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Abstract: In this paper, our goal was to establish the relationship between solutions of local
sharp vector variational type inequality and sharp efficient solutions of vector optimization
problems, also Minty local sharp vector variational type inequality and sharp efficient solutions of
vector optimization problems, under generalized approximate η-convexity conditions for locally
Lipschitzian functions.

Keywords: vector variational type inequality problems; vector optimization problems; efficient
solutions; approximate η-convexity; Lipschitzian functions

1. Introduction

The research of variational inequality problems is a part of development in the theory of
optimization since optimization problems can often be specialized to the solution of variational
inequality problems. It is very important to point out that these theories pertain to more than just
optimization problems and there in lies much of their attractiveness. Several authors have presented
numerous fascinating results on variational inequality problems; see cited references here [1–12].

In 1984, Loridan [13] studied the concept of ε-efficient solutions for vector minimization problems
where the function to be optimized has its values in the Rn space, which is a generalization of the
classical problem for Pareto solution. Later in 1986, White [14] extended ε-optimality for scalar
problems to vector maximization problems, or efficiency problems, with m objective functions defined
on a subset of Rn. In 1993, Burke et al. [15] studied the concept of weak sharp minima for scalar
optimization problem which was motivated by the application in convex and convex composite
mathematical programming.

Recently, in 2016, Zhu [16] suggested the necessary optimal conditions for the weak local sharp
efficient solution of a constrained multi-objective optimization problem by using the generalized
Fermat formula, the Mordukhovich subdifferential for maximum functions, the fuzzy sum rule for
Fréchet subdifferentials, and the sum rule for Mordukhovich subdifferentials, and also got the some
sufficient optimal conditions respectively for the local and global weak sharp efficient solutions of
such a multi-objective optimization problem, by applying the approximate projection method, and
some appropriate convexity and affineness conditions.

Motivated by the ideas of local sharp and weak local sharp efficient solutions, we define the local
sharp vector variational type inequalities and Minty local sharp vector variational type inequalities,
and establish the relations between local (or Minty local) sharp vector variational type inequality and
vector optimization problems involving generated by locally Lipschitzian mappings.
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2. Preliminaries

Throughout this paper, Rn denotes the n-dimensional Euclidean space with a norm ‖ · ‖. Let X be
a nonempty convex subset of Rn. The distance function d(·, X) : X → R is defined by

d(x, X) = inf
x0∈X
‖x− x0‖, ∀x ∈ X.

A vector valued function η : X × X → X is said to be τ-Lipschitz continuous if there exists a
number τ > 0 such that

‖η(x, y)‖ ≤ τ‖x− y‖, ∀x, y ∈ X.

Definition 1. Let η : X × X → X be a function. A lower semicontinuous function ϕ : X → R is said to be
approximate η-convex at x0 ∈ X if for any τ > 0, there exists δ > 0, such that, for all x, y ∈ B(x0, δ) ∩ X,

ϕ(y) ≥ ϕ(x) + 〈x?, η(y, x)〉 − τ‖y− x‖, ∀x∗ ∈ ∂ϕ(x).

Definition 2. Let η : X× X → X be a function. A function ϕ : X → R is said to be

(i) approximate η-pseudoconvex type-I at x0 ∈ X if for any τ > 0, there exists δ > 0, such that, whenever
x, y ∈ B(x0, δ) ∩ X and

〈x∗, η(y, x)〉 ≥ 0, for some x∗ ∈ ∂ϕ(x),

then
ϕ(y)− ϕ(x) ≥ −τ‖y− x‖;

(ii) approximate η-pseudoconvex type-I I (strictly approximate η-pseudoconvex type-I I) at x0 ∈ X if for any
τ > 0, there exists δ > 0, such that, whenever x, y ∈ B(x0, δ) ∩ X and

〈x∗, η(y, x)〉+ τ‖y− x‖ ≥ 0, for some x∗ ∈ ∂ϕ(x),

then
ϕ(y) ≥ (>)ϕ(x);

(iii) approximate η-quasiconvex type-I at x0 ∈ X if for any τ > 0, there exists δ > 0, such that, whenever
x, y ∈ B(x0, δ) ∩ X and

ϕ(y) ≤ ϕ(x),

then
〈x∗, η(y, x)〉 − τ‖y− x‖ ≤ 0, ∀x∗ ∈ ∂ϕ(x);

(iv) approximate η-quasiconvex type-I I ( strictly approximate η-quasiconvex type-I I) at x0 ∈ X if for any
τ > 0, there exists δ > 0, such that, whenever x, y ∈ B(x0, δ) ∩ X and

ϕ(y) ≤ (<)ϕ(x) + τ‖y− x‖,

then
〈x∗, η(y, x)〉 ≤ 0, ∀x∗ ∈ ∂ϕ(x).

(VOP): A vector optimization problem (VOP) is formulated as follows:{
Min f (x),

Subject to x ∈ X ⊂ Rn,

where, f ; X ⊂ Rn → Rp with f (x) = ( f1(x), · · · , fp(x)), is a vector valued function.
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Definition 3 ([16]).

(i) A vector x0 ∈ X is said to be a local sharp efficient solution of (VOP), if for any τ > 0 there exists a
δ-neighborhood of x0, such that for all x ∈ B(x0, δ) ∩ X,

max
1≤i≤p

{
fi(x)− fi(x0)

}
≥ τ‖x− x0‖;

(ii) A vector x0 ∈ X is said to be a weak local sharp efficient solution of (VOP), if for any τ > 0, there exists a
δ-neighborhood of x0, such that for all x ∈ B(x0, δ) ∩ X,

max
1≤i≤p

{
fi(x)− fi(x0)

}
≥ τd(x, X̄),

where
X̄ :=

{
x ∈ X | f (x) = f (x0)

}
= X ∩ f−1( f (x0)).

3. Local Sharp Vector Variational Type Inequalities

In this section, we consider local sharp and weak local sharp formulations of vector variational
type inequality problems as follows:

(LSVVTI): For finding x0 ∈ X, there exists a δ-neighborhood of x0 and for any τ > 0, such that
x ∈ B(x0, δ) ∩ X and

max
1≤i≤p

max
x∗0i
∈∂ fi(x0)

〈x∗0i
, η(x, x0)〉 ≥ τ‖x− x0‖, ∀x∗0i

∈ ϕ fi(x0). (1)

(WLSVVTI): For finding x0 ∈ X, there exists a δ-neighborhood of x0 and for any τ > 0, such that
x ∈ B(x0, δ) ∩ X and

max
1≤i≤p

max
x∗0i
∈∂ fi(x0)

〈x∗0i
, η(x, x0)〉 ≥ τd(x, X̄), ∀x∗0i

∈ ∂ fi(x0), (2)

where
X̄ =

{
x ∈ X | f (x) = f (x0)

}
= X ∩ f−1( f (x0)).

We note that, if x0 is a solution of (LSVVTI), then x0 is also a solution of (WLSVVTI).

Special Cases: Assume that, if η(x, x0) = x− x0. Then,

• (1) reduces to local sharp vector variational inequalities (LSVVI): for finding x0 ∈ X, there exists a
δ-neighborhood of x0 and for any τ > 0, such that x ∈ B(x0, δ) ∩ X and

max
1≤i≤p

max
x∗0i
∈∂ fi(x0)

〈x∗0i
, x− x0〉 ≥ τ‖x− x0‖, ∀x∗0i

∈ ϕ fi(x0). (3)

• In addition, (2) reduces to weak local sharp vector variational inequalities (WLSVVI) for finding
x0 ∈ X, there exists a δ-neighborhood of x0 and for any τ > 0, such that x ∈ B(x0, δ) ∩ X and

max
1≤i≤p

max
x∗0i
∈∂ fi(x0)

〈x∗0i
, x− x0〉 ≥ τd(x, X̄), ∀x∗0i

∈ ∂ fi(x0), (4)

where
X̄ =

{
x ∈ X | f (x) = f (x0)

}
= X ∩ f−1( f (x0)).
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• Again, we note that if η(x, x0) = x− x0, then the solution of (LSVVI) is also a solution of (AVVI)1

(defined by [17]), but the converse need not be true:
Example: consider the function

f (x) = ( f1(x), f2(x)), x ∈ R,

where f1(x) =| x | −x2 and f2(x) = −x2.

If we take x0 = 0, then for any τ > 0, there does not exist any δ > 0 such that

〈x∗0i
, x− x0〉 ≤ τ‖x− x0‖, ∀i ∈ {1, 2}, x∗0i

∈ ∂ fi(x0), x ∈ B(x0, δ) ∩R,

that is, x0 is a solution of (AVVI)1. When x < 0, then for every δ > 0 and τ > 0, we do not have

max
1≤i≤p

max
x∗0i
∈∂ fi(x0)

〈x∗0i
, x− x0〉 ≥ τ‖x− x0‖,

that is, x0 is not a solution of (LSVVI).

Unless otherwise stated, the following condition (C) is always assumed in this section.

(C) For the bi-function η : X× X → X and the mappings fi : X → R, i = 1, · · · , p,

〈 fi(x), η(x, x)〉 = 0

for all x ∈ X.

First of all, in this section, we give the relationship between the solutions of local sharp vector
variational type inequalities (LSVVTI) and local sharp (or weak local sharp) efficient solutions of vector
optimization problem (VOP).

Now we are at the stage of introducing and proving the main theorems:

Theorem 4. Let η : X × X → X be a function and fi : X → R, i = 1, · · · , p be locally Lipschitz and
approximate η-convex at x0 ∈ X, and satisfies the condition (C). If x0 solves (LSVVTI), then it is a local sharp
efficient solution of (VOP).

Proof. Contrary, assume that x0 ∈ X is not a local sharp efficient solution of (VOP). Then, for any
δ0 > 0 and τ

2 > 0, there exists x ∈ B(x0, δ0) ∩ X such that

max
1≤i≤p

{
fi(x)− fi(x0)

}
<

τ

2
‖x− x0‖,

it implies,

fi(x)− fi(x0) <
τ

2
‖x− x0‖. (5)

Since fi is approximate η-convex at x0 ∈ X, there exists δ̄i > 0 such that for δ := min{δ0, δ̄i : i =
1, · · · , p}, we have

fi(x) ≥ fi(x0) + 〈x∗0i
, η(x, x0)〉 −

τ

2
‖x− x0‖, ∀x ∈ B(x0, δ) ∩ X and x∗0i

∈ ∂ fi(x0). (6)

Hence, it follows from (5) and (6) that

τ

2
‖x− x0‖ > 〈x∗0i

, η(x, x0)〉 −
τ

2
‖x− x0‖.

Therefore, we have
τ‖x− x0‖ > 〈x∗0i

, η(x, x0)〉,
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it implies that

max
1≤i≤p

max
x∗0i
∈∂ fi(x0)

〈x∗0i
, η(x, x0)〉 < τ‖x− x0‖, ∀x ∈ B(x0, δ) ∩ X and x∗0i

∈ ∂ fi(x0).

This is a contradiction to the fact that x0 solves (LSVVTI).

In following theorem, we obtain the converse result of Theorem 4 by assuming the approximate
η-convexity of − fi instead of fi.

Theorem 5. For each i = 1, · · · , p, let η and fi be same as in Theorem 4, − fi be approximate η-convex at
x0 ∈ X , and satisfies the condition (C). Then the converse statement of Theorem 4 is true.

Proof. Suppose that x0 ∈ X is not a solution of the (LSVVTI). Then, for any δ0 > 0 and τ
2 > 0, there

exists x ∈ B(x0, δ0) ∩ X and x∗0i
∈ ∂ fi(x0), such that

max
1≤i≤p

max
x∗0i
∈∂ fi(x0)

〈x∗0i
, η(x, x0)〉 <

τ

2
‖x− x0‖,

it implies

〈x∗0i
, η(x, x0)〉 <

τ

2
‖x− x0‖. (7)

Since − fi is approximate η-convex at x0 ∈ X, for any τ
2 > 0, there exists δ̄i > 0, such that for

δ := min
{

δ0, δ̄i : i = 1, · · · p
}

, we have

− fi(x) ≥ − fi(x0) + 〈x∗0i
, η(x, x0)〉 −

τ

2
‖x− x0‖, ∀x ∈ B(x0, δ) ∩ X and x∗0i

∈ −∂ fi(x0),

we can write it as
〈x∗0i

, η(x, x0)〉 ≥ fi(x)− fi(x0)−
τ

2
‖x− x0‖. (8)

From (7) and (8), we have

τ

2
‖x− x0‖ > fi(x)− fi(x0)−

τ

2
‖x− x0‖, ∀x ∈ B(x0, δ) ∩ X.

Hence, we have
fi(x)− fi(x0) < τ‖x− x0‖,

this implies that
max

1≤i≤p

{
fi(x)− fi(x0)

}
< τ‖x− x0‖, ∀x ∈ B(x0, δ) ∩ X,

which is a contradiction to the fact that x0 is a local sharp efficient solution of (VOP).

In next theorem, the same result of Theorem 4 is obtained by substituting the strictly approximate
η-quasiconvex type-II condition instead of approximate η-convexity condition on fi.

Theorem 6. Let η and fi be the same as in Theorem 4, fi : X → R be a strictly approximate η-quasiconvex
type-II at x0 ∈ X, for each i = 1, · · · , p, and satisfies the condition (C). If x0 solves (LSVVTI), then it is a local
sharp efficient solution of (VOP).

Proof. Assume that x0 ∈ X is not a local sharp efficient solution of (VOP). Then, for any δ0 > 0 and
τ > 0, there exists x ∈ B(x0, δ0) ∩ X, such that

max
1≤i≤p

{
fi(x)− fi(x0)

}
< τ‖x− x0‖,
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it implies,
fi(x)− fi(x0) < τ‖x− x0‖.

Since fi is a strictly approximate η-quasiconvex type-II at x0 ∈ X, for any τ > 0, there exists δ̄i > 0,
such that by setting δ = min{δ0, δ̄i : i = 1, · · · , p}, we have

〈x∗0i
, η(x, x0)〉 ≤ 0 < τ‖x− x0‖, ∀x ∈ B(x0, δ) ∩ X and x∗0i

∈ ∂ fi(x0),

implies that

max
1≤i≤p

max
x∗0i
∈∂ fi(x0)

〈x∗0i
, η(x, x0)〉 < τ‖x− x0‖, ∀x ∈ B(x0, δ) ∩ X and x∗0i

∈ ∂ fi(x0). (9)

This means that x0 is not a solution of (LSVVTI).

In the following theorem, we can get the the generalization of Theorem 5 by assuming the strictly
approximate η-pseudoconvex type-II condition on − fi.

Theorem 7. For each i = 1, · · · , p, let η and fi be same as in Theorem 4, − fi be a strictly approximate
η-pseudoconvex type-II at x0 ∈ X, and satisfies the condition (C). If x0 is a weak local sharp efficient solution of
(VOP), then it is also a solution of (LSVVTI).

Proof. Suppose that x0 ∈ X is not a solution of (LSVVTI). Then, for any δ0 > 0 and τ > 0, there exists
x ∈ B(x0, δ0) ∩ X and x∗0i

∈ ∂ fi(x0), such that

max
1≤i≤p

max
x∗0i
∈∂ fi(x0)

〈x∗0i
, η(x, x0)〉 < τ‖x− x0‖.

Hence, we have,
〈x∗0i

, η(x, x0)〉 < τ‖x− x0‖,

and we can rewrite as
〈−x∗0i

, η(x, x0)〉+ τ‖x− x0‖ > 0. (10)

Since − fi is a strictly approximate η-pseudoconvex type-II at x0 ∈ X, for any τ > 0, there exists
δ̄i > 0 such that, for δ := min{δ0, δ̄i : i = 1, · · · , p}, we have

− fi(x) > − fi(x0), ∀x ∈ B(x0, δ) ∩ X.

Therefore, we have
fi(x)− fi(x0) < 0 ≤ τd(x, X̄),

this implies that
max

1≤i≤p

{
fi(x)− fi(x0)

}
< τd(x, X̄), ∀x ∈ B(x0, δ) ∩ X. (11)

Therefore, we show that x0 is a local weak sharp efficient solution of (VOP). This completes
the proof.

4. Minty Local Sharp Vector Variational Type Inequalities

In this section, we present relationship between the solutions of Minty local sharp vector
variational type inequalities (MLSVVTI) and local sharp (or weak local sharp) efficient solutions
of vector optimization problem (VOP).

Now, we consider Minty local sharp and Minty weak local sharp formulations of vector variational
type inequality problems as follows:
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(MLSVVTI): Finding x0 ∈ X, there exists a δ-neighborhood of x0 and any τ > 0, such that x ∈
B(x0, δ) ∩ X and

max
1≤i≤p

max
x∗i ∈∂ fi(x)

〈x∗i , η(x, x0)〉 ≥ τ‖x− x0‖, ∀x∗i ∈ ∂ fi(x). (12)

(MWLSVVTI): For finding x0 ∈ X, there exists a δ-neighborhood of x0 and any τ > 0, such that
x ∈ B(x0, δ) ∩ X and

max
1≤i≤p

max
x∗i ∈∂ fi(x)

〈x∗i , η(x, x0)〉 ≥ τd(x, X̄), ∀x∗i ∈ ∂ fi(x), (13)

where X̄ = {x ∈ X | f (x) = f (x0)} = X ∩ f−1( f (x0)).

Theorem 8. For each i = 1, · · · , p, let η and fi be same as in Theorem 4, − fi be approximate η-convex at
x0 ∈ X, and satisfies the condition (C). If x0 solves (MLSVVTI), then x0 is a local sharp efficient solution of
(VOP).

Proof. Suppose that x0 ∈ X is not a local sharp efficient solution of (VOP). Then, for any δ0 > 0 and
τ
2 > 0, there exists x ∈ B(x0, δ0) ∩ X, such that

max
1≤i≤p

{
fi(x)− fi(x0)

}
<

τ

2
‖x− x0‖,

it implies,

fi(x)− fi(x0) <
τ

2
‖x− x0‖. (14)

Since − fi is approximate η-convex at x0 ∈ X, for any τ
2 > 0, there exists δ̄i > 0, such that, for

δ := min{δ0, δ̄i : i = 1, · · · , p}, we have

− fi(x0) ≥ − fi(x) + 〈−x∗i , η(x0, x)〉 − τ

2
‖x0 − x‖, ∀x ∈ B(x0, δ) ∩ X and − x∗i ∈ −∂ fi(x). (15)

It follows from (14) and (15), we have

τ

2
‖x− x0‖ > 〈−x∗i , η(x0, x)〉 − τ

2
‖x0 − x‖, ∀x ∈ B(x0, δ) ∩ X and − x∗i ∈ −∂ fi(x),

that is,
τ‖x− x0‖ > 〈−x∗i , η(x0, x)〉,

implies that

max
1≤i≤p

max
x∗i ∈∂ fi(x)

〈x∗i , η(x, x0)〉 < τ‖x− x0‖, ∀x ∈ B(x0, δ) ∩ X and x∗i ∈ ∂ fi(x),

which is a contradiction to the fact that x0 solves (MLSVVTI). This completes the proof.

In following theorem, we can get the converse result of Theorem 8 by assuming the approximate
η-convexity of fi instead of − fi.

Theorem 9. For each i = 1, · · · , p, let η and fi be same as in Theorem 8, fi : X → R be approximate η-convex
at x0 ∈ X, and satisfies the condition (C). If x0 is a local sharp efficient solution of (VOP), then x0 solves
(MLSVVTI).
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Proof. Suppose that x0 ∈ X is not a solution of the (MLSVVTI). Then, for any δ0 > 0 and τ
2 > 0, there

exists x ∈ B(x0, δ0) ∩ X and x∗i ∈ ∂ fi(x), such that

max
1≤i≤p

max
x∗i ∈∂ fi(x)

〈x∗i , η(x, x0)〉 <
τ

2
‖x− x0‖,

it implies,

〈x∗i , η(x, x0)〉 <
τ

2
‖x− x0‖. (16)

Since fi is approximate η-convex at x0 ∈ X, for any τ
2 > 0, there exists δ̄i > 0, such that, for

δ := min{δ0, δ̄i : i = 1, · · · , p}, we have

fi(x0) ≥ fi(x) + 〈x∗i , η(x0, x)〉 − τ

2
‖x0 − x‖, ∀x ∈ B(x0, δ) ∩ X and x∗i ∈ ∂ fi(x),

we can rewrite as
〈x∗i , η(x, x0)〉 ≥ fi(x)− fi(x0)−

τ

2
‖x− x0‖. (17)

Combining (16) and (17), we have

τ

2
‖x− x0‖ > fi(x)− fi(x0)−

τ

2
‖x− x0‖, ∀x ∈ B(x0, δ) ∩ X.

Hence, we have
fi(x)− fi(x0) < τ‖x− x0‖,

implies that
max

1≤i≤p

{
fi(x)− fi(x0)

}
< τ‖x− x0‖, ∀x ∈ B(x0, δ) ∩ X. (18)

This is a contradiction to the fact that x0 is a local sharp efficient solution of (VOP).

In following theorem, we can get same result of Theorem 8 by assuming the strictly approximate
η-quasiconvex type-II condition insted of approximate η-convexity on − fi .

Theorem 10. For each i = 1, · · · , p, let η and fi be same as in Theorem 8, − fi be a strictly approximate
η-quasiconvex type-II at x0 ∈ X, and satisfies the condition (C). If x0 solves (MLSVVTI), then x0 is a local
sharp efficient solution of (VOP).

Proof. Assume that x0 ∈ X is not a local sharp efficient solution of (VOP). Then, for any δ0 > 0 and
τ > 0, there exists x ∈ B(x0, δ0) ∩ X, such that

max
1≤i≤p

{
fi(x)− fi(x0)

}
< τ‖x− x0‖,

it implies,
fi(x)− fi(x0) < τ‖x− x0‖.

Hence, we can rewrite as
− fi(x0)− (− fi(x)) < τ‖x0 − x‖. (19)

Since − fi is a strictly approximate η-quasiconvex type-II at x0 ∈ X, for any τ > 0, there exists
δ̄i > 0 such that, for δ := min{δ0, δ̄i : i = 1, · · · , p}, we have

〈−x∗i , η(x0, x)〉 ≤ 0, ∀x ∈ B(x0, δ) ∩ X and − x∗i ∈ −∂ fi(x).

That is,
〈x∗i , η(x, x0)〉 ≤ 0 < τ‖x− x0‖,
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implies that

max
1≤i≤p

max
x∗i ∈∂ fi(x)

〈x∗i , η(x, x0)〉 < τ‖x− x0‖, ∀x ∈ B(x0, δ) ∩ X and x∗i ∈ ∂ fi(x), (20)

which is a contradiction to the fact that x0 solves (MLSVVTI).

The following theorem is an improvement of the Theorem 9 for the weak local sharp efficient
solution of (VOP).

Theorem 11. For each i = 1, · · · , p, let η and fi be same as in Theorem 8, fi : X → R be a strictly approximate
η-pseudoconvex type-II at x0 ∈ X, and satisfies the condition (C). If x0 is a weak local sharp efficient solution of
(VOP), then x0 solves (MLSVVTI).

Proof. On the contrary, assume that x0 ∈ X is not a solution of (MLSVVTI). Then, for any δ0 > 0 and
τ > 0, there exists x ∈ B(x0, δ0) ∩ X and x∗i ∈ ∂ fi(x), such that

max
1≤i≤p

max
x∗i ∈∂ fi(x)

〈x∗i , η(x, x0)〉 < τ‖x− x0‖.

Hence, we obtain
〈x∗i , η(x, x0)〉 < τ‖x− x0‖,

it implies,
〈x∗i , η(x0, x)〉+ τ‖x0 − x‖ > 0.

Since fi is a strictly approximate η-pseudoconvex type-II at x0 ∈ X, for any τ > 0, there exists
δ̄i > 0 such that, for δ := min{δ0, δ̄i : i = 1, · · · , p}, we have

fi(x0) > fi(x), ∀x ∈ B(x0, δ) ∩ X.

This implies that
fi(x)− fi(x0) < 0 ≤ τd(x, X̄),

hence, we have
max

1≤i≤p

{
fi(x)− fi(x0)

}
< τ d(x, X̄), ∀x ∈ B(x0, δ) ∩ X. (21)

This is a contradiction to the fact that x0 is a weak local sharp efficient solution of (VOP).

5. Conclusions

In this paper, we formulate local (Minty local) sharp vector variational type inequality problems
and establish the relationship between local (Minty local) sharp vector variational type inequality and
vector optimization problems involving locally Lipschitzian functions; that is, in Theorems 4–7, we
give the necessary or sufficient conditions between the local sharp vector variational type inequality
(LSVVTI) and vector optimization problems (VOP), and in Theorems 8–11, we give the necessary
or sufficient conditions between the Minty local sharp vector variational type inequality (MLSVVTI)
and vector optimization problems (VOP), by using the approximate η-convexity, strictly approximate
η-quasiconvex type-II condition, and strictly approximate η-pseudoconvex type-II condition at x0 ∈ X,

The results of our research in this paper are generalized, extended, and improved studies
of concepts of ε-efficient solutions for vector minimization problems [13], ε-optimality for scalar
problems to vector maximization problems, or efficiency problems [14], weak sharp minima for
scalar optimization problem [15], weak local sharp efficient solution of a constrained multi-objective
optimization, and the local and global weak sharp efficient solutions of such a multi-objective
optimization problem [16].
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