will
be compared. The oracle property of the estimated classifier is proposed. An iterative optimization
process will be applied, as no analytic form of the estimated coefficients can be obtained. Numerical
comparisons show that our proposed classifier outperforms with the imbalanced data and performs as
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well as others when the data are balanced. Our contribution in this paper is mainly two-fold. Firstly,
the proposed method can select relevant predictors in the feature space, with properties of selection
consistency established theoretically. None of the papers in the literature have touched or studied
the theoretical property of the selection procedure under the framework of an SVM. We also employ
non-convex penalty functions including SCAD and MCP, which are much more difficult to deal with
when programming due to a non-convex objective function. On the other hand, we take the data
imbalance issue into consideration during feature selection with a data-adaptive procedure, and this
appears not easy during feature selection procedure, especially when the input space is divergingly
large. The imbalance issue that may severely deteriorate the performance of a classifier has not been
accommodated in the previous literature during feature selection procedures.

The methodology is partially motivated by an ongoing prostate caner study from London, ON,
Canada. The goal is to construct a classifier to predict the cancerous areas with imaging intensity
measures that come from different platforms such as MRI and CT. Several issues need to be considered.
One is that redundant measures might deteriorate the performance of the classifier, so that a feature
selection technique is necessary. Another problem is the imbalance in the data. The cancerous
proportion in the prostate only takes 8% on average, indicating an extreme imbalance. Hence, how to
perform accurate classification accommodating these issues needs to be addressed.

The rest of the paper organizes as follows. In Section 2, the framework of SVMs and the penalized
SVM is introduced. In Section 3, our model is constructed. Not only is the oracle property proposed,
but an algorithm to achieve the goal is also introduced for implementation purposes as well. Section 4
shows the experiment results of comparing numerical performances with different models under
different scenarios, and the model is applied on a real data set as well. Remarks conclude the paper
and technical proofs are given in Appendix A.

2. Notation and Framework

Consider a binary classification problem. Given a random sample {(xi, yi)}n
i=1, where xi is a

vector of features in the input space I = Rp, yi represents the class index which takes values +1 or
−1, and p, the dimension of the input space, indicates the number of features available. The goal is to
determine a rule so that future observations with only the features available can be labeled into the
corresponding class. The Support Vector Machine (SVM) is a technique to obtain the rule. The SVM
finds a linear boundary to separate the two classes by maximizing the smallest distance from the
observations of each class to the boundary if the samples are linearly separable. When the samples
are not linearly separable, the method finds a nonlinear boundary by mapping the input data x into a
high-dimensional feature space F = Rl using a nonlinear mapping function s : Rp → Rl , and searching
a linear discriminant function or a hyperplane

βTs(x) + b = 0 (1)

in the feature space F, where β = (β1, β2, . . . , βl) is an l−dimensional vector of parameters, s(x) =
(s1(x), . . . , sl(x))

T is the l−dimensional column vector, and b is a scalar bias term. Hence, an individual
point with observation x can be classified by the sign of D(x) = βTs(x) + b as long as the parameters
β and b are determined, and the boundary D(x) = 0 is nonlinear in the input space. Theoretically,
the solution to the SVM can be obtained by maximizing the aggregated margin between the separating
boundaries [25]. In the mean time, the features that are used to construct the rule should be limited or
even sparse so that the rule is easy to implement in practice.

Mathematically, the SVM boundary is the solution of minimizing

Q(β, b, ξ) =
1
2
‖β‖2 + C

n

∑
i=1

ξi (2)
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with respect to β, and b, subject to the constraints

yi

(
βTs(xi) + b

)
≥ 1− ξi for i = 1, . . . , n,

where C is the so-called soft margin parameter that determines the trade-off between the optimal
combinatorial choice of the margin and the classification error, and ξ = (ξ1, . . . , ξn)T are non-negative
slack variables. Equivalently, this optimization problem can be represented in the Lagrangian dual
function with the form

Max
α

n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyj < s(xi), s(xj) > .

subject to the constraints

n

∑
i=1

αiyi = 0,

0 ≤ αi ≤ C

for i = 1, 2, . . . , n, where αi’s are the dual variables, and < · , · > is the inner product operator.
Generally, a scalar function K(·, ·), which is called a kernel function, is adopted to replace the inner
product of the two vectors xi and xj in the dual function

Max
α

n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjK(xi, xj). (3)

If we denote SV as the set {j | αj > 0 for j = 1, 2, . . . , n} with all the observations, and xi, i ∈ SV
as the support vectors, correspondingly, the kernel form of the SVM boundary can be written as

∑
i∈SV

αiyiK(xi, x) + b = 0, (4)

and, consequently, the estimated bias term bj obtained by using the jth support vector xj is defined as

bj = yj − ∑
i∈SV

αiyiK(xi, xj).

The bias term bj is proved to be identical for all j in the set SV [7]. Thus, in practice, with the
estimated coefficients of αi, we can take the average of all the estimated bjs with all support vectors as
the estimate of b.

Although the kernel form of the SVM is developed through the projection of input space to higher
dimensional space, in practice, we may specify the kernel function instead of finding the projection
mapping. A number of commonly used kernel functions are available, for example, the radial
kernel function

K(x, z) = h(−‖x− z‖2), (5)

where h(·) is a probability density function. When h(·) comes from a Gaussian distribution with
variance σ2, the kernel function is then

K(x, z) = exp(−‖x− z‖2/2σ2). (6)
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2.1. Geometric Interpretation of SVM Kernels

Geometrically speaking, when the input space I is the Euclidean space, the Riemannian metric is
induced in the feature space F. Let f be the mapped result of x ∈ Rp in F, i.e., f = s(x) ∈ Rl , then a
small change in x in the input space, dx, will be mapped into the vector df in the feature space so that

df = ∇s · dx = ∑
j

∂

∂xj
s(x) dxj,

where

∇s =

(
∂ (s(x)

∂ x

)
=


∂ s1(x)

∂ x1
. . . ∂ s1(x)

∂ xp
...

...
...

∂ sl(x)
∂ x1

. . . ∂ sl(x)
∂ xp

 . (7)

Thus, the squared length of df can be written in the quadratic form as

‖df‖2 = (df)T · df =
(
∑

i

∂

∂xi
s(x) dxi

)T ·
(
∑

j

∂

∂xj
s(x
)

dxj) = ∑
ij

sij(x)dxidxj,

where

sij(x) =
(

∂

∂xi
s(x)

)T
·
(

∂

∂xj
s(x)

)
=

(
∂s1(x)

∂xi
, . . . ,

∂sl(x)
∂xi

)
·
(

∂s1(x)
∂xj

, . . . ,
∂sl(x)

∂xj

)T

. (8)

Consequently, the l × l matrix S(x) = [sij(x)] is defined on the Riemannian metric, which can be
derived from the kernel K, and S(x) is positive definite [26]. More straightforwardly, the following
lemma demonstrates the connection between a kernel function K and a mapping s:

Lemma 1 ([26]). Suppose K(x, z) is a reproducing kernel function, and s(x) is the corresponding mapping in
the support vector machine. Then, (9) holds that

sij(x) =
∂

∂xi

∂

∂zj
K(x, z)|z=x. (9)

To increase the separability between two categories, the spatial resolution around the boundary
surface in F needs to be enlarged. This motivates us to increase the factor

√
v(x) around the boundary

of D(x) = 0. Therefore, the mapping s or, equivalently, the related kernel K, is to be examined so
that sij(x) can be enlarged around the boundary. This knowledge is especially useful when dealing
with imbalanced data, since it has been known that an imbalance in the data can severely affect the
performance of an SVM, where a data-adaptive kernel function is constructed to solve the problem
based on the assumed form of the original kernel function.

2.2. Penalized SVM

When there are a large number of features available, not all the features will contribute to the
construction of the classifier. Redundant features and extra noise in the available input features may
deteriorate the accuracy of the classifier while leading to the complexity of the classifier if they are all
included in the model. The number of features may be controlled in the SVM framework. Under the
standard prediction risk framework of loss plus penalty form, the potential misclassification cost
can be specified by a universal weight c for each of the sample points from the two classes, namely,
Qi = c if yi = 1 and Qi = 1− c if yi = −1 for some 0 < c < 1, and the classification boundary can be
estimated by a linear weighted SVM [7,27] by solving
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min
β, b

Loss(β) = min
β, b

n−1
n

∑
i=1

Qi
(
1− yi(xT

i β + b)
)
+

+ λβT β,

where (1− t)+ = max{1− t, 0} denotes the hinge loss, β are the coefficients of the features, b is the
intercept and λ is a positive regularization parameter. When the weight c = 0.5, the linear weighted
SVM goes back to the standard SVM [27]. When the hinge loss is considered as E[Q(1− (yXT β + b))+],
an analytic form of the estimators of β is given by

β̂true = arg min
b,β

n−1
n

∑
i=1

Qi
(
1− yi(XT

i β + b)
)
+

(10)

Furthermore, in terms of selecting variables from the input space, suppose the true model has
sparse features or, equivalently, βT = (βT

true, 0T), where βT
true = (β1, β2, . . . , βk). Denote xT

i = (zT
i , uT

i ),
where the k × 1 vector z is the feature vector corresponding to the non-zero coefficients and the
(p− k)× 1 covariate vector u corresponds to the redundant information. To select the vector z, [8]
proposed a general form of penalty terms to be added directly to the loss function as

Loss(β) = n−1
n

∑
i=1

Qi(1− yi(xT
i β + β0))+ +

p

∑
j=1

pλ(‖β j‖), (11)

where pλ(·) is a symmetric, non-convex penalty function with a tuning parameter λ. Oracle properties
were developed under some regulatory conditions, and some common penalty functions such as the
smoothly clipped absolute deviance (SCAD) [14] penalty and the minimax concave penalty (MCP) [28]
were explored.

However, such a feature selection process screens features in the input space. As shown in
Lemma 1 in the Appendix A, when the classes are not linearly separable in the input space, the SVM
will map the input space into projection space and the linear boundary is obtained in the projected
space. As the kernel function controls the classifier’s performance, a straightforward idea is then to
select features and enhance the performance of the SVM by directly introducing penalty terms to the
kernel function. Based on this exploration, we propose a method of simultaneous feature selection and
classification by penalizing the kernel function in SVM through a data-adaptive kernel procedure.

3. Methodology of Data-Adaptive Kernel-Penalized SVM

In this section, a data-adaptive kernel-penalized SVM is proposed. The method can
simultaneously select features and conduct classifications with a data-adaptive kernel function. Instead
of adding a penalty to the standard hinge loss function, we propose to introduce the penalty term
directly into the SVM under the kernel formulation, so that the number of predictors are controlled.
To accommodate the common imbalance issue in real applications, a data-adaptive kernel will be
employed. Thus, the oracle properties of the estimator of the true parameters under the proposed
setting are developed.

3.1. Kernel-Based Parameters

We focus on the Gaussian radial basis function kernel (RBF kernel) as in (6) to develop the
proposed method, where the parameter σ is originally assumed to be universal for all components of
the input vectors x. Actually, the parameter σ can be extended to be component-specific as

K(x, z) = exp
(
−

p

∑
j=1

(xj − zj)
2/2σ2

j
)
, (12)

where p is the dimension of the input space I [6]. Consequently, the contributions of the corresponding
predictors can be determined by the parameters σ = (σ1, σ2, . . . , σp). For instance, if σj is very large,
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the j-th predictor tends to contribute very little to the kernel function as the corresponding component
in the exponent will be close to zero. Contrarily, if σj is small, the contribution of the j-th predictor will
be large and its importance increases consequently. Thus, by controlling the j-th component in the
parameter vector σ, the importance of the j-th predictor can be determined. This provides a method of
feature selection by directly estimating the parameters in the kernel function. Accordingly, we propose
the following modification of the kernel function as

K(x, z; w) = exp{−‖w⊗ (x− z)‖2}, (13)

where w = (w1, w2, . . . , wp) = (1/σ1, 1/σ2, . . . , 1/σp) and ⊗ represents the component-wise product.
That is, w assigns weights for the contribution of each component to the kernel. When wj is large,
the contribution of the j-th feature will be large and hence its importance increases. Contrarily, when wj
is small, the j-th predictor tends to contribute little to the kernel function, and might not be included
during the construction of an SVM. However, even if the absolute value of wj is small (not zero),
its influence in the kernel function still exists. Including too many active features in the classifier may
dramatically complicate the model and result in extra noisy information. Forcing the effect of some
features to be exactly zero may therefore solve such an issue. This can be achieved by introducing a
penalty to penalize the weights w under the assumption that the number of active features are sparse.

3.2. Data-Adaptive Kernel Functions

To deal with the imbalance of the data and enhance the performance of the SVM, we employ
the data-adaptive kernel function when constructing the SVM. The data-adaptive kernel SVM is a
two stage procedure, where the SVM is applied in the first stage to identify a temporary boundary,
and the kernel function is modified adaptively in the second stage based on the boundary and support
vectors identified in the first stage. It is proven to have the capability of increasing the separability
between two classes by enlarging the spatial resolution around the boundary surface. This is especially
important when the data are imbalanced. It has been demonstrated that the imbalance of classes can
severely affect the performance of an SVM [29]. To illustrate, let f be the mapped result of x ∈ Rp in F,
i.e., f = s(x) ∈ Rl . A small change in x in the input space, dx, will be mapped into the vector df in the
feature space such that

df = ∇s · dx = ∑
j

∂

∂xj
s(x) dxj,

where

∇s =

(
∂ s(x)

∂ x

)
=


∂ s1(x)

∂ x1
. . . ∂ s1(x)

∂ xp
...

...
...

∂ sl(x)
∂ x1

. . . ∂ sl(x)
∂ xp

 .

Thus, the squared length of df can be written in the quadratic form as

‖df‖2 = (∑
i

∂

∂xi
s(x)dxi)

T · (∑
j

∂

∂xj
s(x)dxj) = ∑

ij
sij(x)dxidxj. (14)

where sij(x) can be regarded as a local magnification factor [26]. To enlarge the spatial separation
around the boundary, the kernel function will be adapted based on the data. Let C(x, x′) be a positive
scalar function such that

C(x, x′) = c(x)c(x′),

where x and x′ are vectors of features in the input space, and c(x) is a positive univariate scalar function.
Then, the kernel function K is updated as

K̃(x, x′) = C(x, x′)K(x, x′) = c(x)K(x, x′)c(x′), (15)
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where K(x, x′) is the kernel function in the first stage and K̃(x, x′) in the updated kernel in the second
stage. It can be viewed as a modification of the original mapping s(x) to a new mapping function
s̃(x), satisfying

s̃ij(x) = cij(x)sij(x).

where sij(x) is defined in (14) and cij(x) = ∂
∂xi

∂
∂zj

C(x, z)|z=x. This process is referred to as adaptive

scaling, and K̃ can be easily shown to satisfy the Mercer positivity condition, which is the sufficient
condition for a real function to be a kernel function [22]. When s̃ij(x) has larger values at the support
vectors than other data points, the updated mapping s̃ can increase the separation when a positive
function c(x) is properly chosen. In particular, when the kernel function is Gaussian, we have the
following result derived from Amari and Wu [26].

Theorem 1. When a Gaussian radial basis kernel in (6) is used, the modified magnification factor is

s̃ij(x) = ci(x)cj(x) + c2(x)sij(x) = ci(x)cj(x) +
c2(x)

σ2 I(i = j),

where ci(x) = ∂c(x)/∂xi, and I(·) is the indicator function.

Thus, to make s̃ bigger, we need to make the positive scalar c(x) and its first-order derivative
relatively large. The authors propose to adaptively scale the primary kernel function K by constructing
c(x) with the L1 norm radial basis function

c(x) = e−|D(x)|·kM(x) (16)

and
kM(x) =

1
|NM(x)| ∑

i∈NM(x)
(‖s(xi)− s(x)‖2), (17)

where D(x) is the (1) obtained from the first stage, NM(x) = {j : ‖s(xj)− s(x)‖2 < M, yj 6= y}, |A| is
the cardinality of the set A, y is the class label associated with x, and M can be regarded as the distance
between the nearest and the farthest support vectors from s(x). This process is important when the data
are imbalanced, since by incorporating kM(x) into c(x), the adaptive scaling process updates the spatial
information and balances the data locally by considering only the support vectors , which determine
the location of the decision hyperplane, from the opposite class near the boundary. This method has
been proved to have greater separability even when the data are imbalanced. The magnification effect
is roughly the largest near the initial separating boundary, and decreases robustly with a slow and
steady rate from the separating boundary to faraway locations. We will incorporate this data-adaptive
kernel procedure to accommodate imbalance classes.

3.3. Data-Adaptive Kernel-Penalized SVM

To control the number of features in the classifier, a penalty term for the weights pλ(‖w‖) will
be introduced to select the features through the kernel function. We propose to add the penalty term
directly to the dual maximization problem for the SVM which contains the kernel function. Specifically,
the data-adaptive kernel-penalized SVM is initially proposed as the solution to

Max
α, w

{ n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjK̃(xi, xj; w)−
p

∑
j=1

pλ(|wj|)
}

, (18)
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such that

n

∑
i=1

αiyi = 0,

0 ≤ αi ≤ B, i = 1, 2, . . . , l

wj ≥ 0, j = 1, 2, . . . , p,

where K̃(x, z) is the data-adaptive kernel function from (15), c(x) in K̃(x, z) is from (16) and the
primary kernel function is from (13). When the estimate of ŵ is obtained, the predictors with non-zero
coefficients are considered to be the truly active predictors that will affect the decision boundary.
The boundary will be estimated by

D̂(x) = ∑
i∈SV

αiyiK̃(xi, xj; ŵ) + b̂ (19)

and the intercept b can be estimated

b̂ =
1
|SV| ∑

j∈SV
{yj − ∑

i∈SV
αiyiK̃(xi, xj; ŵ)}. (20)

with the decision rule in (19), a test observation x can be assigned to the class by the sign of D̂(x).
There are several options for the specific forms of the penalty. In general, non-convex penalties

satisfying the following assumptions A1 and A2 can be used.

A1. The penalty function pλn(x) is symmetric, non-decreasing and concave for x ∈ [0, ∞), with a
continuous first-order derivative p′λn

(x) on R+ and p′λn
(0) = 0.

A2. There exists a > 1, such that lim
x→0+

p′λn
(x) = λn, p′λn

(x) ≥ λn− x/a for 0 < x < aλ and p′λn
(x) = 0

for x ≥ aλ.

Such a non-convex penalty term is motivated by the fact that the L1 LASSO penalty does not have
the oracle property due to the over-penalization of large weights, and hence the LASSO penalty is not
a proper choice when high dimensional features are involved in classification [8]. Several popularly
used non-convex penalties satisfy assumptions A1 and A2:

1. SCAD: smoothly clipped absolute deviation [14]

pλ(|w|) = λ|w|I(0 ≤ |w| < λ) +
aλ|w| − (w2 + λ2)/2

a− 1
I(λ ≤ |w| ≤ aλ)

+
(a + 1)λ2

2
I(|w| > aλ) for some a > 2.

2. MCP: minimax concave penalty [28]

pλ(|w|) = λ(|w| − w2

2aλ
)I(0 ≤ |w| < aλ) +

aλ2

2
I(|w| ≥ aλ) for some a > 1.

3. L0 norm smooth approximation: ‖w‖0 = |{i : wi 6= 0}| by [11]. Unlike Lp norm with p > 0, L0

norm is not precisely a norm because the triangle inequality does not hold and, consequently, it is
not smooth. Thus, the approximation by a concave function is applied on the L0 norm so that a
penalty function is

pλ(|w|) = 1T(1− exp(λ|w|)) ≈ ‖w‖0,

where λ is an approximation parameter.
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Remark 1. A penalty is usually added to the loss function in the literature; however, the standard loss function
does not contain the kernel function. When the data are imbalanced, the performance of a standard SVM will
be affected. Consequently, the features selected without considering the imbalance of classes may be unreliable
in the imbalance application. Contrarily, data-adaptive kernel-penalized SVM can fulfil the feature selection
process while taking the imbalance of classes into account.

Remark 2. Although other types of kernels such as the polynomial kernel K(x, z) = (1 + ∑
p
j=1 xjzj)

d are also
available to describe the mapping by kernels, not all the kernels are feasible for simultaneous feature selection
process classification because of technical difficulties. For example, polynomial kernels are determined only by
the order parameter d, while it is not obvious how feature selection can be conducted during the classification
process. However, the proposed method is still very attractive in applications, since the Gaussian RBF kernel
adopted here is the most popular kernel.

Remark 3. The constraints in the dual function contain the non-negativity of the parameters w—they
correspond to the positive scale parameter in the Gaussian kernels. This constraint can be removed by using a
quadratic form of the parameters in the penalized kernels.

3.4. An Algorithm to Solve Data-Adaptive Kernel-Penalized SVM

To solve the data-adaptive kernel-penalized SVM in (18), a two-stage algorithm is proposed.
In the first stage, a standard SVM is obtained so that the location information of the support vectors
and the temporary decision boundary are available. The primary kernel function is then updated
adaptively by (15) in the second stage, and the optimization with both the updated kernel and the
penalty is then solved to obtain the final boundary as well as the selected features.

Since the objective function in (15) is non-convex, an iterative procedure is adopted [11]. To be
specific, in the t-th round iteration, t = 1, 2, . . . , T, a standard dual optimization problem for an SVM
with the (t− 1)-th estimated kernel parameter vector ŵ(t−1) is to be solved as

Max
α

L1(α) = Max
α

n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjK(xi, xj; ŵ(t−1)) (21)

such that

n

∑
i=1

αiyi = 0,

0 ≤ αi ≤ B, i = 1, 2, . . . , n,

and the result is denoted as α(t). During this stage, the support vectors are obtained by those non-zero
αis, and c(x) can be constructed through (16) so that the data-adaptive kernel function K̃(x, z) can be
constructed by (15).

Finally a non-linear formulation with a fixed α(t) is solved

ŵ(t) = arg min
w

1
2

n

∑
i=1

n

∑
j=1

α
(t)
i α

(t)
j yiyjK̃(xi, xj; w) +

p

∑
j=1

pλ(|wj|) (22)

such that
wj ≥ 0, j = 1, 2, . . . , p.

The process will stop when ‖w(t) −w(t−1)‖ is sufficiently small.
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3.5. The Oracle Property

In this subsection, we develop the oracle property of the estimator. We show that, under some
regularity conditions, the distance between the estimates and the true values of the parameters goes
to zero with probability 1 when the sample size is sufficient large. Here, we only need to consider
the optimization process in the second stage in (22), since all the unknown information regarding the
parameters w is included in this stage (note that α is considered as a fixed constant vector in the second
stage). Define the estimator

ŵ = arg min {
l

∑
i=1

l

∑
j=1

αiαjyiyjK(xi, xj; w) +
p

∑
j=1

pλ(|wj|)}

and the following regularity conditions:

C1. The densities of Z given Y = 1 and −1 are continuous with common support in Rq, where Z are
truly relevant predictors.

C2. E(Z2
j ) < ∞ for 1 ≤ j ≤ q, i.e., the second order moments of all active predictors are finite.

C3. The true parameter β0 is a non-zero and unique vector.
C4. q = O(nc) for some 0 ≤ c < 1/2, namely, limn→∞ q/nc < ∞.
C5. Eigenvalues of n−1[X�2]TX�2 are finite, where X is the input matrix, and (·)�2 is the

component-wise square.

Conditions C1–3 are the assumptions to ensure that the oracle estimator constructed in our
proposed method is consistent and that the optimal classification decision rule is not constant.
Condition C4 is a common requirement in high-dimensional inference, indicating that the the number
of the truly active predictors cannot diverge with a rate faster than

√
n. Condition C5 gives the upper

boundary of the largest eigenvalues of the squared design matrix, which is necessary in our proposed
method due to the quadratic form in the radial kernel functions. With these conditions, the following
oracle property holds:

Theorem 2. Assume that Conditions C1-5 and Assumptions 1-2 for the penalty are satisfied. If max{|p′′λ(wj)| :
wj 6= 0} → 0, then there exists a local minimizer ŵ of L2(w) = {∑l

i=1 ∑l
j=1 αiαjyiyjK(xi, xj; w) +

∑
p
j=1 pλ(|wj|)} such that ‖ŵ−wtrue‖ = Op{

√
q/n}, where wtrue is the true value of w.

Detailed proof is provided in Appendix A. Theorem 2 guarantees that the estimate of the
parameter in the proposed method acts as if the true values of the parameters were known. When the
sample size is sufficiently large, the distance between the estimates and the true values of the
parameters will be small enough. Consequently, the estimated decision rule in (19) can be obtained as
if the true decision boundary were known, and it can then be employed to classify new observations.

Though various approaches for SVM-based feature selection procedures are available in literature,
the proposed method is different in that it directly obtains a minimal subset of features and
simultaneously classifies objects by penalizing the kernel function, eliminating noisy features without
ranking the features. The process of the proposed method is more time-efficient compared to the
methods in the literature, and the proposed method improves the classification performance, especially
when the data are imbalanced.

4. Numerical Studies

In this section, simulation studies are carried out to assess the performance of the data-adaptive
kernel-penalized SVM, and to compare the proposed method with some other penalized SVMs
in the literature. In the data-adaptive (DA) kernel-penalized SVM, the SCAD (DA-SCAD-SVM),
MCP (DA-MCP-SVM) penalties and L0 norm approximation (DA-L0-SVM) are used. For other
penalized SVMs, we use the penalties of SCAD (SCAD-SVM, [8]), MCP (MCP-SVM, [8]), L1 norm
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(L1-SVM, [30]), adaptively weighted L1 norm with a weight parameter c = 0.5 (adapt L1-SVM, [10])
and L0 norm approximation (L0-SVM, [11]). The comparisons are made under various levels of
imbalance in the data. The abilities of identifying the relevant features and controlling the test error
are compared when the data are both balanced and imbalanced.

4.1. Simulation Study

We consider the data generation process of a standard discriminant analysis following the settings
from [21] and [8]. The model is described as Pr(Y = 1) = c while Pr(Y = −1) = 1− c, where c
will control the imbalance level. The input features X|(Y = 1) ∼ MVN(µ, Σ) and X|(Y = −1) ∼
MVN(−µ, Σ), µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0, . . . , 0)T ∈ Rp, Σ = (σij) with diagonal elements σii = 1
for i = 1, 2, . . . , p and σij = ρ = −0.2 for 1 ≤ i 6= j ≤ K, and K is set as 5. The true label is determined
by the Bayes rule boundary as sgn(1.5X1 + 2.3X2 + 2.8X3 + 3.3X4 + 3.8X5) with a Bayes error of 6.1%.

In terms of tuning the regularization parameters for all of the approaches considered, we adopt
a procedure similar to [31]. The prediction error is estimated using a five-fold cross-validation
method. The initial value of w is set as 1T . During the second stage of solving the data-adaptive
kernel-penalized SVM, the gradient descent procedure is adopted for the non-linear optimization
problem. The iterative algorithm will stop if the change in the estimates of w in two consecutive rounds,
namely ‖w(t+1) −w(t)‖, is smaller than a given threshold ε, which is set as 10−4 for fast convergence.

For the tuning parameter λ in the penalty term, we use the SVM-extended Bayesian information
criterion (SVMIC) proposed in [8] as

SVMICγ(S) =
n

∑
i=1

2cξi + log n|S|+ 2γ

(
p
|S|

)
, (23)

where ξi, i = 1, 2, . . . , n, are the optimal slack predictors and, correspondingly, S is a subset of
{1, 2, . . . , p}, |S| is the cardinality of S, and (··) represents the combination operator. This idea is
motivated by the standard Bayesian information criterion and is extended by [32]. The range of λ is
set as {2−6, 2−5, . . . , 23}, and γ is set as 0.5 in the tuning procedure without a loss of generality [32].
The value of λ will be set as the one that maximizes (23). Note that the values of the slack variables
ξi in (23) are not available directly, but they can be calculated by ξi = [1− yiD̂(xi)]+ for i = 1, . . . , n,
where [t]+ = max{0, t}, and D̂(xi) can be obtained by (19) [33].

As suggested in [8], for SCAD and MCP penalties, the constant a values will be set as 3.7 and
3, respectively.

Tables 1 and 2 summarize the performances with different combinations of imbalance levels and
numbers of predictors, based on a replication of 100 times. The sample sizes n are fixed as 100 and
400, respectively. The ’Relevant’ and ‘Irrelevant’ columns show the information of the mean values of
the truly active and inactive predictors selected by the model, respectively. Column ‘True’ gives the
percentage when the true model, containing exactly those five active predictors, is correctly selected
during the 100 replications. Values in parentheses are the corresponding empirical standard errors.

Table 1. Simulation study outcome where the sample size n = 100. Margins are provided in brackets.

Method Proportion p Relevant Irrelevant True% Test Error%

DA-SCAD-SVM

c = 0.50 50 5.00(0.00) 0.88(0.16) 96 8.16(0.2)
100 5.00(0.00) 0.91(0.14) 96 8.72(0.2)

c = 0.75 50 4.96(0.01) 0.92(0.23) 94 9.23(0.3)
100 4.95(0.01) 0.95(0.27) 94 9.85(0.3)

c = 0.90 100 4.91(0.03) 1.10(0.39) 91 10.55(0.4)
100 4.90(0.03) 1.09(0.41) 91 10.93(0.4)
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Table 1. Cont.

Method Proportion p Relevant Irrelevant True% Test Error%

DA-MCP-SVM

c = 0.50 50 5.00(0.00) 0.12(0.01) 98 7.20(0.2)
100 5.00(0.00) 0.13(0.01) 98 7.38(0.2)

c = 0.75 50 4.98(0.01) 0.26(0.03) 96 8.44(0.2)
100 4.98(0.01) 0.28(0.03) 96 8.90(0.2)

c = 0.90 100 4.95(0.02) 0.42(0.04) 92 9.20(0.3)
100 4.94(0.02) 0.45(0.04) 92 9.65(0.3)

DA-L0-SVM

c = 0.50 50 5.00(0.00) 0.36(0.02) 97 7.81(0.2)
100 5.00(0.00) 0.39(0.02) 97 7.86(0.2)

c = 0.75 50 4.97(0.01) 0.47(0.03) 95 8.02(0.2)
100 4.96(0.01) 0.51(0.03) 95 8.10(0.2)

c = 0.90 100 4.92(0.02) 0.68(0.04) 91 9.70(0.3)
100 4.92(0.02) 0.65(0.04) 90 9.82(0.3)

SCAD-SVM

c = 0.50 50 4.92(0.02) 1.92(0.18) 96 8.23(0.2)
100 4.91(0.02) 1.99(0.17) 96 8.66(0.2)

c = 0.75 50 4.83(0.03) 2.01(0.31) 91 10.19(0.4)
100 4.78(0.04) 2.13(0.36) 91 10.87(0.4)

c = 0.90 100 4.76(0.04) 3.35(0.41) 88 12.15(0.5)
100 4.74(0.04) 3.40(0.43) 87 12.36(0.5)

MCP-SVM

c = 0.50 50 5.00(0.00) 0.27(0.02) 98 7.32(0.2)
100 5.00(0.00) 0.29(0.02) 98 7.41(0.2)

c = 0.75 50 4.92(0.01) 0.43(0.03) 93 8.96(0.2)
100 4.91(0.01) 0.47(0.03) 93 9.29(0.3)

c = 0.90 100 4.85(0.03) 0.88(0.05) 89 10.63(0.4)
100 4.84(0.03) 0.91(0.05) 89 11.79(0.4)

L1-SVM

c = 0.50 50 4.86(0.05) 31.08(1.52) 10 16.67(0.5)
100 4.71(0.06) 42.98(2.13) 4 19.33(0.6)

c = 0.75 50 4.62(0.07) 35.71(1.67) 3 19.18(0.6)
100 4.45(0.08) 46.29(2.20) 0 22.00(0.8)

c = 0.90 50 4.33(0.10) 39.53(2.02) 1 22.61(0.8)
100 4.02(0.10) 59.01(2.54) 0 25.98(1.0)

Adapt L1-SVM

c = 0.50 50 4.38(0.07) 13.62(0.90) 23 16.28(0.5)
100 4.01(0.10) 13.10(0.86) 5 20.23(0.5)

c = 0.75 50 4.13(0.09) 15.18(1.05) 8 18.71(0.5)
100 3.91(0.10) 14.92(1.03) 0 22.33(0.6)

c = 0.90 50 3.87(0.10) 16.99(1.22) 2 20.02(0.6)
100 3.81(0.13) 16.87(1.21) 0 25.01(0.7)

L0-SVM

c = 0.50 50 4.85(0.02) 2.87(0.66) 62 12.16(0.5)
100 4.78(0.04) 2.93(0.49) 54 14.16(0.4)

c = 0.75 50 4.61(0.04) 4.11(0.23) 55 13.88(0.4)
100 4.37(0.08) 4.23(0.56) 43 15.73(0.4)

c = 0.90 50 4.33(0.07) 6.28(0.77) 41 16.68(0.5)
100 4.03(0.10) 6.79(0.78) 25 17.02(0.5)
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Table 2. Simulation study outcome where the sample size n = 400. Margins are provided in brackets.

Method Proportion p Relevant Irrelevant True% Test Error%

DA-SCAD-SVM

c = 0.50 200 5.00(0.00) 0.58(0.11) 98 7.76(0.2)
400 5.00(0.00) 0.72(0.13) 98 8.13(0.2)

c = 0.75 200 4.98(0.01) 0.67(0.12) 96 8.76(0.3)
400 4.98(0.01) 0.71(0.13) 96 9.12(0.3)

c = 0.90 200 4.95(0.02) 0.81(0.17) 93 9.14(0.3)
400 4.94(0.02) 0.77(0.16) 93 9.93(0.3)

DA-MCP-SVM

c = 0.50 200 5.00(0.00) 0.05(0.01) 98 6.28(0.2)
400 5.00(0.00) 0.06(0.01) 98 6.91(0.2)

c = 0.75 200 4.98(0.01) 0.12(0.04) 97 7.45(0.2)
400 4.98(0.01) 0.11(0.04) 97 7.93(0.2)

c = 0.90 200 4.95(0.02) 0.18(0.05) 94 8.60(0.2)
400 4.94(0.02) 0.19(0.05) 94 9.11(0.3)

DA-L0-SVM

c = 0.50 200 5.00(0.00) 0.26(0.01) 98 7.02(0.2)
400 5.00(0.00) 0.28(0.01) 98 7.12(0.2)

c = 0.75 200 4.98(0.01) 0.33(0.08) 96 7.88(0.2)
400 4.98(0.01) 0.36(0.08) 97 8.02(0.2)

c = 0.90 200 4.95(0.02) 0.44(0.10) 93 9.15(0.2)
400 4.94(0.02) 0.49(0.10) 93 9.54(0.3)

SCAD-SVM

c = 0.50 200 4.96(0.01) 1.52(0.15) 96 8.01(0.2)
400 4.96(0.01) 1.76(0.16) 96 8.36(0.2)

c = 0.75 200 4.88(0.03) 1.77(0.16) 92 9.59(0.3)
400 4.82(0.04) 1.98(0.18) 92 10.27(0.4)

c = 0.90 200 4.82(0.04) 2.89(0.36) 90 11.32(0.5)
400 4.77(0.04) 3.11(0.40) 89 11.87(0.4)

MCP-SVM

c = 0.50 200 5.00(0.00) 0.27(0.02) 98 7.32(0.2)
400 5.00(0.00) 0.29(0.02) 98 7.41(0.2)

c = 0.75 200 4.92(0.01) 0.43(0.03) 93 8.96(0.2)
400 4.91(0.01) 0.47(0.03) 93 9.29(0.3)

c = 0.90 200 4.85(0.03) 0.88(0.05) 89 10.63(0.4)
400 4.84(0.03) 0.91(0.05) 89 11.79(0.4)

L1-SVM

c = 0.50 200 4.88(0.04) 25.08(1.22) 15 14.91(0.4)
400 4.79(0.06) 28.66(1.56) 8 17.76(0.5)

c = 0.75 200 4.65(0.07) 28.12(1.54) 5 16.53(0.5)
400 4.45(0.08) 31.67(1.53) 1 20.35(0.7)

c = 0.90 200 4.43(0.09) 33.53(1.61) 0 19.53(0.6)
400 4.11(0.09) 40.27(2.08) 0 23.16(0.9)

Adapt L1-SVM

c = 0.50 200 4.49(0.08) 11.28(0.90) 35 13.28(0.5)
400 4.25(0.9) 13.10(0.86) 16 16.55(0.6)

c = 0.75 200 4.25(0.09) 13.65(1.05) 17 15.97(0.5)
400 4.12(0.09) 14.16(1.03) 6 18.46(0.6)

c = 0.90 200 3.87(0.10) 14.85(1.22) 5 18.98(0.6)
400 4.01(0.10) 15.26(1.21) 1 21.98(0.7)

L0-SVM

c = 0.50 200 4.88(0.02) 2.42(0.66) 77 11.42(0.5)
400 4.82(0.02) 2.65(0.23) 60 12.91(0.5)

c = 0.75 200 4.73(0.04) 3.69(0.30) 65 12.51(0.5)
400 4.49(0.06) 3.82(0.23) 48 13.80(0.5)

c = 0.90 200 4.46(0.06) 5.52(0.63) 47 15.23(0.5)
400 4.33(0.07) 6.18(0.76) 29 16.45(0.6)
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In general, the SVMs with the non-convex penalized data-adaptive kernels show a much greater
probability of correctly selecting the true model as n increases, which is consistent with the asymptotic
oracle property. According to the numbers in the Relevant column, the SVMs with penalties of SCAD
and MCP find the most relevant predictors compared with other methods. The SVM with L0 norm
approximation can find some relevant predictors, while the SVMs with an L1 norm penalty tend to
fail in selecting the correct predictors, with or without adaptive weights. According to the Irrelevant
column, the two data-adaptive kernel-penalized methods exclude most irrelevant predictors and hence
eliminate the noisy predictors. The missing relevant predictor, if there is any, is mostly from X1 due to
the fact that setting X1 has the weakest effect.

On the other hand, when the imbalance level of the data is increasing, the prediction error
tends to increase. However, given a specific level of imbalance in data, test prediction errors
from data-adaptive kernel-penalized SVMs are universally smaller than those obtained from other
approaches, because these two methods give the fewest noisy predictors so that the prediction error is
minimized. More importantly, when the imbalance level increases, our data-adaptive kernel-penalized
SVMs outperform among all methods, which agrees with the fact that the data-adaptive kernel can
improve the classification performance. This adaptive scaling process on the kernel is only applicable
to our setting and not to any other method due to the lack of kernel functions in the model structures
(penalized SVMs have penalty terms directly on the loss function, which is not described in the kernel
form). In the mean time, the feature selection performance changes little, especially in the non-convex
penalized data-adaptive kernel SVMs.

It is worth noting that the combination (n, p) shows that, even when the number of potential
predictors is proportional to the sample size or larger, our method still performs well. This gives
us some clue that the method may still work in big data or ultra-high dimensional settings. Indeed,
the oracle property in our proposed method indicates that the true predictors can still be selected
even when the dimension of the input space grows proportional to the sample size, which is the
high-dimensional setting.

4.2. A Real Data Example

A publicly available Wisconsin Breast Cancer (WBC) data set from the UCI Machine Learning
Repository [34] provides an illustration of the proposed method. The data set can be found and
downloaded via https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic).
The WBC data set contains 569 observations (212 malignant and 357 benign tumors). Thirty continuous
features, such as the radius (mean of distances from center to points on the perimeter) of the cancer,
as well as the texture (standard deviation of gray-scale values), smoothness (local variation in radius
lengths) and area of the cancer, are expected to be used to classify the two classes of malignant and
benign tumors. These features are measured by a digitized image of a Fine Needle Aspirate (FNA)
of a breast mass, which can describe the cell nuclei shown in the images. We refer readers to a full
description of the data set in [35]. As a pre-process step, the features were first standardized.

Different methods are applied to the data set, both with and without penalties. For classifiers
without penalties, the Gaussian kernel will be adopted with all the input features being used to
estimate the decision boundary. For those with penalties, we will use data-adaptive kernel-penalized
SVMs with SCAD and MCP penalties, as well as the penalized SVMs with SCAD and MCP penalties
to the hinge loss.

The numbers of selected features and the test errors from all the considered methods will be
reported. For those approaches that require a two-stage optimization process, the solutions for the first
stage optimization are used as the initial values for the second stage optimization if needed. For SCAD
and MCP penalties, the constant a values are still fixed as 3.7 and 3, respectively, the same as the values

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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used in the simulation process. A five-fold cross validation will be conducted to obtain the tuning
parameters, which will be chosen from the following sets

B ∈ {0.1, 0.5, 1, 5, 10, 20, 50, 80, 100, 200, 500}
σ ∈ {0.1, 0.5, 1, 2, 3, 4, 5, 10, 50, 100}.

The tuning parameter λ is selected by the grid search from {2−14, 2−9, . . . , 25} in 100 repetitions.
Table 3 summarizes the classification outcome of the mean and the standard deviation

(in parentheses) of the prediction error and the number of predictors selected with different approaches.
It is clear that the data-adaptive kernel-penalized SVMs perform the best among all approaches,
with a significantly lower prediction error and number of predictors selected than any other method.
Compared with penalized SVM with SCAD and MCP penalties, data-adaptive kernel-penalized
SVMs with the corresponding penalties still outperform, even though the penalties are the same.
MCP seems to be a better choice for the penalty term, since the number of the predictor is the smallest,
and the standard deviation is smaller. Adaptively weighted L1 norm SVM and L1 norm SVM are
fair. Clearly, the numerical results have confirmed that data-adaptive kernel-penalized SVMs with
SCAD or MCP penalties are both promising classifiers with low prediction errors and excellent feature
selection abilities.

Table 3. Classification outcome on the Wisconsin Breast Cancer data set. Margins are provided
in brackets.

Methods # of Features Prediction Error(%)

DA-SCAD-SVM 6(0.8) 9.6(0.3)
DA-MCP-SVM 5(0.2) 9.4(0.2)
DA-L0-SVM 5(0.4) 9.6(0.2)
SCAD-SVM 7(0.8) 10.9(0.3)
MCP-SVM 6(0.2) 13.2(0.2)
L0-norm Approximation SVM 12(1.3) 15.2(0.2)
Adapt L1-norm SVM 14.50(2.4) 17(1.5)

5. Concluding Remarks

In this paper, we propose a data-adaptive kernel-penalized SVM, a new method that
simultaneously achieves feature selection and classification, especially when the data is imbalanced.
Instead of penalizing the loss function of SVMs, as has been done in the literature, a non-convex
penalty is proposed to be added directly to the kernel form of the SVM. The benefit is that the features
are selected more correctly in the feature space instead of the original input space. This is because it
is the kernel function that mainly determines the classification process. Moreover, the data-adaptive
kernel is applicable to SVM so that, even when the data is imbalanced, the performance of the SVM
is still excellent, while—in this setting—other penalized SVM cannot work well due to the lack of
flexibility in SVM. Along with the oracle properties, if the true sparsity in the feature space is already
known, our proposed method works well in both the simulation study and the real data example,
possibly even when the ultra-dimensional setting exists.

The method proposed in this paper is actually an embedded approach, as mentioned in the
introduction part, and the forms of penalty terms are not limited to those applied in the methodology
above. In terms of the multi-category classification problem, the methodology can be extended to fit in
the direct method, though the data-adaptive kernels need to be modified. Another issue is the choice
of the primary kernel function. The methodology proposed is base on the Gaussian RBF kernel due to
its natural link with the contribution of the predictors. Extensions will be considered in future works.

Furthermore, in terms of the cancer image dataset, the patients included in the study probably
have more diseases in the prostate other than cancer, and this requires techniques for multi-category
classifiers. Moreover, measurement errors will probably exist due to the co-registration of the measures



Mathematics 2020, 8, 1846 17 of 22

from different platforms, and this may affect the accuracy of the classifier. Future works will continue
this study, taking all of these issues into consideration.
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Appendix A. Proof of Lemmas and Theorems

Appendix A.1. Proof of Lemma 1

Proof. By the definition of a reproducing kernel function K(x, z) with its values λk and the
corresponding scalar eigenfunctions gk(x), we have∫

K(x, z) · gk(z) dz = λk · gk(x)

where k = 1, 2, . . . , l. Then, the kernel is represented as

K(x, z) = ∑
k

λk · gk(x) · gk(z).

By rescaling the function gk(·) as sk(x) =
√

λkgk(x), the kernel function can be further presented as

K(x, z) = ∑
k

sk(x) · sk(z) = [s(x)]T · [s(z)]

where [s(x)]T = (s1(x), s2(x), . . . , sl(x)) and [·]T is the transpose operator. Thus, if we further define

∇s =

(
∂ s(x)

∂ x

)
=


∂ s1(x)

∂ x1
. . . ∂ s1(x)

∂ xp
...

...
...

∂ sl(x)
∂ x1

. . . ∂ sl(x)
∂ xp


and

sij(x) =

(
∂

∂xi
s(x)

)T
·
(

∂

∂xj
s(x)

)

=

(
∂s1(x)

∂xi
, . . . ,

∂sl(x)
∂xi

)
·
(

∂s1(x)
∂xj

, . . . ,
∂sl(x)

∂xj

)T

,

as in (7) and (8), it follows that

∂

∂xi

∂

∂zj
K(x, z)|z=x = [∇s(x)]T · ∇s(z) =

(
∂

∂xi
s(x)

)T
·
(

∂

∂xj
s(x)

)
= sij(x). ]
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The lemma shows how mapping s is associated with the corresponding kernel function K.
Thus, given a specific form of a kernel function and an adaptive scaling function c(x), we have
Theorems 1 and 2.

Appendix A.2. Proof of Theorem 1

Proof. When we apply, in Theorem 1, the Gaussian RBF kernel as in (12), it is found that

Ki·(x, x) = K·j(x, x) = 0

and
K(x, x) = 1

for any i and j, so the third term in the result of Theorem 1 is zero, and the second term is changed into
ci(x) · cj(x). Furthermore, when i 6= j,

sij(x) =
∂

∂xi

∂

∂zj
K(x, z)|z=x =

1
σ2 (xi − zi) · K(x, x) · (xj − zj)

∣∣∣
z=x

= 0,

while, when i = j,

sii(x) =
1
σ2

(
(xi − zi) · K(x, z) · (xi − zi) + K(x, z)

)∣∣∣
z=x

=
1
σ2 ;

thus, the first term becomes
c2(x)

σ2 · (i = j).

Combining all the above results, Theorem 1 is proved.

Appendix A.3. Proof of Theorem 2: The Oracle Properties in Data-Adaptive Kernel-Penalized SVM

Proof. Define

L(β) =
l

∑
i=1

l

∑
j=1

αiαjyiyjK(xi, xj; β) +
p

∑
j=1

pλn(|β j|) = L1(β) +
p

∑
j=1

pλn(|β j|), (A1)

which comes from the second part of the optimization problem in (22). We shall show that, for ∀ ε > 0,
there is a constant ∆, such that, when n is sufficiently large,

Pr[inf‖u=∆‖L(βtrue +
√

q/n · u) > L(βtrue)] ≥ 1− ε. (A2)

In the following proof, βtrue will be replaced by β for short, without misleading the proof.
Note that ∑i=1 αiyi = 0 from the constraints of (21).

l

∑
i=1

l

∑
j=1

αiαjyiyj =
l

∑
i=1

αiyi ·
l

∑
j=1

αjyj = 0, (A3)

and, furthermore,

0 =
l

∑
i=1

l

∑
j=1

αiαjyiyj = ∑
i, j, yiyj=1

αiαj − ∑
i, j, yiyj=−1

αiαj. (A4)

This immediately leads to

L1(β) = ∑
i, j, yiyj=1

αiαjK(xi, xj; β) − ∑
i, j, yiyj=−1

αiαjK(xi, xj; β) (A5)
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Since yi ∈ {1,−1}, then yiyj ∈ {1,−1} for all (i, j), with a probability of π2
+ + π2

− for 1
and 2π+π1 for −1, assuming independence between yi and yj, where π+ = Pr(yi = 1) and
π− = Pr(yi = 1); furthermore, it is easy to check

0 ≤ E(yiyj) = π2
+ + π2

− − 2π+π1 = (π+ − π−)
2 ≤ 1

and thus
E(L1(β)) = (π+ − π−)

2 ∑
i=1

∑
j=1

αiαjK(xi, xj; β) ≥ 0. (A6)

Now, let

Λn(u) = nq−1 · [L1(β +
√

q/n · u)− L1(β)]

= nq−1
l

∑
i=1

l

∑
j=1

αiαjyiyjK(xi, xj; β) · exp{−1
2

q/n · [(xi − xj)
�2]Tu− 1}

= nq−1 ·
l

∑
i, j, yi ·yj=1

αiαjK(xi, xj; β) · exp{−1
2

q/n · [(xi − xj)
�2]Tu− 1}

− nq−1 ·
l

∑
i, j, yi ·yj=−1

αiαjK(xi, xj; β) · exp{−1
2

√
q/n · [(xi − xj)

�2]Tu− 1}

(A7)

where ()�2 is the component-wise square. Since exp(x) > x + 1 for all x and αi ≥ 0 for all i, then the
first item in (A7) is

≥ nq−1
l

∑
i, j, yi ·yj=1

αiαjK(xi, xj; β) · [−1
2

√
q/n · [(xi − xj)

�2]Tu− 1 + 1]

=
√

nq−1
l

∑
i, j, yi ·yj=1

αiαjK(xi, xj; β) · {−1
2
· [(xi − xj)

�2]Tu}.
(A8)

Taking the standard augmentation of the Taylor expansion with respect to u,

exp{−1
2
· [(xi − xj)

�2]Tu− 1} = −1
2

√
q/n · [(xi − xj)

�2]Tu

+
1
4
· q

n
· uT [(xi − xj)

�2][(xi − xj)
�2]Tu + op(n−1).

(A9)

Then it is easy to find that the second item in (A7) is

≤ nq−1 ·
l

∑
i, j, yi ·yj=−1

αiαjK(xi, xj; β) · (−1
2

√
q/n · [(xi − xj)

�2]Tu

+
1
4
· q

n
· uT [(xi − xj)

�2][(xi − xj)
�2]Tu + op(1)

(A10)
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Now, by combining (A8) and (A10), we have

Λn(u) ≥
√

nq−1 · [
l

∑
i, j, yi ·yj=1

αiαjK(xi, xj; β) · {−1
2
· [(xi − xj)

�2]Tu

−
l

∑
i, j, yi ·yj=−1

αiαjK(xi, xj; β) · {−1
2
· [(xi − xj)

�2]Tu}]

+
1
4
· uT [(xi − xj)

�2][(xi − xj)
�2]Tu + op(1)

=
√

nq−1 ·
l

∑
i,j

αiαjyiyjK(xi, xj; β) · {−1
2
· [(xi − xj)

�2]T} · u

+
1
4

l

∑
i, j, yi ·yj=−1

αiαjK(xi, xj; β) · uT [(xi − xj)
�2][(xi − xj)

�2]Tu + op(1)

(A11)

Note that the first part in (A11) is equivalent to ∂
∂β L′1(β) = 0 due to the necessary condition

that β = arg min L1(β), and the second term, which is obviously non-negative, will dominate (A11).
In terms of the penalty term, it is obvious that

Pn(β) = nq−1
p

∑
j=1

[pλn(|β j +
√

q/n · uj| − pλn(|β j|)]; using pλn(0) = 0 and pλn(·) ≥ 0

≥
q

∑
j=1

nq−1 · [pλn(|β j +
√

q/n · uj| − pλn(|β j|)]; using Taylor Expansion

=
q

∑
j=1
·[q−1/2 p′λn

(|β j|) + p′′λn
(|β j|)u2

j {1 + op(1)}],

(A12)

which is bounded by q−1/2‖u‖+ max{|p′′λn
(β j)| : β j 6= 0}‖u|. Thus, by choosing a sufficiently large

∆, Pn(β) is dominated by the second item in (A11) as well. Thus, L(β) = Λn(u) + Pn(β) is dominated
by a non-negative item with probability 1 within a ball. This indicates that with a probability of at
least 1− ε, there exists a local minimum in the ball {β +

√
q/n · u : ‖u‖ ≤ ∆}, and hence there exists a

local minimizer, such that ‖β̂− β‖ = Op{
√

q/n}. Note that when the kernel function K is updated by
K̃, nothing is changed except that the kernel is multiplied by two finite constants constructed from the
first stage of SVM, and hence the theorem still holds. This completes the proof.

References

1. Blum, A.L.; Langley, P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997,
97, 245–271. [CrossRef]

2. Zhang, L.; Hu, H.; Zhang, D. A credit risk assessment model based on SVM for small and medium enterprises
in supply chain finance. Financ. Innov. 2015, 1, 14. [CrossRef]

3. Khokhar, S.; Zin, A.A.B.M.; Mokhtar, A.S.B.; Pesaran, M. A comprehensive overview on signal processing and
artificial intelligence techniques applications in classification of power quality disturbances. Renew. Sustain.
Energy Rev. 2015, 51, 1650–1663. [CrossRef]

4. Vapnik, V.N.; Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998; Volume 1.
5. Rodger, J.A. Discovery of medical Big Data analytics: Improving the prediction of traumatic brain injury

survival rates by data mining Patient Informatics Processing Software Hybrid Hadoop Hive. Inform. Med.
Unlocked 2015, 1, 17–26. [CrossRef]

6. Maldonado, S.; Weber, R. A wrapper method for feature selection using support vector machines. Inf. Sci.
2009, 179, 2208–2217. [CrossRef]

http://dx.doi.org/10.1016/S0004-3702(97)00063-5
http://dx.doi.org/10.1186/s40854-015-0014-5
http://dx.doi.org/10.1016/j.rser.2015.07.068
http://dx.doi.org/10.1016/j.imu.2016.01.002
http://dx.doi.org/10.1016/j.ins.2009.02.014


Mathematics 2020, 8, 1846 21 of 22

7. Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer: Berlin, Germany, 2001;
Volume 1.

8. Zhang, X.; Wu, Y.; Wang, L.; Li, R. Variable selection for support vector machines in moderately high
dimensions. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2016, 78, 53–76. [CrossRef]

9. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector
machines. Mach. Learn. 2002, 46, 389–422. [CrossRef]

10. Zou, H. An Improved 1-norm SVM for Simultaneous Classification and Variable Selection. AISTATS 2007,
2, 675–681.

11. Maldonado, S.; Weber, R.; Basak, J. Simultaneous feature selection and classification using kernel-penalized
support vector machines. Inf. Sci. 2011, 181, 115–128. [CrossRef]

12. Pehro, D.; Stork, D. Pattern Classification; Wiley Interscience Publication: Hoboken, NJ, USA, 2001.
13. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
14. Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am.

Stat. Assoc. 2001, 96, 1348–1360. [CrossRef]
15. Bradley, P.S.; Mangasarian, O.L. Feature selection via concave minimization and support vector machines.

ICML 1998, 98, 82–90.
16. Fumera, G.; Roli, F. Support vector machines with embedded reject option. In Pattern Recognition with

Support Vector Machines; Springer: New York, NY, USA, 2002; pp. 68–82.
17. Zhu, J.; Rosset, S.; Hastie, T.; Tibshirani, R. 1-norm Support Vector Machines. NIPS 2003, 15, 49–56.
18. Wang, L.; Zhu, J.; Zou, H. The doubly regularized support vector machine. Stat. Sin. 2006, 12, 589–615.
19. Wang, L.; Zhu, J.; Zou, H. Hybrid huberized support vector machines for microarray classification and gene

selection. Bioinformatics 2008, 24, 412–419. [CrossRef] [PubMed]
20. Zou, H.; Yuan, M. The F∞−norm support vector machine. Stat. Sin. 2008, 18, 379–398.
21. Park, C.; Kim, K.R.; Myung, R.; Koo, J.Y. Oracle properties of scad-penalized support vector machine. J. Stat.

Plan. Inference 2012, 142, 2257–2270. [CrossRef]
22. Wu, G.; Chang, E.Y. Adaptive feature-space conformal transformation for imbalanced-data learning.

In Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington, DC, USA,
21–24 August 2003; pp. 816–823.

23. Williams, P.; Li, S.; Feng, J.; Wu, S. Scaling the kernel function to improve performance of the support vector
machine. In Advances in Neural Networks–ISNN 2005; Springer: Cham, Switzerland, 2005; pp. 831–836.

24. Maratea, A.; Petrosino, A.; Manzo, M. Adjusted F-measure and kernel scaling for imbalanced data learning.
Inf. Sci. 2014, 257, 331–341. [CrossRef]

25. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings
of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992;
pp. 144–152.

26. Amari, S.i.; Wu, S. Improving support vector machine classifiers by modifying kernel functions. Neural Netw.
1999, 12, 783–789. [CrossRef]

27. Lin, Y. Support vector machines and the Bayes rule in classification. Data Min. Knowl. Discov. 2002,
6, 259–275. [CrossRef]

28. Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942.
[CrossRef]

29. Wu, S.; Amari, S.I. Conformal transformation of kernel functions: A data-dependent way to improve support
vector machine classifiers. Neural Process. Lett. 2002, 15, 59–67. [CrossRef]

30. Zhu, J.; Rosset, S.; Tibshirani, R.; Hastie, T.J. 1-norm support vector machines. In Advances in Neural
Information Processing Systems; The MIT Press: New York, NY, USA, 2004; pp. 49–56.

31. Mazumder, R.; Friedman, J.H.; Hastie, T. Sparsenet: Coordinate descent with nonconvex penalties. J. Am.
Stat. Assoc. 2011, 106, 1125–1138. [CrossRef] [PubMed]

32. Chen, J.; Chen, Z. Extended Bayesian information criteria for model selection with large model spaces.
Biometrika, 2008, 95, pp. 759–771. [CrossRef]

33. Claeskens, G.; Croux, C.; Kerckhoven, J.V. An information criterion for variable selection in support vector
machines. J. Mach. Learn. Res. 2008, 9, 541–558.

[CrossRef]

http://dx.doi.org/10.1111/rssb.12100
http://dx.doi.org/10.1023/A:1012487302797
http://dx.doi.org/10.1016/j.ins.2010.08.047
http://dx.doi.org/10.1198/016214501753382273
http://dx.doi.org/10.1093/bioinformatics/btm579
http://www.ncbi.nlm.nih.gov/pubmed/18175770
http://dx.doi.org/10.1016/j.jspi.2012.03.002
http://dx.doi.org/10.1016/j.ins.2013.04.016
http://dx.doi.org/10.1016/S0893-6080(99)00032-5
http://dx.doi.org/10.1023/A:1015469627679
http://dx.doi.org/10.1214/09-AOS729
http://dx.doi.org/10.1023/A:1013848912046
http://dx.doi.org/10.1198/jasa.2011.tm09738
http://www.ncbi.nlm.nih.gov/pubmed/25580042
http://dx.doi.org/10.1093/biomet/asn034
http://dx.doi.org/10.2139/ssrn.1094652


Mathematics 2020, 8, 1846 22 of 22

34. Blake, C.L.; Merz, C.J. UCI Repository of Machine Learning Databases; Department information Computer
Science, University of California: Irvine, CA, USA, 1998; Volume 55.

35. Mangasarian, O.L.; Street, W.N.; Wolberg, W.H. Breast cancer diagnosis and prognosis via linear
programming. Oper. Res. 1995, 43, 570–577. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1287/opre.43.4.570
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Notation and Framework
	Geometric Interpretation of SVM Kernels
	Penalized SVM

	Methodology of Data-Adaptive Kernel-Penalized SVM
	Kernel-Based Parameters
	Data-Adaptive Kernel Functions
	Data-Adaptive Kernel-Penalized SVM
	An Algorithm to Solve Data-Adaptive Kernel-Penalized SVM
	The Oracle Property

	Numerical Studies
	Simulation Study
	A Real Data Example

	Concluding Remarks
	 Proof of Lemmas and Theorems
	 Proof of Lemma 1
	 Proof of Theorem 1
	 Proof of Theorem 2: The Oracle Properties in Data-Adaptive Kernel-Penalized SVM

	References

