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Abstract: Fitting a cubic smoothing spline is a typical smoothing method. This paper reveals a
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1. Introduction

Fitting a cubic smoothing spline, which was developed by [1,2] and others, is a typical smoothing
method. The cubic smoothing spline fitted to a scatter plot of ordered pairs (xi, yi) for i = 1, . . . , n is a
function such that

f̂ (x) = arg min
f∈W

n

∑
i=1
{yi − f (xi)}2 + λ

∫ b

a

{
f ′′(x)

}2 dx, (1)

where x1, . . . , xn are points satisfying a < x1 < · · · < xn < b, W denotes a function space that
contains all functions of which the second derivative is square integrable over [a, b], and λ is a positive
smoothing/tuning parameter, which controls the trade-off between goodness of fit and smoothness.

Let f̂ = [ f̂ (x1), . . . , f̂ (xn)]>. Then, given f̂ (x) is a natural cubic spline of which the knots are
x1, . . . , xn (see, e.g., [3,4]), it follows that

f̂ = arg min
f∈Rn

‖y− f‖2 + λ f>C>R−1C f (2)

=
(

In + λC>R−1C
)−1

y, (3)

where y = [y1, . . . , yn]>, In denotes the n× n identity matrix, and C and R are explicitly presented
later. Then, as shown in [3], f̂ (x) in (1) is uniquely determined by f̂ ∈ Rn in (3). Thus, estimating f̂ (x)
is equivalent to estimating f̂ .

Let Π = [ιn, x] ∈ Rn×2, where ιn = [1, . . . , 1]> ∈ Rn and x = [x1, . . . , xn]>. Note that since
x1 < · · · < xn, ιn and x are linearly independent and thus Π is of full column rank. Let

τ̂ = Π(Π>Π)−1Π>y. (4)

Mathematics 2020, 8, 1839; doi:10.3390/math8101839 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math8101839
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/10/1839?type=check_update&version=2


Mathematics 2020, 8, 1839 2 of 19

Denote the difference between f̂ and τ̂ (resp. y and f̂ ) by ĉ (resp. û):

ĉ = f̂ − τ̂, û = y− f̂ . (5)

Accordingly, we have

y = τ̂ + ĉ + û. (6)

In this paper, we present a comprehensive list of penalized least squares regressions relating to
(6). One such example is the ridge regression [5] that leads to ĉ. Then, we reveal a principle of duality
in them. In addition, based on them, we provide a number of theoretical results, for example, ι>n ĉ = 0.

This paper is organized as follows. Section 2 fixes some notations and gives key preliminary
results used to derive the main results in the paper. Section 3 provides a comprehensive list of penalized
least squares regressions relating to (6), and reveals a principle of duality in them. Section 4 shows
some results that are obtainable from the regressions shown in Section 3. Section 5 illustrates some
results provided in Sections 3 and 4 by a real data example. Section 6 deals with the cases such that the
other right-inverse matrices are used. Section 7 concludes the paper.

2. Preliminaries

In this section, we give key preliminary results used to derive the main results of this paper.
Before stating them, we fix some notations.

2.1. Notations

Let f̂i (resp. τ̂i) denote the ith entry of f̂ (resp. τ̂) for i = 1, . . . , n, δi = xi+1 − xi, which is positive
by definition, for i = 1, . . . , n− 1, ∆ = diag(δ1, . . . , δn−1) ∈ R(n−1)×(n−1), and for a full-row-rank matrix
M ∈ Rm×n, M>(MM>)−1 ∈ Rn×m, which is a right-inverse matrix of M, be denoted by M−1

r . For a
full-column-rank matrix W ∈ Rn×p, let S(W) (resp. S⊥(W)) denote the column space of W (resp.
the orthogonal complement of S(W)) and PW (resp. QW) denote the orthogonal projection matrix
to the space S(W) (resp. S⊥(W)). Explicitly, they are PW = W(W>W)−1W> and QW = In − PW .
D(i) ∈ R(n−i)×(n−i+1) is a Toeplitz matrix of which the first (resp. last) row is [−1, 1, 0, . . . , 0] (resp.
[0, . . . , 0,−1, 1]) and we define matrices C ∈ R(n−2)×n and R ∈ R(n−2)×(n−2) as follows:

C =




δ−1
1 −δ−1

1 − δ−1
2 δ−1

2 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0 · · · 0 δ−1
n−2 −δ−1

n−2 − δ−1
n−1 δ−1

n−1




(7)

and

R =




1
3 (δ1 + δ2)

1
6 δ2 0 · · · 0

1
6 δ2

1
3 (δ2 + δ3)

. . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . . . . 1

6 δn−2

0 · · · 0 1
6 δn−2

1
3 (δn−2 + δn−1)




. (8)

Finally, we denote the eigenvalues of R by ω1, . . . , ωn−2 in descending order.



Mathematics 2020, 8, 1839 3 of 19

2.2. Key Preliminary Results

Lemma 1.

(i) C can be factorized as C = D(2)∆
−1D(1).

(ii) We have the following inequalities:

ωn−2 ≥ min
{

1
3

δ1 +
1
6

δ2,
1
6
(δ2 + δ3), . . . ,

1
6
(δn−3 + δn−2),

1
6

δn−2 +
1
3

δn−1

}
> 0.

Proof of Lemma 1.

(i) Let w = [w1, . . . , wn]> be an n-dimensional column vector. Then, by definition of C, it follows
that

Cw =




−w2−w1
δ1

+ w3−w2
δ2

...
−wn−1−wn−2

δn−2
+ wn−wn−1

δn−1


 = D(2)




w2−w1
δ1
...

wn−wn−1
δn−1


 = D(2)∆

−1



−w1 + w2

...
−wn−1 + wn




= D(2)∆
−1D(1)w ∈ Rn−2,

which leads to C = D(2)∆
−1D(1).

(ii) The first inequality follows by applying the Gershgorin circle theorem and the second inequality
holds from δi > 0 for i = 1, . . . , n− 1.

Remark 1. In Appendix A, we give some remarks on a special case such that x = [1, . . . , n]>.

Lemma 2.

(i) S(C>) equals S⊥(Π) and
(ii) S(C−1

r ) equals S⊥(Π).

Proof of Lemma 2.

(i) Given that δi > 0 for i = 1, . . . , n − 1, both Π and C> are of full column rank. In addition,
[Π, C>] is a square matrix. Thus, if (C>)>Π = CΠ = 0, then it follows that S(C>) = S⊥(Π).
From D(1)ιn = 0, we have Cιn = D(2)∆

−1D(1)ιn = 0. Likewise, from ∆−1D(1)x = ∆−1∆ιn−1 =

ιn−1 and D(2)ιn−1 = 0, we obtain Cx = D(2)∆
−1D(1)x = 0. Accordingly, we have CΠ = 0,

which completes the proof.
(ii) Recall that C−1

r = C>(CC>)−1. It is clear that C−1
r is a full-column-rank matrix such that

[Π, C−1
r ] is a square matrix. In addition, (C−1

r )>Π = (CC>)−1CΠ = 0. Thus, it follows that
S(C−1

r ) = S⊥(Π).

Denote the spectral decomposition of R by VΩV> and let R−1/2 = VΩ−1/2V>, where Ω−1/2 =

diag
(
1/
√

ω1, . . . , 1/
√

ωn−2
)
. Then, R−1/2 is a positive definite matrix such that R−1/2R−1/2 =

R−1. Define

D = R−1/2C. (9)

Then, given that C> is of full column rank and R−1/2 is nonsingular, D ∈ R(n−2)×n is also of full row
rank. In addition, we have

D>D = C>R−1C. (10)
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(We provide Matlab/GNU Octave and R functions for calculating C, R, and D in Appendix A).

Lemma 3.

(i) S(D>) equals S⊥(Π) and
(ii) S(D−1

r ) equals S⊥(Π).

Proof of Lemma 3. Both (i) and (ii) may be proved similarly to Lemma 2 (ii). For example, given
CΠ = 0, we have (D>)>Π = DΠ = R−1/2CΠ = 0.

Denote the eigenvalues of C>R−1C by g1, . . . , gn in ascending order and the spectral
decomposition of C>R−1C by UGU>, where U = [u1, . . . , un] and G = diag(g1, . . . , gn). Let T =

[u1, u2] ∈ Rn×2, E> = [u3, . . . , un] ∈ Rn×(n−2), and S = diag(g3, . . . , gn) ∈ R(n−2)×(n−2).

Lemma 4.

(i) S(T) equals S(Π),
(ii) S(E>) equals S⊥(Π), and
(iii) S(E−1

r ) equals S⊥(Π).

Proof of Lemma 4. (i) Since C>R−1C ∈ Rn×n is a nonnegative definite matrix of which the rank
is n − 2, we have 0 = g1 = g2 < g3 < · · · < gn. In addition, given CΠ = 0, it follows that
C>R−1CΠ = 0 ·Π, which completes the proof. (ii) and (iii) may be proved similarly to Lemma 2
(ii).

Given g1 = g2 = 0, we have

E>SE = C>R−1C. (11)

Define

F = S1/2E, (12)

where S1/2 = diag(
√

g3, . . . ,
√

gn) ∈ R(n−2)×(n−2). Then, we have

F>F = C>R−1C. (13)

Lemma 5.

(i) S(F>) equals S⊥(Π) and
(ii) S(F−1

r ) equals S⊥(Π).

Proof of Lemma 5. Both (i) and (ii) may be proved similarly to Lemma 2 (ii). For example, given EΠ =

0, we have (F>)>Π = FΠ = S1/2EΠ = 0.

Lemma 6. There exists an orthogonal matrix Υ ∈ R(n−2)×(n−2) such that F> = D>Υ.

Proof of Lemma 6. Recall that both D> ∈ Rn×(n−2) and F> ∈ Rn×(n−2) are of full column rank
and S(D>) = S(F>). Accordingly, there exists a nonsingular matrix Υ ∈ R(n−2)×(n−2) such that
F> = D>Υ. Given that D>D = F>F, we have D>(In−2 − ΥΥ>)D = 0. Then, from D−1>

r D>(In−2 −
ΥΥ>)DD−1

r = In−2 − ΥΥ> = 0, we have Υ> = Υ−1.

Let (i) A = D, F, (ii) (B,Q) = (C, R), (E, S−1), (iii) D = C, D, E, F, and (iv) P = Π, T. From the
results above, we immediately obtain the following results:
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Proposition 1.

(i) C>R−1C = A>A = B>Q−1B,
(ii) DP = D−1>

r P = 0,
(iii) both [P ,D>] and [P ,D−1

r ] are nonsingular, and
(iv) PD> = PD−1

r
= QP .

3. Several Regressions Relating to (6) and Principle of Duality in Them

In this section, we provide a comprehensive list of penalized least squares regressions relating
to (6), and reveal a principle of duality in them. The penalized regressions are, more precisely, those to
compute ĉ, û, τ̂, τ̂ + ĉ, ĉ + û, and τ̂ + û.

3.1. Penalized Regressions to Compute τ̂ + ĉ

Concerning τ̂ + ĉ, we have the following results:

Lemma 7. It follows that

τ̂ + ĉ = arg min
f∈Rn

‖y− f‖2 + λ‖A f‖2 =
(

In + λA>A
)−1

y (14)

= arg min
f∈Rn

‖y− f‖2 + λ f>B>Q−1B f =
(

In + λB>Q−1B
)−1

y. (15)

Proof of Lemma 7. From Proposition 1, we have C>R−1C = A>A = B>Q−1B. Then, (2) and (3) can
be represented as follows:

f̂ = arg min
f∈Rn

‖y− f‖2 + λ‖A f‖2 =
(

In + λA>A
)−1

y

= arg min
f∈Rn

‖y− f‖2 + λ f>B>Q−1B f =
(

In + λB>Q−1B
)−1

y.

In addition, by definition of ĉ, we have f̂ = τ̂ + ĉ. Hence, we obtain (14) and (15).

3.2. Penalized Regressions to Compute ĉ

Concerning ĉ, we have the following results:

Lemma 8. Consider the following penalized regressions:

γ̂ = arg min
γ∈Rn−2

‖y−A−1
r γ‖2 + λ‖γ‖2 = (A−1>

r A−1
r + λIn−2)

−1A−1>
r y, (16)

κ̂ = arg min
κ∈Rn−2

‖y−B−1
r κ‖2 + λκ>Q−1κ = (B−1>

r B−1
r + λQ−1)−1B−1>

r y. (17)

Then, we have

ĉ = A−1
r γ̂ = B−1

r κ̂. (18)
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Proof of Lemma 8. Let K = [P ,A−1
r ]. From Proposition 1, it follows thatAP = 0,A−1>

r P = 0, and K
is nonsingular. Accordingly, given that K>K = diag(P>P ,A−1>

r A−1
r ) and AK = [AP ,AA−1

r ] =

[0, In−2], it follows that

f̂ = K
(

K>K + λK>A>AK
)−1

K>y

= [P ,A−1
r ]

[
(P>P)−1 0

0 (A−1>
r A−1

r + λIn−2)
−1

] [
P>
A−1>

r

]
y

= P(P>P)−1P>y +A−1
r (A−1>

r A−1
r + λIn−2)

−1A−1>
r y = τ̂ +A−1

r γ̂,

from which we have f̂ − τ̂ = A−1
r γ̂. Given f̂ − τ̂ = ĉ, we thus obtain ĉ = A−1

r γ̂. Similarly, we can
obtain ĉ = B−1

r κ̂.

Lemma 9. ĉ can be calculated by the following penalized regressions:

ĉ = arg min
c∈Rn

‖(y− τ̂)− c‖2 + λ‖Ac‖2 =
(

In + λA>A
)−1

(y− τ̂) (19)

= arg min
c∈Rn

‖(y− τ̂)− c‖2 + λc>B>Q−1Bc =
(

In + λB>Q−1B
)−1

(y− τ̂). (20)

Proof of Lemma 9. Given (14), f̂ = τ̂ + ĉ, and AP = 0, we have

y = (In + λA>A) f̂ = (In + λA>A)(τ̂ + ĉ) = τ̂ + (In + λA>A)ĉ,

which leads to (19). Similarly, we can obtain (20).

Remark 2. We add some more exposition about (16). Let K = [P ,A−1
r ] as before. In addition, let θ =

[β>, γ>]> ∈ Rn be a vector such that f = Kθ = Pβ+A−1
r γ. Then, it follows thatA f = A(Pβ+A−1

r γ) =

γ. Given that f = Pβ +A−1
r γ and A f = γ, the minimization problem in (14) can be represented as follows:

min
β∈R2,γ∈Rn−2

‖y−Pβ−A−1
r γ‖2 + λ‖γ‖2. (21)

It is noteworthy that β is not penalized in (21) and (A−1
r )>P = 0. Thus, the minimization problem (21) can

be decomposed into (16) and (40). Moreover, (21) gives the best linear unbiased predictors of β and γ of the
following linear mixed model:

y = Pβ +A−1
r γ + u, [u>, γ>]> ∼ N

(
0, diag(σ2

u In, σ2
v In−2)

)
, (22)

where λ = σ2
u/σ2

v .

Remark 3. By using C−1
r , ref. [6] derived the following expressions in our notations:

f̂ = τ̂ + C−1
r κ̂, κ̂ = (C−1>

r C−1
r + λR−1)−1C−1>

r y. (23)

Here, we make the following remarks on (23).

(i) First, κ̂ is the solution of the following penalized regression:

min
κ∈Rn−2

‖y− C−1
r κ‖2 + λκ>R−1κ. (24)

(ii) Moreover, (23) is a special case of ĉ = B−1
r κ̂ in (18).
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3.3. Penalized Regressions to Compute û

Concerning û, we have the following results:

Lemma 10. Consider the following penalized regressions:

η̂ = arg min
η∈Rn−2

‖y−A>η‖2 + λ−1‖η‖2 = (AA> + λ−1 In−2)
−1Ay, (25)

υ̂ = arg min
υ∈Rn−2

‖y−B>υ‖2 + λ−1υ>Qυ = (BB> + λ−1Q)−1By. (26)

Then, it follows that

û = A>η̂ = B>υ̂. (27)

Proof of Lemma 10. Applying the matrix inversion lemma to
(

In + λA>A
)−1

, we have

(
In + λA>A

)−1
= In −A>(AA> + λ−1 In−2)

−1A. (28)

Postmultiplying (28) by y yields y− f̂ = A>η̂. Given y− f̂ = û, we thus have û = A>η̂. Similarly,
we can obtain û = B>υ̂.

Lemma 11. û can be calculated by the following penalized regressions:

û = arg min
u∈Rn

‖(y− τ̂)− u‖2 + λ−1‖A−1>
r u‖2

=
(

In + λ−1A−1
r A−1>

r

)−1
(y− τ̂) (29)

and

û = arg min
u∈Rn

‖(y− τ̂)− u‖2 + λ−1u>B−1
r QB−1>

r u

=
(

In + λ−1B−1
r QB−1>

r

)−1
(y− τ̂). (30)

Proof of Lemma 11. Given (34), ĝ = τ̂ + û, and A−1>
r P = 0, we have

y = (In + λ−1A−1
r A−1>

r )ĝ = (In + λ−1A−1
r A−1>

r )(τ̂ + û)

= τ̂ + (In + λ−1A−1
r A−1>

r )û,

which leads to (29). Similarly, we can obtain (30).

Remark 4. In [2] and ([3], p. 20), there are equations expressed in our notation as follows:

(R + λCC>)φ = Cy, f̂ = y− λC>φ. (31)

Here, we make the following remarks on (31).

(i) First, these lead to a penalized least squares problem. Given that û = y− f̂ , removing φ from the above
equations leads to

û = y− f̂ = λC>(R + λCC>)−1Cy

= C>(CC> + λ−1R)−1Cy = C>υ̂, (32)
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where

υ̂ = arg min
υ∈Rn−2

‖y− C>υ‖2 + λ−1υ>Rυ. (33)

(ii) Moreover, (32) is a special case of û = B>υ̂ in (27).

3.4. Penalized Regression to Compute τ̂ + û

Concerning τ̂ + û, we have the following results:

Lemma 12. Let ĝ = τ̂ + û. Then, it follows that

ĝ = arg min
g∈Rn

‖y− g‖2 + λ−1‖A−1>
r g‖2 =

(
In + λ−1A−1

r A−1>
r

)−1
y (34)

= arg min
g∈Rn

‖y− g‖2 + λ−1g>B−1
r QB−1>

r g =
(

In + λ−1B−1
r QB−1>

r

)−1
y. (35)

Proof of Lemma 12. Let J = [P ,A>]. From Proposition 1, it follows that AP = 0, A−1>
r P = 0, and J

is nonsingular. Accordingly, given that J> J = diag(P>P ,AA>) and A−1>
r J = [A−1>

r P ,A−1>
r A>] =

[0, In−2], it follows that

(
In + λ−1A−1

r A−1>
r

)−1
y

= J
(

J> J + λ−1 J>A−1
r A−1>

r J
)−1

J>y

= [P ,A>]
[
(P>P)−1 0

0 (AA> + λ−1 In−2)
−1

] [
P>
A

]
y

= P(P>P)−1P>y +A>(AA> + λ−1 In−2)
−1Ay = τ̂ +A>η̂.

Given û = A>η̂, we obtain (34). Similarly, we can obtain (35).

Remark 5. Similarly to Remark 2, we add some more exposition about (25). Let ξ = [β>, η>]> ∈ Rn be such
that g = Jξ = Pβ +A>η. As stated, A−1>

r J = [0, In−2]. Then, it follows that

A−1>
r g = A−1>

r Jξ = η. (36)

Given g = Pβ +A>η and A−1>
r g = η, the minimization problem (34) can be represented as follows:

min
β∈R2,η∈Rn−2

‖y−Pβ−A>η‖2 + λ−1‖η‖2. (37)

Again, it is noteworthy that β is not penalized in (37). Moreover, it follows that (A>)>P = AP = 0. Thus,
the minimization problem (37) can be decomposed into (25) and (40).

3.5. Ordinary Regressions to Compute ĉ + û and τ̂

Concerning ĉ + û and τ̂, we have the following results:

Lemma 13.

(i) Let ĥ = D>α̂, where

α̂ = arg min
α∈Rn−2

‖y−D>α‖2 = (DD>)−1Dy. (38)
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Then, it follows that

ĉ + û = ĥ. (39)

(ii) It follows that τ̂ = P β̂, where

β̂ = arg min
β∈R2

‖y−Pβ‖2 = (P>P)−1P>y. (40)

Proof of Lemma 13. Given Proposition 1, both results are easily obtainable. For example, the former
result can be proved as follows:

ĥ = D>α̂ = PD>y = QPy = y− τ̂ = ĉ + û.

Remark 6. From Proposition 1, we also have ĥ(= ĉ + û) = D−1
r ρ̂, where

ρ̂ = arg min
ρ∈Rn−2

‖y−D−1
r ρ‖2 = (D−1>

r D−1
r )−1D−1>

r y. (41)

3.6. Principle of Duality in the Penalized Regressions

See the second columns of Tables 1 and 2. In the columns, the penalized regressions shown above
are arranged in pairs that mirror one another. We reveal a principle of duality in the penalized
regressions. As stated in Section 1, (D1) is obtainable by replacing A>, λ in (P1) by A−1

r , λ−1,
respectively. Likewise, for example, (D6) in Table 2 is obtainable by replacing B>,Q, λ−1 in (P6)
by B−1

r ,Q−1, λ, respectively. In Tables 1 and 2, we may observe five other pairs of regressions that are
duals of each other. From the seven dual pairs shown in Tables 1 and 2, we observe that the following
principle exists:

Proposition 2 (Principle of duality). The regressions labeled with the letter D in Tables 1 and 2, for example,
(D1), are obtainable by replacing each occurrence of A>,B>,D>,Q,Q−1, λ, λ−1 in the regressions labeled
with the letter P, for example, (P1), by A−1

r ,B−1
r ,D−1

r ,Q−1,Q, λ−1, λ, respectively.
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Table 1. Most of the main results (I).

Regressions Relating to the Cubic Smoothing Spline Average λ → ∞ λ → 0 y ∈ S(P) Sum ⊥

(P1) f̂ (= τ̂ + ĉ) = arg min f∈Rn ‖y− f‖2 + λ‖A f‖2 =
(

In + λA>A
)−1

y ȳ τ̂ y y 1

(D1) ĝ(= τ̂ + û) = arg ming∈Rn ‖y− g‖2 + λ−1‖A−1>
r g‖2 =

(
In + λ−1A−1

r A−1>
r

)−1
y ȳ y τ̂ y 1

(P2) û = A>η̂, where η̂ = arg minη∈Rn−2 ‖y−A>η‖2 + λ−1‖η‖2 = (AA> + λ−1 In−2)
−1Ay 0 y− τ̂ 0 0 0 ◦

(D2) ĉ = A−1
r γ̂, where γ̂ = arg minγ∈Rn−2 ‖y−A−1

r γ‖2 + λ‖γ‖2 = (A−1>
r A−1

r + λIn−2)
−1A−1>

r y 0 0 y− τ̂ 0 0 ◦
(P3) ĉ = arg minc∈Rn ‖(y− τ̂)− c‖2 + λ‖Ac‖2 =

(
In + λA>A

)−1
(y− τ̂) 0 0 y− τ̂ 0 0 ◦

(D3) û = arg minu∈Rn ‖(y− τ̂)− u‖2 + λ−1‖A−1>
r u‖2 =

(
In + λ−1A−1

r A−1>
r

)−1
(y− τ̂) 0 y− τ̂ 0 0 0 ◦

(P4) ĥ(= ĉ + û) = D>α̂, where α̂ = arg minα∈Rn−2 ‖y−D>α‖2 = (DD>)−1Dy 0 y− τ̂ y− τ̂ 0 0 ◦
(D4) ĥ(= ĉ + û) = D−1

r ρ̂, where ρ̂ = arg minρ∈Rn−2 ‖y−D−1
r ρ‖2 = (D−1>

r D−1
r )−1D−1>

r y 0 y− τ̂ y− τ̂ 0 0 ◦
τ̂ = P β̂, where β̂ = arg minβ∈R2 ‖y−Pβ‖2 = (P>P)−1P>y ȳ τ̂ τ̂ y 1

y = τ̂ + ĉ + û. A = D, F. D = C, D, E, F. M−1
r = M>(MM>)−1 for M = A,D. P = Π, T . λ > 0 is a smoothing/tuning parameter. ȳ = 1

n ∑n
i=1 yi . S(P) denotes the column space

of P . ‘Sum’ denotes the sum of the entries in each row of the hat matrices. ◦ indicates that the corresponding component belongs to the orthogonal complement of S(P).

Table 2. Most of the main results (II).

Regressions Relating to the Cubic Smoothing Spline Average λ → ∞ λ → 0 y ∈ S(P) Sum ⊥

(P5) f̂ (= τ̂ + ĉ) = arg min f∈Rn ‖y− f‖2 + λ f>B>Q−1B f =
(

In + λB>Q−1B
)−1

y ȳ τ̂ y y 1

(D5) ĝ(= τ̂ + û) = arg ming∈Rn ‖y− g‖2 + λ−1g>B−1
r QB−1>

r g =
(

In + λ−1B−1
r QB−1>

r

)−1
y ȳ y τ̂ y 1

(P6) û = B>υ̂, where υ̂ = arg minυ∈Rn−2 ‖y−B>υ‖2 + λ−1υ>Qυ = (BB> + λ−1Q)−1By 0 y− τ̂ 0 0 0 ◦
(D6) ĉ = B−1

r κ̂, where κ̂ = arg minκ∈Rn−2 ‖y−B−1
r κ‖2 + λκ>Q−1κ = (B−1>

r B−1
r + λQ−1)−1B−1>

r y 0 0 y− τ̂ 0 0 ◦
(P7) ĉ = arg minc∈Rn ‖(y− τ̂)− c‖2 + λc>B>Q−1Bc =

(
In + λB>Q−1B

)−1
(y− τ̂) 0 0 y− τ̂ 0 0 ◦

(D7) û = arg minu∈Rn ‖(y− τ̂)− u‖2 + λ−1u>B−1
r QB−1>

r u =
(

In + λ−1B−1
r QB−1>

r

)−1
(y− τ̂) 0 y− τ̂ 0 0 0 ◦

y = τ̂ + ĉ + û. (B,Q) = (C, R), (E, S−1). B−1
r = B>(BB>)−1. λ > 0 is a smoothing/tuning parameter. ȳ = 1

n ∑n
i=1 yi . S(P) denotes the column space of P , where P = Π, T.

‘Sum’ denotes the sum of the entries in each row of the hat matrices. ◦ indicates that the corresponding component belongs to the orthogonal complement of S(P).
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4. Results That Are Obtainable from the Regressions

In this section, we show how the regressions listed in the previous section are of use to obtain a
deeper understanding of the fitting a cubic smoothing spline. Before proceeding, recall f̂ = τ̂ + ĉ and
so on.

First, given that (16) is a ridge regression, it immediately follows that limλ→∞ γ̂ = 0, which leads
to limλ→∞ ĉ = A−1

r limλ→∞ γ̂ = 0 and at the same time we have

lim
λ→∞

f̂ = τ̂ + lim
λ→∞

ĉ = τ̂, (42)

lim
λ→∞

û = y− τ̂ − lim
λ→∞

ĉ = y− τ̂, (43)

lim
λ→∞

ĝ = τ̂ + lim
λ→∞

û = τ̂ + (y− τ̂) = y. (44)

Second, (25) is again a ridge regression, we have limλ→0 η̂ = 0, which yields limλ→0 û =

A> limλ→0 η̂ = 0 and accordingly we obtain

lim
λ→0

f̂ = y− lim
λ→0

û = y, (45)

lim
λ→0

ĉ = y− τ̂ − lim
λ→0

û = y− τ̂, (46)

lim
λ→0

ĝ = τ̂ + lim
λ→0

û = τ̂. (47)

Third, from (19) and û = y− τ̂ − ĉ, we have

ĉ =
(

In + λA>A
)−1

(y− τ̂), (48)

û =
{

In − (In + λA>A)−1
}
(y− τ̂). (49)

Thus, f̂ can be represented as

f̂ = τ̂ +
(

In + λA>A
)−1

(y− τ̂). (50)

Here, we remark that, given that
(

In + λA>A
)−1

is a smoother matrix, the second term on the
right-hand side of (50) represents a low-frequency part of y− τ̂. In addition, from (49), û represents a
high-frequency part of y− τ̂. Thus, ĉ is generally smoother than û.

Fourth, given AP = 0, A−1>
r P = 0, ĉ = A−1

r γ̂, and û = A>η̂, we have

ζ̂>τ̂ = 0, ζ̂ = ĉ, û, ĥ. (51)

Fifth, given AP = 0, A−1>
r P = 0, (28), and

(
In + λ−1A−1

r A−1>
r

)−1
= In −A−1

r (A−1>
r A−1

r + λIn−2)
−1A−1>

r , (52)

if y ∈ S(P), or in other words, if y = Pψ, then we have

τ̂ = y, f̂ = y, ĝ = y, ĉ = 0, û = 0, ĥ = 0. (53)
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Sixth, given ιn ∈ S(P), we have

PP ιn = ιn, (54)

(In + λA>A)−1ιn = ιn, (55)

(In + λ−1A−1
r A−1>

r )−1ιn = ιn, (56)

A−1
r (A−1>

r A−1
r + λIn−2)

−1A−1>
r ιn = 0, (57)

A>(AA> + λ−1 In−2)
−1Aιn = 0, (58)

PD> ιn = 0. (59)

Note that (In + λA>A)−1ιn = ιn, for example, indicates that the sum of the entries in each row of the
hat matrix of f̂ equals unity.

Seventh, given (54)–(59), we have

1
n

ι>n ζ̂ = ȳ, ζ̂ = τ̂, f̂ , ĝ, (60)

1
n

ι>n ζ̂ = 0, ζ̂ = ĉ, û, ĥ, (61)

where ȳ = 1
n ∑n

i=1 yi. 1
n ι>n f̂ = ȳ, for example, shows that 1

n ∑n
i=1 f̂i = ȳ.

5. Illustrations of Some Results

In this section, we illustrate some of the results in the previous sections by a real data example.
Panel A of Figure 1 shows a scatter plot of North Pacific sea surface temperature (SST)

anomalies (1891–2018). SST is an essential climate variable and has been used for the detection
of climate change. See, for example, Høyer and Karagali [7] and the references therein. We obtained
the data from the website of the Japan Meteorological Agency. The solid line in the panel plots
(xi, τ̂i) for i = 1, . . . , n, where τ̂ = [τ̂1, . . . , τ̂n]> in (4) and n = 128. Panel B of Figure 1 depicts a
scatter plot of (xi, yi − τ̂i) for i = 1, . . . , n. The solid line in the panel plots (xi, ĉi) for i = 1, . . . , n,
where ĉ = [ĉ1, . . . , ĉn]> is calculated by (18) with λ = 103. The solid line in Panel C denotes
(xi, f̂i), where f̂ = [ f̂1, . . . , f̂n]> is calculated by (14) with λ = 103. Panel D illustrates a scatter
plot of (xi, yi − τ̂i) for i = 1, . . . , n. The solid line in the panel plots (xi, ûi) for i = 1, . . . , n, where
û = [û1, . . . , ûn]> is calculated by (27) with λ = 103. Figures 2–4 correspond to the cases such that
λ = 105, 1010, 10−10, respectively.

Recall that concerning y, τ̂, ĉ, f̂ , and û, the following equations hold:

τ̂ + ĉ = f̂ , ĉ + û = y− τ̂, lim
λ→∞

ĉ = 0, lim
λ→∞

f̂ = τ̂,

lim
λ→∞

û = y− τ̂, lim
λ→0

ĉ = y− τ̂, lim
λ→0

f̂ = y, lim
λ→0

û = 0.

From Figures 1–4, we can observe that these theoretical results are well illustrated in these figures.
For example, from Panel D in Figure 4, we can observe that û almost equals 0 when λ = 10−10.
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Figure 1. Panel A shows a scatter plot of North Pacific sea surface temperature anomalies (1891–2018). The
solid line in the panel plots (xi, τ̂i) for i = 1, . . . , n, where τ̂ = [τ̂1, . . . , τ̂n]> in (4) and n = 128. Panel B
depicts a scatter plot of (xi, yi − τ̂i) for i = 1, . . . , n. The solid line in the panel plots (xi, ĉi) for i = 1, . . . , n,
where ĉ = [ĉ1, . . . , ĉn]> is calculated by (18) with λ = 103. The solid line in Panel C denotes (xi, f̂i), where
f̂ = [ f̂1, . . . , f̂n]> is calculated by (14) with λ = 103. Panel D illustrates a scatter plot of (xi, yi − τ̂i) for
i = 1, . . . , n. The solid line in the panel plots (xi, ûi) for i = 1, . . . , n, where û = [û1, . . . , ûn]> is calculated
by (27) with λ = 103.

Figure 1. Panel A shows a scatter plot of North Pacific sea surface temperature anomalies (1891–2018).
The solid line in the panel plots (xi, τ̂i) for i = 1, . . . , n, where τ̂ = [τ̂1, . . . , τ̂n]> in (4) and n = 128.
Panel B depicts a scatter plot of (xi, yi − τ̂i) for i = 1, . . . , n. The solid line in the panel plots (xi, ĉi)

for i = 1, . . . , n, where ĉ = [ĉ1, . . . , ĉn]> is calculated by (18) with λ = 103. The solid line in Panel
C denotes (xi, f̂i), where f̂ = [ f̂1, . . . , f̂n]> is calculated by (14) with λ = 103. Panel D illustrates a
scatter plot of (xi, yi − τ̂i) for i = 1, . . . , n. The solid line in the panel plots (xi, ûi) for i = 1, . . . , n,
where û = [û1, . . . , ûn]> is calculated by (27) with λ = 103.
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Figure 2. This figure corresponds to the case where λ = 105. For the other explanations, see Figure 1.

Figure 2. This figure corresponds to the case where λ = 105. For the other explanations, see Figure 1.
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Figure 3. This figure corresponds to the case where λ = 1010. For the other explanations, see Figure 1.

Figure 3. This figure corresponds to the case where λ = 1010. For the other explanations, see Figure 1.
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Figure 4. This figure corresponds to the case where λ = 10−10. For the other explanations, see Figure 1.

Figure 4. This figure corresponds to the case where λ = 10−10. For the other explanations, see Figure 1.

6. The Cases Such That the Other Right-Inverse Matrices Are Used

In this section, we illustrate what happens if the other right-inverse matrices are used.
Let M ∈ Rm×n be of full row rank. Recall that in this paper M−1

r denotes M>(MM>)−1, which is
a right-inverse matrix of a full-row-rank matrix M ∈ Rm×n. Define a set of matrices

ΓM = {Ξ ∈ Rn×m : MΞ = Im}.

ΓM denotes the set of right-inverse matrices of M and accordingly M−1
r belongs to ΓM.

Lemma 14. N = M−1
r if and only if N ∈ ΓM and S(N) = S(M>).

Proof of Lemma 14. It is clear that if N = M−1
r , then N ∈ ΓM and S(N) = S(M>). Conversely,

suppose that N ∈ ΓM and S(N) = S(M>). Then, MN = Im and there exists a nonsingular matrix
Σ ∈ Rm×m such that N = M>Σ. By removing N from these equations, we have Σ = (MM>)−1,
which leads to N = M>(MM>)−1 = M−1

r .

From Lemma 14, if N 6= M−1
r , then N /∈ ΓM or S(N) 6= S(M>). Accordingly, we have the

following result:
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Proposition 3. If N ∈ ΓM\{M−1
r }, then S(N) 6= S(M>).

Based on the result, we illustrate what happens if the other right-inverse matrices are used.
We give an example. Let Z ∈ ΓD\{D−1

r }. Then, from Proposition 3 and Lemma 3, it follows that
S(Z) 6= S(D−1

r ) = S⊥(Π). Accordingly, letting L = [Π, Z], it follows that Z>Π 6= 0 and DL =

[DΠ, DZ] = [0, In−2]. In addition, given that DΠ = 0, DZ = In−2, and Π is of full column rank, L is
nonsingular. Thus, from [8], for example, we have

f̂ = L(L>L + λL>D>DL)−1L>y = Ππ̂ + Zε̂, (62)

where

π̂ = arg min
π∈R2

‖(y− Zε̂)−Ππ‖2 = (Π>Π)−1Π>(y− Zε̂) (63)

and

ε̂ = arg min
ε∈Rn−2

‖QΠy−QΠZε‖2 + λ‖ε‖2

= (Z>QΠZ + λIn−2)
−1Z>QΠy, (64)

which shows that we may obtain (penalized) regressions relating to the cubic smoothing spline even if
we use the other right-inverse matrices of D such that Z ∈ ΓD\{D−1

r }. Nevertheless, as illustrated
here, they are more complex than those shown in Tables 1 and 2.

7. Concluding Remarks

In this paper, we provided a comprehensive list of penalized least squares regressions relating
to the cubic smoothing spline, and then revealed a principle of duality in them. This is the main
contribution of this study. Such penalized regressions are tabulated in Tables 1 and 2 and the principle
of duality revealed is stated in Proposition 2. In addition, we also provided a number of results derived
from them, most of which are also tabulated in Tables 1 and 2 and some of which are illustrated in
Figures 1–4.
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Appendix A

Appendix A.1. Some Remarks on a Special Case Such That x = [1, . . . , n]>

(i) If x = [1, . . . , n]>, then C = D(2)D(1) ∈ R(n−2)×n, which is a Toeplitz matrix of which the first
(resp. last) row is [1,−2, 1, 0, . . . , 0] (resp. [0, . . . , 0, 1,−2, 1]).

(ii) If x = [1, . . . , n]>, then (In + λC>R−1C)−1 is bisymmetric (i.e., symmetric centrosymmetric),
which may be proved as in Yamada (2020a).

(iii) If x = [1, . . . , n]>, then R in (8) is not only a symmetric tridiagonal matrix but also a Toeplitz
matrix. In the case, we have

ωk =
2
3
+

1
3

cos
(

kπ

n− 1

)
, k = 1, . . . , n− 2, (A1)
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and thus ωn−2, which is the smallest eigenvalue of R, satisfies the following inequality (see,
e.g., [9]):

ωn−2 =
2
3
+

1
3

cos
(

n− 2
n− 1

π

)
>

1
3

. (A2)

(iv) If x = [1, . . . , n]> and R = In−2 in (2) and (3), then (2) and (3) reduce to

f̂ = arg min
f∈Rn

‖y− f‖2 + ‖D(2)D(1) f‖2

=
{

In + λ(D(2)D(1))
>(D(2)D(1))

}−1
y. (A3)

It is a type of the Whittaker–Henderson (WH) method of graduation, which was developed by
Bohlmann [10], Whittaker [11] and others. See Weinert [12] for a historical review of the WH method
of graduation. (A3) is also referred to as the Hodrick–Prescott (HP) [13] filtering in econometrics.
For more details about the HP filtering, see, for example, Schlicht [14], Kim et al. [15], Paige and
Trindade [16], and Yamada [17–21].

Appendix A.2. User-Defined Functions

Appendix A.2.1. A Matlab/GNU Octave Function to Make C in (7)

funct ion C=makeCmat ( x )
n=length ( x ) ; D1= d i f f ( eye ( n ) ) ; D2= d i f f ( eye ( n−1 ) ) ;
d e l t a = d i f f ( x ) ; invDelta=diag ( 1 . / d e l t a ) ;
C=D2∗ invDelta ∗D1 ;

end

Appendix A.2.2. A Matlab/GNU Octave Function to Make R in (8)

funct ion R=makeRmat ( x )
n=length ( x ) ; d e l t a = d i f f ( x ) ;
R0=diag ( d e l t a ( 1 : n−2)+ d e l t a ( 2 : n−1))/3;
R1=diag ( d e l t a ( 2 : n−2) ,1 )/6 ;
R=R1’+R0+R1 ;

end

Appendix A.2.3. A Matlab/GNU Octave Function to Make D in (9)

funct ion D=makeDmat ( x )
C=makeCmat ( x ) ; R=makeRmat ( x ) ; [ P , L]= e ig (R ) ;
invsqrtR=P∗diag ( 1 . / s q r t ( diag ( L ) ) ) ∗P ’ ;
D=invsqrtR ∗C;

end

Appendix A.2.4. A R Function to Make C in (7)

makeCmat <− func t ion ( x ) {
# Note : x i s an n x 1 matrix ( not a vec tor ) .

n <− length ( x )



Mathematics 2020, 8, 1839 18 of 19

D1 <− d i f f ( diag ( n ) ) ; D2 <− d i f f ( diag ( n−1))
d e l t a <− d i f f ( x ) ; invDelta <− diag (1/ d e l t a [ 1 : ( n−1) ,1 ] )
C <− D2%∗%invDelta%∗%D1
return (C)

}

Appendix A.2.5. A R Function to Make R in (8)

makeRmat <− func t ion ( x ) {
# Note : x i s an n x 1 matrix ( not a vec tor ) .

n <− length ( x ) ; d e l t a <− d i f f ( x )
R0 <− diag ( ( d e l t a [ 1 : ( n−2) ,1]+ d e l t a [ 2 : ( n−1) ,1 ] )/3)
R1 <− diag ( 0 , n−2)
R1 [ row ( R1)== c o l ( R1)−1] <− d e l t a [ 2 : ( n−2) ,1]/6
R <− t ( R1)+R0+R1
return (R)

}

Appendix A.2.6. A R Function to Make D in (9)

makeDmat <− func t ion ( x ) {
# Note : x i s an n x 1 matrix ( not a vec tor ) .

n <− length ( x ) ; C <− makeCmat ( x ) ; R <− makeRmat ( x )
z <− eigen (R ) ; P <− z$vec tors
invsqrtR <− P%∗%diag (1/ s q r t ( z$values ))%∗% t ( P )
D <− invsqrtR%∗%C
return (D)

}
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