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Abstract: The purpose of this paper is to propose an iterative algorithm for solving the split equality
common null point problem (SECNP), which is to find an element of the set of common zero points
for a finite family of maximal monotone operators in Hilbert spaces. We introduce the concept of
bounded linear regularity for the SECNP and construct several sufficient conditions to ensure the
linear convergence of the algorithm. Moreover, some numerical experiments are given to test the
validity of our results.
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1. Introduction

Let H1, H2, H3 be real Hilbert spaces, C and Q be nonempty closed convex subsets of H1 and H2,
respectively. Moudafi [1] introduced the following split equality problem (SEP), which is formulated
as finding

x ∈ C and y ∈ Q such that Ax = By, (1)

where A : H1 → H3 and B : H2 → H3 are two bounded linear operators. When B = I, the SEP
reduces to the split feasibility problem (SFP) which was introduced by Censor and Elfving [2]. The SEP
allows asymmetric and partial relations between the variables x and y. It has also received much
attention due to the application in many disciplines such as medical image reconstruction, game theory,
decomposition methods for PDEs and radiation therapy treatment planning; see [3–6].

In [7], Moudafi introduced and studied the following split equality null point problem (SENP):
given two set-valued maximal monotone operators F : H1 → 2H1 and K : H2 → 2H2 , the SENP is
formulated as finding

x∗ ∈ F−1(0), y∗ ∈ K−1(0) such that Ax∗ = By∗, (2)

where F−1(0) = {x ∈ H1 : 0 ∈ Fx} = Fix(JF
r ) is closed and convex, F is set-valued maximal monotone

operators [8]. We note that if B = I, this problem reduces to the well-known split common null point
problem which was originally introduced by Byrne et al. [9]. For i = 1, 2, · · ·, m, let {Fi}m

i=1 : H1 → 2H1

and {Ki}m
i=1 : H2 → 2H2 be two families of set-valued maximal monotone operators. The SECNP is

formulated as finding

x∗ ∈ F−1(0) =
m⋂

i=1

F−1
i (0), y∗ ∈ K−1(0) =

m⋂
i=1

K−1
i (0) such that Ax∗ = By∗. (3)
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In [7], Moudafi proposed the following algorithm for solving SENP and obtained a weak
convergence theorem:  xn+1 = JF

r

(
xn − γn A∗(Axn − Byn)

)
,

yn+1 = JK
r

(
yn + γnB∗(Axn − Byn)

)
, ∀n ≥ 0,

(4)

We note that in the above algorithm, the step-size γn depends on the operator (matrix) norms
‖A‖ and ‖B‖ (or the largest eigenvalues of A∗A and B∗B, where A∗ and B∗ are the adjoint operators
of A and B, respectively). To implement the alternating algorithm (4) for solving SENP (2), we need to
compute ‖A‖ and ‖B‖, which is generally not an easy task in practice.

To overcome this difficulty, Eslamian [10] considered an algorithm for solving SECNP for a
finite family of maximal monotone operators which does not require any knowledge of the operator
norms. In addition, they presented a strong convergence theorem which is more desirable than weak
convergence. The algorithm is as follows: xn+1 = βn,0ϑ + ∑m

i=1 βn,i J
Fi
rn,i

(
xn − γn A∗(Axn − Byn)

)
, ∀x0, ϑ ∈ H1,

yn+1 = βn,0υ + ∑m
i=1 βn,i J

Ki
sn,i

(
yn + γnB∗(Axn − Byn)

)
, ∀y0, υ ∈ H2, n ≥ 0,

(5)

where ∑m
i=0 βn,i = 1 and γn =

(
ε, 2‖Axn−Byn‖2

‖B∗(Axn−Byn)‖2+‖A∗(Axn−Byn)‖2 − ε
)

, n ∈ Π, the index set Π = {n :

Axn − Byn 6= 0}. In addition, the sequences {βn,i}, {rn,i} and {sn,i} satisfy the following conditions:
(i) lim infn rn,i > 0, lim infn sn,i > 0 and lim infn βn,i > 0, ∀i ∈ {1, 2 · ··, m}, (ii) limn→∞ βn,0 = 0 and
∑∞

n=0 βn,0 = ∞. It is proved that the sequence {(xn, yn)} generated by algorithm (5) converges strongly
to a solution (x∗, y∗) of SECNP (3).

Without loss of generality, let H1 × H2 =: H, U = F × K : H → 2H , Ui = Fi × Ki : H → 2H

is a family of set-valued maximal monotone operators. Define an operator G : H → H3 by
G(x, y) = Ax− By, ∀(x, y) ∈ H. Let G∗ denote the adjoint operator of G, then G and G∗G have the
following matrix form

G =
[

A −B
]

and G∗G =

[
A∗A −A∗B
−B∗A B∗B

]
.

Then the SENP (2) and SECNP (3) can be reformulated as

Finding w∗ = (x∗, y∗) ∈ U−1(0) such that Gw∗ = 0, (6)

and

Finding w∗ = (x∗, y∗) ∈ U−1(0) =
m⋂

i=1

U−1
i (0) such that Gw∗ = 0, (7)

respectively. In addition, the algorithm (5) can be expressed as:

wn+1 = βn,0α +
m

∑
i=1

βn,i J
Ui
µn,i (I − γnG∗G)wn, ∀n ≥ 0, w0 ∈ H, (8)

where α = (ϑ, υ) ∈ H, ∑m
i=0 βn,i = 1, lim infn µn,i > 0 and lim infn βn,i > 0, ∀i ∈ {1, 2 · ··, m}. In [10],

it has been proved that the sequence {wn} generated by algorithm (8) converges strongly to a solution

w∗ of the SECNP (3), and w∗ = PΓ(α)
(

Γ is the solution set of SECNP (7)
)

. However, as with most
algorithms, the convergence rate of the iterative sequence (8) is not taken into account.

Recently, the notion of bounded linear regularity has been used to explore the linear convergence
of the split equality problems in [11]. In the present paper, we introduce the bounded linear regularity
property of SECNP to consider the linear convergence of the algorithm (8).
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The structure of this paper is as follows. In Section 2, we mainly propose the definition of bounded
linear regularity and introduce some lemmas which are very useful in the proof of the main result.
In Section 3, we propose an iterative algorithm and prove its linear convergence in detail, we also
use our result to research the split equality optimization problem. In Section 4, some numerical
experiments are given to test the validity of our results.

2. Preliminaries

Throughout this paper, we will denote by H a real Hilbert space with inner product 〈·, ·〉 and norm
‖ · ‖. We denote the unit open ball and unit closed ball with center at origin by B and B, respectively.
Let S be a subset of H, we denote the interior and relative interior of S by intS, and riS, respectively.
For w ∈ H, the classical metric projection of w onto S and the distance of w from S, denoted by Ps(w)

and ds(w), respectively, and defined by

PS(w) := arg min{‖w− v‖ : v ∈ S} and dS(w) := inf{‖w− v‖ : v ∈ S}.

Let U be a mapping of H into 2H , the effective domain of U is denoted by dom(U), i.e., dom(U) =

{x ∈ H : Ux 6= ∅}. The single-valued operator JU
µ = (I + µU)−1 : H → dom(U), which is called

the resolvent of U for µ(µ > 0) and the resolvent JU
µ is firmly nonexpansive [12]. It is known that

U−1(0) = Fix(JU
µ ), for all µ > 0, and if U−1(0) 6= ∅, then

〈x− JU
µ x, JU

µ x− w〉 ≥ 0, ∀x ∈ H, w ∈ U−1(0). (9)

Let G : H → H3 be a bounded linear operator. The kernel of G is denoted by kerG = {x ∈ H :
Gx = 0} and the orthogonal complement of kerG is denoted by (kerG)⊥ = {y ∈ H : 〈x, y〉 = 0, ∀x ∈
kerG}. Both kerG and (kerG)⊥ are closed subspaces of H.

Recall that a sequence {wn} in H is said to converge linearly to its limit w∗(with rate σ ∈ [0, 1)) if
there exist λ > 0 and a positive integer N such that

‖wn − w∗‖ ≤ λσn, ∀n ≥ N.

Definition 1 ([13]). Let {Ei}i∈I be a family of closed convex subsets of a real Hilbert space H, where I is an
arbitrary set and E =

⋂
i∈I Ei 6= ∅. The family {Ei}i∈I is said to be bounded linearly regular if ∀r > 0, there

exists a constant γr > 0 such that

dE(w) ≤ γr sup{dEi (w) : i ∈ I}, ∀w ∈ rB.

Lemma 1 ([14]). Let {Ei}i∈I be a family of closed convex subsets of a real Hilbert space H, where I is an
arbitrary set. If Ei

⋂
int(

⋂
j∈I\{i} Ej) 6= ∅, the family {Ei}i∈I is boundedly linearly regular.

As we know, U−1(0) is closed and convex. Throughout this paper, we use Γ to denote the solution
set of SECNP (7), i.e.,

Γ := {w∗ ∈ U−1(0) : Gw∗ = 0}.

And assume that the SECNP is consistent, thus, Γ is also a closed, convex and nonempty set.

Definition 2. The SECNP is said to satisfy the bounded linear regularity property if ∀r > 0, there exists
γr > 0 such that

γrdΓ(w) ≤ ‖Gw‖, ∀w ∈ rB∩U−1(0).

Lemma 2 ([15]). Let G : H → H3 be a bounded linear operator on H. Then G is injective and has closed range
if and only if G is bounded below(i.e., there exists a constant γ > 0 such that ‖Gw‖ ≥ γ‖w‖, ∀w ∈ H).
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Lemma 3. Let {U−1(0), kerG} be bounded linearly regular and G has closed range. Then the SECNP (7)
satisfies the bounded linear regularity property.

Proof. Since {U−1(0), kerG} is bounded linearly regular, ∀r > 0, there exists γr > 0 such that

dΓ(w) = dU−1(0)∩kerG(w) ≤ γr max{dU−1(0)(w), dkerG(w)}, ∀w ∈ rB.

Hence,
dΓ(w) ≤ γrdkerG(w), ∀w ∈ rB∩U−1(0).

Since G restricted to (kerG)⊥ is injective and has closed range, it follows from Lemma 2 that there
exists v > 0,

‖G(w̃)‖ ≥ v‖w̃‖, ∀w̃ ∈ (kerG)⊥.

It follows that
dkerG(w) ≤ 1

v
‖Gw‖, ∀w ∈ H.

Therefore,
dΓ(w) ≤ γr

v
‖Gw‖, ∀w ∈ U−1(0) ∩ rB.

This completes the proof.

Lemma 4 ([16]). ∀x1, · · ·, xm ∈ H and α1, · · ·, αm ∈ [0, 1] with Σm
i=1αi = 1 the equality

‖
m

∑
i=1

αixi‖2 =
m

∑
i=1

αi‖xi‖2 − ∑
1≤i<j≤m

αiαj‖xi − xj‖2,

holds.

Lemma 5 ([13]). Let E and F be closed convex subsets of H. Then {E, F} is bounded linearly regular provided
that at least one of the following conditions holds:

(a) riE ∩ F∩ 6= ∅ and F is a polyhedron;
(b) riE ∩ riF∩ 6= ∅ and E is finite dimensional;
(c) riE ∩ riF∩ 6= ∅ and E is finite codimensional.

3. Main Results

Throughout this section we assume that: (1) H1, H2, H3 are real Hilbert spaces, H := H1 × H2;
(2) for i = 1, 2 · ··, m, {Fi}m

i=1 : H1 → 2H1 , {Ki}m
i=1 : H2 → 2H2 and {Ui}m

i=1 : H → 2H are three families

of set-valued maximal monotone operators, where Ui = Fi × Ki, F−1(0) =
m⋂

i=1
F−1

i (0), K−1(0) =

m⋂
i=1

K−1
i (0) and U−1(0) =

m⋂
i=1

U−1
i (0); (3) JUi

µ = (JFi
r , JKi

s ), where µ, r, s are any positive real numbers.

3.1. Split Equality Common Null Point Problem

Lemma 6. For γ > 0 and µ > 0, w∗ := (x∗, y∗) ∈ H1 × H2 is a solution of SECNP (7) if and only if ∀i ≥ 1,

w∗ = JUi
µ (I − γG∗G)w∗. (10)

Proof. As we know, JUi
µ = (JFi

r , JKi
s ), and µ, r, s are positive real numbers. If w∗ := (x∗, y∗) ∈ H1 × H2

is a solution of SECNP (7), then ∀i ≥ 1, any γ > 0 we have

x∗ ∈ F−1
i (0) = Fix(JFi

r ), y∗ ∈ K−1
i (0) = Fix(JKi

s ) and Ax∗ = By∗
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⇔ x∗ = JFi
r x∗, y∗ = JKi

s y∗ and Ax∗ = By∗.

Hence we have G(w∗) = Ax∗ − By∗ = 0, and so

JUi
µ (I − γG∗G)(w∗) = JUi

µ (w∗) = (JFi
r x∗, JKi

s y∗) = (x∗, y∗) = w∗.

This implies that (10) is true.
Conversely, if w∗ := (x∗, y∗) ∈ H1 × H2 satisfies (10), then we have x∗ = JFi

r

(
x∗ − γA∗(Ax∗ − By∗)

)
,

y∗ = JKi
s

(
y∗ + γB∗(Ax∗ − By∗)

)
.

(11)

By (9) and (11), we have〈
JFi
r x∗ − JFi

r

(
x∗ − γA∗(Ax∗ − By∗)

)
, JFi

r x− JFi
r x∗

〉
≥ 0, ∀x ∈ F−1

i (0).

That is 〈
x∗ −

(
x∗ − γA∗(Ax∗ − By∗)

)
, x− x∗

〉
≥ 0, ∀x ∈ F−1

i (0).

And we can get
〈Ax∗ − By∗, Ax− Ax∗〉 ≥ 0, ∀x ∈ F−1

i (0). (12)

Similarly, we have
〈Ax∗ − By∗, By∗ − By〉 ≥ 0, ∀y ∈ K−1

i (0). (13)

Adding up (12) and (13), one gets

〈Ax∗ − By∗, Ax− Ax∗ + By∗ − By〉 ≥ 0, ∀x ∈ F−1
i (0), y ∈ K−1

i (0).

Simplifying it, we have

‖Ax∗ − By∗‖2 ≤ 〈Ax∗ − By∗, Ax− By〉, ∀x ∈ F−1
i (0), y ∈ K−1

i (0). (14)

Since Γ 6= ∅, taking w̃ = (x̃, ỹ) ∈ Γ, we have x̃ ∈ F−1
i (0), ỹ ∈ K−1

i (0) and Ax̃ = Bỹ, ∀i ≥ 1.
Let x = x̃, y = ỹ, according to (14) we have

‖Ax∗ − By∗‖ = 0, that is, Ax∗ = By∗. (15)

From (11) and (15){
x∗ = JFi

r (x∗),
y∗ = JKi

s (y∗).
⇔ x∗ ∈ F−1

i (0), y∗ ∈ K−1
i (0), ∀i ≥ 1.

So we get
x∗ ∈ F−1

i (0), y∗ ∈ K−1
i (0) such that Ax∗ = By∗.

That is w∗ := (x∗, y∗) is a solution of SECNP (7). This completes the proof.

Lemma 7. If γ ∈ (0, 2
L ), where L = ‖G‖2, then JUi

µ (I − γG∗G) : H → H is a nonexpansive mapping.
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Proof. Since JUi
µ is firmly nonexpansive, ∀a, b ∈ H, we have

‖JUi
µ (I − γG∗G)a− JUi

µ (I − γG∗G)b‖2 ≤ ‖(I − γG∗G)a− (I − γG∗G)b‖2

= ‖(a− b)− γG∗G(a− b)‖2

= ‖a− b‖2 + γ2‖G∗G(a− b)‖2 − 2γ〈a− b, G∗G(a− b)〉
≤ ‖a− b‖2 + γ2L‖G(a− b)‖2 − 2γ〈G(a− b), G(a− b)〉
= ‖a− b‖2 + γ2L‖G(a− b)‖2 − 2γ‖G(a− b)‖2

= ‖a− b‖2 − γ(2− γL)‖G(a− b)‖2

≤ ‖a− b‖2

This completes the proof.

Corollary 1. The SECNP (7) satisfies the bounded linear regularity property if one of the following
conditions holds:

(a) F−1(0) and K−1(0) are polyhedrons, and G has closed range;
(b) riU−1(0) ∩ kerG 6= ∅, kerU−1(0) is finite dimensional;
(c) riU−1(0) ∩ kerG 6= ∅, kerU−1(0) is finite codimensional;
(d) riU−1(0) ∩ kerG 6= ∅, G has closed range and U−1(0) is finite dimensional;
(e) riU−1(0) ∩ kerG 6= ∅, G has closed range and U−1(0) is finite codimensional.

Next, we establish the linear convergence property for the iterative algorithm under the
assumption of bounded linear regularity property for SECNP.

Theorem 1. Assume that the SECNP (7) satisfies the bounded linear regularity property, let {wn} be a sequence
generated by

wn+1 = βn,0α +
m

∑
i=1

βn,i J
Ui
µn,i (I − γnG∗G)wn, ∀n ≥ 0, w0 ∈ U−1(0), (16)

with γn ∈ (0, ∞), where α ∈ U−1(0),
m
∑

i=0
βn,i = 1, lim infn βn,i > 0 and lim infn µn,i > 0 for i = 1, · · ·, m,

then {wn} converges to a solution w∗ of SECNP (7) such that

‖wn − w∗‖ ≤ λσn and w∗ = PΓ(α) (17)

for λ ≥ 1 and 0 < σ < 1, under one of the following conditions:

(a) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 2
‖G‖2 ;

(b) γn =

{
0, wn ∈ Γ
ρn‖Gwn‖2

‖G∗Gwn‖2 , otherwise
and 0 < lim infn→∞ ρn ≤ lim supn→∞ ρn < 2.

Proof. Without loss of generality, we assume that wn is not in Γ, ∀n ≥ 1. We now show that {wn}
converges to a solution w∗ of SECNP (7) and (17) holds. From

m
∑

i=0
βn,i = 1 and Lemma 4, we get
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‖wn+1 − w∗‖2 = ‖βn,0α +
m
∑

i=1
βn,i J

Ui
µn,i (I − γnG∗G)wn − w∗‖2

= ‖βn,0(α− w∗) +
m
∑

i=1
βn,i

(
JUi
µn,i (I − γnG∗G)wn − w∗

)
‖2

≤ βn,0‖α− w∗‖2 +
m
∑

i=1
βn,i‖JUi

µn,i (I − γnG∗G)wn − w∗‖2

− βn,0
m
∑

i=1
βn,i‖JUi

µn,i (I − γnG∗G)wn − w∗ − (α− w∗)‖2

= (βn,0 − βn,0
m
∑

i=1
βn,i)‖α− w∗‖2

+
m
∑

i=1
βn,i(1− βn,0)‖JUi

µn,i (I − γnG∗G)wn − w∗‖2

+ 2βn,0
m
∑

i=1
βn,i‖JUi

µn,i (I − γnG∗G)wn − w∗‖ · ‖α− w∗‖

As we know, w∗ = PΓ(α), then ‖α − w∗‖ ≤ ‖wn − w∗‖, ∀n > 0. According to condition (a)
and Lemma 7, JUi

µn,i (I − γnG∗G) is nonexpansive. In addition, as w∗ ∈ Γ, by Lemma 6, we have

w∗ = JUi
µn,i (I − γnG∗G)w∗. So we can get

‖wn+1 − w∗‖2 ≤ (βn,0 − βn,0
m
∑

i=1
βn,i)‖wn − w∗‖2

+
m
∑

i=1
βn,i(1− βn,0)‖JUi

µn,i (I − γnG∗G)wn − w∗‖2 + 2βn,0
m
∑

i=1
βn,i‖(wn − w∗)‖2

= (βn,0 + βn,0
m
∑

i=1
βn,i)‖wn − w∗‖2

+
m
∑

i=1
βn,i(1− βn,0)‖JUi

µn,i (I − γnG∗G)wn − w∗‖2 (18)

For w∗ ∈ Γ, since JUi
µn,i is firmly nonexpansive and Gw∗ = 0, we get

‖JUi
µn,i (I − γnG∗G)wn − w∗‖2 = ‖JUi

µn,i (wn − γnG∗Gwn)− JUi
µn,i w

∗‖2

≤ ‖wn − w∗ − γnG∗Gwn‖2

= ‖wn − w∗‖2 − 2γn〈wn − w∗, G∗Gwn〉+ γ2
n‖G∗Gwn‖2

= ‖wn − w∗‖2 − 2γn‖Gwn‖2 + γ2
n‖G∗Gwn‖2

= ‖wn − w∗‖2 − γn(2− γn
‖G∗Gwn‖2

‖Gwn‖2 )‖Gwn‖2 (19)

Now, we substitute (19) in (18) so we have

‖wn+1 − w∗‖2 ≤ (βn,0 + βn,0
m
∑

i=1
βn,i)‖wn − w∗‖2

+
m
∑

i=1
βn,i(1− βn,0)

(
‖wn − w∗‖2 − γn(2− γn

‖G∗Gwn‖2

‖Gwn‖2 )‖Gwn‖2
)

= (βn,0 + βn,0
m
∑

i=1
βn,i)‖wn − w∗‖2 + (

m
∑

i=1
βn,i − βn,0

m
∑

i=1
βn,i)‖wn − w∗‖2

−
m
∑

i=1
βn,i(1− βn,0)γn(2− γn

‖G∗Gwn‖2

‖Gwn‖2 )‖Gwn‖2

= ‖wn − w∗‖2 −
m
∑

i=1
βn,i(1− βn,0)γn(2− γn

‖G∗Gwn‖2

‖Gwn‖2 )‖Gwn‖2

Since SECNP (7) satisfies the bounded linear regularity property and wn ∈ U−1(0), ∀n ≥ 1, so
there exists δ > 0 such that δdΓ(wn) ≤ ‖Gwn‖, ∀n ≥ 1. It follows that

‖wn+1 − w∗‖2 ≤ ‖wn − w∗‖2 − δ2
m

∑
i=1

βn,i(1− βn,0)γn(2− γn
‖G∗Gwn‖2

‖Gwn‖2 )dΓ(wn)
2, ∀w∗ ∈ Γ.
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Hence,

dΓ(wn+1)
2 ≤

[
1− δ2

m

∑
i=1

βn,i(1− βn,0)γn(2− γn
‖G∗Gwn‖2

‖Gwn‖2 )
]
dΓ(wn)

2.

Please note that if (a) or (b) holds, then

lim inf
n→∞

(
2− γn

‖G∗Gwn‖2

‖Gwn‖2

)
> 0.

Since lim infn βn,i > 0, ∀i = 1, · · ·, m, so there exists N such that
m
∑

i=1
βn,i(1− βn,0) > 0 for n ≥ N.

And,

φ = inf
n≥N

δ2
m

∑
i=1

βn,i(1− βn,0)(2− γn
‖G∗Gwn‖2

‖Gwn‖2 ) > 0.

Therefore,

dΓ(wn+1)
2 ≤ (1− φγn)dΓ(wn)

2 ≤ dΓ(wN)
2

n

∏
k=N+1

(1− φγk), ∀n ≥ K.

Observe that ∀w∗ ∈ Γ, ‖wn+1 − w∗‖ is monotone decreasing for n, hence

‖wm − wn‖ ≤ ‖wm − PΓ(wn)‖+ ‖wn − PΓ(wn)‖
≤ 2‖wn − PΓ(wn)‖
= 2dΓ(wn), m ≥ n

It follows that

‖wm − wn+1‖ ≤ 2dΓ(wN)
n

∏
k=N+1

√
1− φγk, ∀m ≥ N + 1.

Let p := e−
φ
2 ∈ (0, 1), then

n

∏
k=N+1

√
1− φγk = exp

{1
2

n

∑
k=N+1

ln(1− φγk)
}
≤ p∑n

k=N+1 γk .

Therefore,
‖wm − wn+1‖ ≤ 2dΓ(wN)p∑n

k=N+1 γk , ∀m ≥ n + 1.

As one of (a) and (b) holds, it follows that {wn} is a Cauchy sequence and converges to a solution
w∗ of SECNP (7) satisfying

‖wn+1 − w∗‖ ≤ 2dΓ(wN)p∑n
k=N+1 γk , ∀n ≥ N.

Let
m = max

{
2dΓ(wN)p−∑N

k=1 γk , max{‖wk − w∗‖p−∑k
j=1 γj : k = 1, 2, · · ·, N}

}
.

Then
‖wn − w∗‖ ≤ mp∑n

k=1 γk .

Moreover, if (a) or (b) is assumed, then lim infn→∞ γn > 0. Let lim infn→∞ γn = θ > 0, then
∃N1 > 0, such that θn > θ for n ≥ N1. It follows that

‖ wn − w∗ ‖≤ mp∑
N1
i=1 θi p(n−N1)θ = λσn, ∀n ≥ max{N1, N},
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where λ = mp∑
N1
i=1(θi−θ) > 0, σ = pθ ∈ (0, 1). Hence, {wn} converges to w∗ linearly.

This completes the proof.

3.2. The Application of Split Equality Optimization Problem

The so-called split equality optimization problem (SEOP) is formulated as finding (x∗, y∗) ∈
(H1, H2) such that

f (x∗) = min
x∈H1

f (x), k(y∗) = min
y∈H2

k(y) and Ax∗ = By∗, (20)

where f : H1 → R and k : H2 → R are two proper, lower semicontinuous, and convex functionals.
Let u = ( f , k) : H → R be a proper, lower semicontinuous, and convex functional. Then SEOP (20) can
be reformulated as finding w∗ ∈ H such that

u(w∗) = min
w∈H

u(w) and Gw∗ = 0. (21)

The subdifferential of u at w is the set

∂u(w) := {a ∈ H : u(v) ≥ u(w) + 〈a, v− w〉, ∀v ∈ H}.

Denote by ∂u = U. It is know that U : H → 2H is maximal monotone operator, so we can define
the resolvent JU

µ where µ > 0, and

u(w∗) = min
w∈H

u(w) ⇔ 0 ∈ ∂u(w∗) = U(w∗) ⇔ w∗ ∈ U−1(0).

Therefore SEOP (21) is equivalent to the SENP (6), then the following corollary can be obtained
from Theorem 1 immediately.

Corollary 2. Assume that the solution of SEOP (21) Γ1 = {w∗ ∈ H, s.t. u(w∗) = min
w∈H

u(w) and Gw∗ =

0} is nonempty where ∂u = U. In addition, the statements (a) and (b) are consist with Theorem 1. Let the
SEOP (21) satisfies the bounded linear regularity property and {wn} be a sequence generated by

wn+1 = βnα + (1− βn)JU
µn(I − γnG∗G)wn, ∀n ≥ 0, w0 ∈ U−1(0),

with γn ∈ (0, ∞), where α ∈ U−1(0), lim infn βn > 0 and lim infn µn > 0, then {wn} converges linearly to
a solution w∗ of SEOP (21).

4. Numerical Experiments

Let H1 = R, H2 = R2, H3 = R3. Let

f (x) =

{
x + 1, x ≥ 0,

x− 1, x ≤ 0.

and
Fi(x) = [ f (x− 0), f (x + 0)], ∀i = 1, 2, · · · , m, x ∈ R.

Then Fi(x), i = 1, 2, · · · , m are set-valued maximal monotone operators and
F−1

i (0) = {x ∈ R, |x| ≤ 1}.
Let ∀i = 1, 2, · · · , m
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Ki(x) =



(
−1

0

)
, x < −1, y ∈ R(

[−1, 0]

0

)
, x = −1, y ∈ R(

0

0

)
, − 1 < x < 1, y ∈ R(

[0, 1]

0

)
, x = 1, y ∈ R(

1

0

)
, x > 1, y ∈ R

Then Ki(x)(i = 1, 2, · · · , m) are set-valued maximal monotone operators and K−1
i (0) = {(x, y) ∈

R2 : |x| ≤ 1, y ∈ R}.
Let A : H2 → H3, B : H1 → H3 are defined by A(x, y) = (x, y, 0) and B(z) = (z, 0, 0), ∀x, y, z ∈ R,

respectively. Let U−1(0) = ∩m
i=1U−1

i (0) = U−1
i (0) = F−1

i (0)× K−1
i (0) = {(x, y, z) : |x| ≤ 1, |y| ≤

1, z ∈ R} and G = [A,−B] : H3 → H3 be defined by

G(x, y, z) = (x− z, y, 0), ∀(x, y, z) ∈ R3.

Then riU−1(0) ∩ kerG = {(x, 0, x), x ∈ R} 6= ∅, U−1(0) is finite codimensional, the range of G
is closed, and the solution set of SECNP is Γ =

⋂m
i=1(F−1

i (0)× K−1
i (0)) ∩ kerG = {(x, 0, x), x ∈ R}.

By Corollary 1 we can get that SECNP satisfies the bounded linear regularity property.
Let w0 = (x0, y0, z0) ∈

⋂m
i=1 F−1

i (0)× K−1
i (0). From the algorithm (16), we have

xn+1 = (1− γn)xn + γnzn,
yn+1 = (1− γn)yn,
zn+1 = (1− γn)zn + γnxn.

In algorithm (16), we take γn = 1
2 , n

n+1 , respectively. Then we have the following numerical
results (the x-coordinate denotes the iteration times, and the y-coordinate denotes the logarithm of
the error). The whole program was written in Wolfram Mathematica (version 10.3). All the numerical
results were performed on a personal Dell computer with Inter(R) Core(TM) i5-7200 U CPU 2.50 GHz
and RAM 4.00 GB.

We choose error to be 10−15 , the initial value w0 = (0.5, 0.2, 0.4) and w0 = (0.8, 0.8, 0.5), according
to the algorithm (16), they converges to w∗ = (0.45, 0, 0.45) ∈ Γ and w∗ = (0.65, 0, 0.65) ∈ Γ,
respectively (See Figure 1).

(a)

Figure 1. Cont.
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(b)

Figure 1. Numerical Results. (a) error = 10−15, w0 = (0.5, 0.2, 0.4), w∗ = (0.45, 0, 0.45),
(b) error = 10−15, w0 = (0.8, 0.8, 0.5), w∗ = (0.65, 0, 0.65).
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