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Abstract: A characterizing property of Zenga (1984) inequality curve is exploited in order to develop
an estimator for the extreme value index of a distribution with regularly varying tail. The approach
proposed here has a nice graphical interpretation which provides a powerful method for the analysis
of the tail of a distribution. The properties of the proposed estimation strategy are analysed
theoretically and by means of simulations. The usefulness of the method will be tested also on
real data sets.

Keywords: extreme value index; inequality curve; non-parametric estimation; bootstrap; regularly
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1. Introduction

A distribution function F with survivor function F̄ := 1− F is regularly varying (RV) at infinity
with index α, if there exists an α > 0 such that ∀x > 0

lim
t→∞

F̄(tx)
F̄(t)

= x−α; (1)

in this case we say that F̄ ∈ RV−α. In the extreme value (EV) literature it is typical to refer to the
EV index γ > 0 with α = 1/γ. Informally, we will say that the distribution has a Pareto tail or
that the distribution is of the power-law type. Note that the case 1 < α ≤ 2 (or 1/2 ≤ γ < 1)
entails distributions with infinite variance and finite mean while the case α > 2 (or γ < 1/2) entails
distributions with finite mean and variance.

Precision in the analysis of the tail of a distribution allows to, for example, perform proper risk
evaluation in finance, correcting empirical income distributions for various top-income measurement
problems, or individuating a proper growth theory in economics or the biological sciences. For further
examples of applications and deeper discussion see Clauset et al. [1], Jenkins [2] and Hlasny [3] with
specific references to applications in income distributions and an overview of available models; see also
Heyde and Kou [4] for a deep discussion of graphical methods for tail analysis.

The present paper will concentrate on estimation of the EV index γ. Probably the most well-known
estimator of the EV index is the Hill [5] estimator, which exploits the k upper order statistics of a
random sample through the formula

H(k) := Hk,n = k−1
k

∑
i=1

log X(n−i+1) − log X(n−k), (2)
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where X(i) denotes the i-th order statistics from a sample of size n and k = k(n) ≤ n diverges to ∞
in an appropriate way. The Hill estimator has been thoroughly studied in the literature and several
generalizations have been proposed. For a recent review of estimation procedures for the EV (or tail)
index of a distribution see Gomes and Guillou [6].

Some recent approaches in tail or EV index estimation we would like to mention here
are those of Brilhante et al. [7] which define a moment of order p estimator which reduces to
the Hill estimator for p = 0 and Beran et al. [8] which define a harmonic moment tail index
estimator. Recently Paulauskas and Vaičiulis [9] and Paulauskas and Vaičiulis [10] have connected
in an interesting way some of the above approaches by defining parametric families of functions of the
order statistics. Reduced bias (RB) versions of the above estimators have appeared in the literature,
see for example Caeiro et al. [11], Gomes et al. [12] and Gomes et al. [13].

The main contribution of this paper consists in a new estimation procedure for EV index of a
distribution satisfying (1) which relies on Zenga’s inequality curve λ(p), p ∈ (0, 1) (Zenga [14]).

The curve λ has the property of being constant for the Pareto Type I distribution, it has an
intuitive graphical interpretation, it does not depend on location and it shows a nice regular behaviour
when estimated. These properties will be discussed, analysed and extended in order to define our
inferential strategies. Also it is important to point out that an inequality curve is defined for positive
observations and hence we will implicitly assume that the right tail of a distribution is analysed. This is
not really a restriction since if one wishes to consider the left tail it is enough to change sign to the data.
Also, if the distribution is over the real line, tails can be considered separately and, under the symmetry
assumption, absolute values of the data could be considered. The approach to estimation proposed here,
directly connected to the inequality curve λ, has a nice and effective graphical interpretation which
greatly helps in the analysis. Other graph-based methods are to be found in Kratz and Resnick [15],
which exploit properties of the QQ-plot, and Grahovac et al. [16] which discuss an approach based
on the asymptotic properties of the partition function, a moment statistic generally employed in the
analysis of multi-fractality; see also Jia et al. [17] which analyse graphically and analytically the real
part of the characteristic function at the origin.

We would like to point out here that the λ curve discussed by Zenga [14] does not coincide
with the Zenga [18] curve originally indicated by the author with I(p), p ∈ (0, 1) (more details in the
next Section).

The paper is organized as follows: Section 2 introduces the curve λ and discusses its properties;
Section 3 analyses the proposed estimation strategy and discusses some practical issues in applications.
Finite sample performances are analysed in Sections 4 and 5 where applications with simulated and
real data are considered. Proofs are postponed to the last Section.

2. The Proposed Estimator for the EV Index

Let X be a positive random variable with finite mean µ, distribution function F, and probability
density f . The inequality curve λ(p) has been first defined in Zenga [14]; with original notation:

λ(p) = 1− log(1−Q(F−1(p)))
log(1− p)

, 0 < p < 1, (3)

where F−1(p) = inf{x : F(x) ≥ p} is the generalized inverse of F and Q(x) =
∫ x

0 t f (t)dt/µ is the first
incomplete moment. Q can be defined as a function of p via the Lorenz curve

L(p) = Q(F−1(p)) =
1
µ

∫ p

0
F−1(t)dt. (4)
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See further Zenga [19] Arcagni and Porro [20] for a general introduction and analysis of λ(p) for
different distributions. It is worth to mention that the curve λ(p) should not be confused with the
inequality curve defined in Zenga [18], originally indicated as

I(p) = 1− L(p)
p

1− p
1− L(p)

, p ∈ (0, 1). (5)

The curve I(p) has many nice properties and has been heavily studied in some recent literature;
it is now commonly known as the Zenga curve Z(p). For the sake of completeness in Zenga [14] the
notation Z(p) was originally used for another inequality curve based on quantiles, that is,

Z(p) = 1−
xp

x∗p
, p ∈ (0, 1), (6)

where xp = F−1(p) and x∗p = Q−1(p). As pointed out in Zenga [14] (without providing if and only if
results) the curve λ is constant in p for type-I Pareto distributions, while the curve Z, as defined in
Equation (6), is constant in p for Log-normal distributions. On the contrary, the curve I, as defined in
(5), is not constant for any distribution, see Zenga [14] and Zenga [18] for further details. Turning back
the attention to the curve λ, note that for a Pareto Type I distribution with

F(x) = 1− (x/x0)
−α, x ≥ x0, x0 > 0 (7)

under the condition that α > 1, the Lorenz curve has the form

L(p) = 1− (1− p)1−γ, γ = 1/α; (8)

it follows that in this case λ(p) = γ, p ∈ (0, 1), that is λ(p) is constant in p. This is actually an
if-and-only-if result, which we formalize in the following lemma (see Section 7 for its proof).

Lemma 1. The curve λ(p) defined in (3) is constant in p, p ∈ (0, 1), and equals γ = 1/α if, and only if,
F satisfies (7) with α > 1 or, equivalently, γ < 1.

Lemma 1 could be exploited to derive a new approach to the estimation of the EV index γ = 1/α

for the Pareto distribution. In order to define an estimator for the more general case where F̄ satisfies
(1) it is worth to analyse in more detail what is the behaviour of the Lorenz curve under the framework
defined by (1). This will be done by considering the truncated random variable Y = X|X > s with
X ∼ F, F ∈ RV−1/γ. If G and g denote respectively the distribution function and the density of

Y, note that G(y) = F(y)−F(s)
F(s)

and g(y) = f (y)/F(s). Furthermore, setting G(y) = p and inverting

we have G−1(p) = F−1(F(s) + pF(s)). A formal result on the Lorenz curve for Y is given in the
next lemma.

Lemma 2. Consider the random variable X with distribution function F ∈ RV−1/γ and absolutely continuous
density f ; define Y = X|X > s, s > 0, and let LY(p) the Lorenz curve of Y. Then

1− LY(p) = (1− p)1−γ, p ∈ (0, 1), s→ ∞. (9)

Remark 1. Lemma 2 implies that the curve λ(p), for the truncated random variable Y = X|X > s,
with distribution satisfying (1), will be constant with value γ for all p ∈ (0, 1) if the truncation level s
will be large enough. This fact can be exploited to derive a general estimator for the EV index for all distributions
in the class (1) as long as γ < 1.



Mathematics 2020, 8, 1834 4 of 17

Before arriving at a formal definition of the estimator, some preliminary quantities need to be
defined. Let X(1), . . . , X(n) be the order statistics of a random sample of size n from a distribution
satisfying (1). Let k = k(n)→ ∞ and k(n)/n → 0 as n → ∞. Define the estimator of the conditional
Lorenz curve as

L̂k(p) =
∑i

j=1 X(n−k+j)

∑k
j=1 X(n−k+j)

, for
i
k
≤ p <

i + 1
k

, i = 1, . . . , k− 1. (10)

After defining

λ̂k,i = λ̂k(pi) = 1− log(1− L̂k(pi))

log(1− pi)
(11)

the proposed estimator of γ is

γ̂k =
1

k− 1

k−1

∑
i=1

λ̂k,i. (12)

Remark 2. The estimator defined in (12), based on a Lorenz curve computed on upper order statistics (defined
by k), puts into practice the results of Lemma 1 and Lemma 2. Below we will discuss conditions under which
(12) provides a consistent estimator of γ for the class of distributions satisfying (1). Guidance in the choice of k
will be also discussed.

Letting I(A) denote the indicator function of the event A the above estimators are based on the
non-parametric estimators

Fn(x) =
1
n

n

∑
i=1

I(Xi≤x) Qn(x) =
∑n

i=1 XiI(Xi≤x)

∑n
i=1 Xi

. (13)

Under the Glivenko-Cantelli theorem it holds that Fn(x) → F(x) almost surely and uniformly
in 0 < x < ∞; under the assumption that E(X) < ∞, it holds that Qn(x) → Q(x) almost surely and
uniformly in 0 < x < ∞ (Goldie [21]). Fn and Qn are both step functions with jumps at X(1), . . . , X(n).
The jumps of Fn are of size 1/n while the jumps of Qn are of size X(i)/T where T = ∑n

i=1 X(i).

Letting F−1
n (p) = inf{x : Fn(x) ≥ p}, we note that since F−1

n

(
n−k

n

)
= x(n−k) and that

F−1
n

(
Fn(X(n−k)) + pF̄n(X(n−k))

)
= x(n−k+i) for i/k ≤ p < (i + 1)/k we have the representation

L̂k(p) =
∑n

i=1 XiI(Xi>X(n−k))
I(Xi≤X(n−k+i))

∑n
i=1 XiI(Xi>X(n−k))

, for
i
k
≤ p <

i + 1
k

, i = 1, . . . , k− 1. (14)

Exploiting the above representation and the results of Goldie [21], uniform consistency of L̂k(p)
can be claimed. As far as uniform consistency of λ̂k(p) we state the following lemma, which is proven
in Section 7.

Lemma 3. For X1, . . . , Xn i.i.d. from a distribution F with E(X) < ∞; then

sup
p∈(0,1)

|λ̂k(n)(p)− λ(p)| = op(1), n→ ∞. (15)

Following Lemma 2, graphical inspection of the tail of a distribution satisfying (1) can be carried
out by analysing a graph with coordinates (pi, λ̂i), i = 1, . . . , n which will show a flat line with intercept
around the value γ = 1/α. Apart from the case of the Pareto distribution, for distributions satisfying
(1), to observe a constant line with intercept close to γ = 1/α it is necessary to truncate the sample,
that is, using only the upper order statistics X(n−k+1), . . . X(n) when estimating λ.
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As an example, Figure 1 reports the empirical curve λ̂i as a function of pi for some cases of interest
at different truncation thresholds. There appear two distributions with tail satisfying (1), namely Pareto
as defined by (7) and Fréchet (more formally defined below), both with tail index α = 2. There appear
also two distributions which do not satisfy (1), namely Log-normal with null location and standard
deviation equal to 2 and Exponential with unit scale. Note that for Log-normal distribution the curve
λ does not depend on location, while it does not depend on scale for the exponential distribution
(Zenga [14]).

Inspection of the graphs reveals a remarkably regular behaviour of the curves; the Pareto case is
constant (with some slight variations) for all level of truncation, while the Fréchet one becomes more
and more constant with increasing levels of truncation. The Log-normal and Exponential cases show a
slope in the curve at all levels of truncation.
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Figure 1. Plot of λ̂i (y-axis) as a function of pi (x-axis), i = 1, . . . , n, for Pareto, Fréchet, Log-normal and
Exponential distributions at various levels of truncation. Sample size n = 1000.

3. Asymptotic Properties of γ̂k

3.1. Consistency

Exploiting some theoretical results given Section 7 (see the proof Lemma 2 for details),
one can write

1
k− 1

k−1

∑
i=1

(λ̂k(pi)− λ(pi)) = (γ̂n − γ)− 1
k− 1

k−1

∑
i=1

log
[
HU([(1− pi)F(s)]−1)/HU([F(s)]−1)

]
log(1− pi)

(16)

where HU(s) is a slowly varying function, that is, it holds that lims→∞
HU(sx)
HU(s) = 1 for any x > 0.
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To analyze in more detail the second term on the r.h.s. of the above equation we assume a second
order condition which is quite common in the EV theory (Caeiro et al. [11] and Gomes et al. [13]),
that is,

lim
s→∞

log HU([(1− p)F(s)]−1)− log HU([F(s)]−1) =
(1− pi)

ρ − 1
ρ

A([F(s)]−1), (17)

where A(t) = γβtρ, C > 0, γ > 0, ρ < 0, β 6= 0. To evaluate the r.h.s. of (16), as n → ∞,
set s = F−1

(
(n−k)

n

)
from which F(s) = k/n. Then, an asymptotic evaluation requires to evaluate

the expression

γβ

(
k
n

)−ρ 1
k− 1

k−1

∑
i=1

(1− pi)
ρ − 1

ρ log(1− pi)
. (18)

Note that the asymptotic behaviour of the sum in (18) is governed by pi → 0. Expanding in Taylor
series the numerator and using log(1− x) ∼ −x as x → 0,(

k
n

)−ρ 1
k− 1

k−1

∑
i=1

(1− pi)
ρ − 1

ρ log(1− pi)
∼
(

k
n

)−ρ 1
k− 1

k−1

∑
i=1

1− ρpi +
1
2 ρ(ρ− 1)p2

i − 1
−ρpi

∼
(

k
n

)−ρ (
1 +

1
4
(1− ρ)(k− 1)

)
,

(19)

which is o(1) as k → ∞ if k = nδ, 0 < δ < 1 with δ < − ρ
1−ρ . For example if ρ = −1/2 then one

can choose 0 < δ < 1/3 in order to have an asymptotically bias free estimator. There exists valid
estimation methods for ρ and β implemented also in R (see Section 4 for details).

Lemma 4. Under the conditions of Lemma 3 and condition (17), with k = nδ, 0 < δ < − ρ
1−ρ

|γ̂k − γ| = oP(1) as n→ ∞. (20)

3.2. Asymptotic Distribution

To provide an operational distributional result, we exploit a result of Csorgo and Mason [22].
Given X1, . . . , Xn i.i.d. with X ∼ F, F ∈ RV−1/γ, let Sj = E1 + E2 + . . . Ej, where Ej’s are i.i.d.
Exponential with unit scale parameter (Exp(1)) random variables; then, for fixed k,

1
nγH(1/n)

k

∑
j=1

X(n−j+1) →D

k

∑
j=1

(Sj)
−γ, n→ ∞. (21)

Note that Sj ∼ Γ(j, 1) and that if Y = S−γ
j then Y has a Generalized Inverse Gamma (GIG)

distribution with density

f (y) = γ
1

Γ(j)
x−jγ−1e−

(
1
y

)γ

, j, γ > 0. (22)

Compare with Mead [23] setting λ = 0, α = j, β = γ, θ = 1. Using this general result, a simple
and fast parametric bootstrap procedure can be implemented in order to obtain the full asymptotic
distribution of γ̂ and from it estimates of the standard error and confidence intervals.

Remark 3. Since γ̂k is consistent, the above procedure is consistent for the asymptotic distribution of the
estimator (12).

Once the bootstrap distribution is available it can be used for variance and confidence intervals
estimation. Simulations show that the approximation works quite well already for small sample sizes
and for different k values. Clearly the precision depends on a good preliminary estimator of γ which
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is the only parameter needed in determining the distribution; this is however a typical feature of
asymptotic results for estimators.

Figure 2, considering different sample sizes (n = 100, 500, 1000, 2000) from a Fréchet(2) distribution,
shows the histograms of true distribution of γ̂k (obtained by the Montecarlo method with
2000 iterations) and the bootstrap distribution obtained by Algorithm 1. The value of γ used in
Algorithm 1 has been randomly selected from the 1000 central values estimated in the connected
Montecarlo experiment. Sampling of γ̂k has been done independently in each of the 4 experiments in
the graph.

Algorithm 1 Bootstrap for the asymptotic distribution of γ̂k.

1: Given the data, get the estimated value γ̂k using formulae (10) to (12).

2: Generate k i.i.d. Exp(1) random variables E1, . . . , Ek and form the partial sums Sj = ∑
j
i=1 Ei.

3: Obtain the bootstrap estimate, say γ̂∗, using estimator (12) applied to the data S−γ̂
1 , . . . , S−γ̂

k .

4: Repeat the previous steps a large number of times to get the asymptotic distribution of γ̂k for given

k and given sample size.
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gamma hat

 n= 100

(a) n = 100
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gamma hat
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0.4 0.6 0.8
gamma hat

 n= 3000

(d) n = 3000

Figure 2. Histograms of the empirical distribution of γ̂k for selected sample sizes; k = n0.5; data samples
are generated from a Fréchet(2) distribution. Yellow: values obtained by Montecarlo simulations
(2000 iterations); blue: values obtained by Algorithm 1 (2000 iterations). The value of γ used has been
selected randomly from a pool of estimated values.
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3.3. Selecting k

The estimator γ̂k, like many tail estimators, requires the choice of k, the number of upper order
statistics to be used in estimation. Lemma 4 provides some indication on how to do so; estimation of the
required parameters governing the second order conditions can be carried on quite straightforwardly
(see discussion in the next section).

In order to arrive at a data-driven procedure to define the fraction of upper order statistics for
estimation of the EV index, consider the linear equation

λ(p) = β0 + β1 p. (23)

From Lemmas 1 and 2, it follows that for a type-I Pareto distribution and for for a truncated
random variable satisfying (1), as s→ ∞ is large enough, distribution F satisfying (7) with γ = 1/α,
in the above equation one has β0 = γ and β1 = 0. Considering a sample version of (23): given a
random sample X1, . . . , Xn, using the notation established in the previous Section, write

λ̂k,i = β0 + β1 pi + εi i = 1, . . . , k− 1, (24)

where εi = λ̂i − λi. Note that the proposed estimator (12) can be interpreted as the intercept estimate
in model (24) exploiting the information that β1 = 0. More formally, using ordinary least squares,
define the estimators

γ̂k = β̂0 =
1

k− 1

k−1

∑
i=1

λ̂k,i, β̂1 =
k−1

∑
i=1

λ̂k,i(pi − p̄)
S2

p
=

k−1

∑
i=1

λ̂k,ic(pi), (25)

where p̄ is the mean of the pi’s and S2
p = ∑k−1

i (pi − p̄)2, c(pi) = (pi − p̄)/S2
p. Lemma 3 implies

Proposition 1. Under the conditions of Lemma 4 it holds that β̂1 →P 0.

Following this reasoning, one can define a procedure based on the graph of (pi, λ̂k,i) for different
levels of truncation: we observe the fraction of upper order statistics which gets the smallest, in
absolute value, regression coefficient β̂1 from the regression (25).

Algorithm 2 Data-driven estimator γ̂Opt.

1: Given a random sample of size n, order the data and consider sub-samples defined by the (1− p)-th

fraction of upper order statistics. In our simulations the values p = 0.1 · i, i = 0, 1, . . . , 9 were

considered. However, in order to avoid using sub-samples with too few observations when n

is small an upper bound of the form 0.5 + 0.4 max(0, (n− 100)/n) is imposed to the sequence

p = 0.1 · i, i = 0, 1, . . . , 9. For example, when n ≤ 100, at least 50% of the largest order statistics

is used.

2: For each sub-sample estimate γ̂k and β̂1.

3: Define γ̂Opt as the estimate γ̂k obtained for the sub-sample which has the lowest value of |β̂1|.

In the next two Sections, the performance of the proposed estimation strategy is analysed on
simulated and real data.
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4. Numerical Comparisons

In this section we will evaluate the performance of γ̂k with respect to some alternative estimators
of the EV (or tail) index. As far as the estimator for γ is concerned, beyond considering the estimator
γ̂Opt, the estimator γ̂k with different levels of truncation of the data is considered. In the tables, γ̂1−p
indicates the estimator γ̂k, with 1− p indicating the fraction of upper order statistics used in estimation;
the notation γ̂All indicates the case where all the sample data are used in estimation.

Numerical comparisons will be carried out with respect to some reduced bias (RB) competitors
(Caeiro et al. [11], Gomes et al. [12]) based on Hill (Hill [5]), generalized Hill (Beirlant et al. [24]),
moment (Dekkers et al. [25]) and moment of order p (Gomes et al. [13]) estimators; optimized with
respect to the choice of k as discussed in Gomes et al. [13].

RB estimation of γ for the above mentioned alternative estimators is based on external estimation
of additional parameters (ρ, β) (refer to Gomes et al. [26] and Gomes et al. [13] for further details).
In our comparisons the following RB-versions are used:

(1) RB-Hill estimator, outperforming H(k) (defined in (2)) for all k

H̄(k) = H(k)
(

1− β̂(n/k)ρ̂/(1− ρ̂)
)

. (26)

(2) RB-Moment estimator, denoted by MM in the tables,

M̄(k) = M(k)
(

1− β̂(n/k)ρ̂/(1− ρ̂)
)
− β̂ρ̂(n/k)ρ̂/(1− ρ̂)2, (27)

with
M(k) = M(1)

k +
1
2

[
1− (M(2)

k /(M(1)
k )2 − 1)−1

]
(28)

and M(j)
k = ∑k

i=1(ln X(n−i+1) − ln X(n−k))
j, j ≥ 1.

(3) RB-Generalized Hill estimator, ¯GH(k), denoted GH in the tables, with the same bias correction
as in (27) applied to

GH(k) =
k

∑
i=1

(ln UH(j)− ln UH(k)) (29)

with UH(j) = X(n−j)H(k) 1 ≤ j ≤ k.
(4) RB-MOP (moment of order p) estimator, for 0 < p < α (the case p = 0 reduces to the Hill

estimator) defined by

H̄p(k) = Hp(k)

(
1−

β̂(1− pHp(k))
1− ρ̂− pHp(k)

(n
k

)ρ̂
)

, (30)

with Hp(k) = (1− A−p
p (k))/p, Ap(k) =

(
∑k

i=1 Up
ik/k

)1/p
, Uik = X(n−i+1)/X(n−k), 1 ≤ i ≤ k <

n. Denoted by MPp in the tables. In this case p is a tuning parameter which will be set, in our
simulations, equal to 0.5 and 1. For an estimated optimal value of p based on a preliminary
estimator of α see Gomes et al. [13].

Computations of the above estimators have been performed using the package evt0 (Manjunat
and Caeiro [27]) in R. More precisely, GH(k) and M(k) are obtained using the function other.EVI()
respectively with the options GH and MO. Estimation of the parameters (ρ, β) for the bias correction
terms can be obtained from the function mop(). RB-Hill and RB-MOP estimates are directly obtained
by the function mop() by appropriately specifying a value of p and the option RB-MOP. In order to
optimize the choice of k we used the formula [13]

k̂ = min
(

n− 1, b((1− ϕ(ρ̂)− ρ̂)2n−2ρ̂/(−2ρ̂β̂2(1− 2ϕ(ρ̂))))1/(1−2ρ̂)c+ 1
)

, (31)
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where bxc is the integer part of x and ϕ(ρ) = 1 − (ρ +
√

ρ2 − 4ρ + 2)/2. For the comparisons,
the following distributions are used:

(1) Pareto distribution, as defined in (7). Random numbers from this distribution are simply
generated in R using the function runif() and inversion of F.

(2) Fréchet distribution with F(x) = exp(−x−α), x ≥ 0, denote by Fréchet(α). This distribution
is simulated in R using the function rfrechet() from the package evd (Stephenson [28]) with
shape parameter set equal to α.

(3) Burr distribution with F(x) = 1 − (1 + xα)−1, indicated with Burr(α). This distribution is
simulated in R using the function rburr() from the package actuar (Dutang et al. [29]) with the
parameter shape1 set to 1 and shape2 set equal to α.

(4) Symmetric stable distribution with index of stability α, 0 < α < 2, indicated with Stable(α):=
Stable(α, β = 0, µ = 0, σ = 1); where β, µ and σ indicate, respectively, asymmetry, location
and scale. This distribution is simulated in R using the function rstable() from the package
stabledist (Wuertz et al. [30]). For this distribution only the positive observed data are used
in estimation.

Tables 1–8 contain the empirical RMSE (Root-MSE) and the relative RMSE, with respect to γ̂Opt,
of the estimators, that is, for any of the evaluated estimators, say γ̂, then

RMSE(γ̂) =
√

Ê(γ̂− γ)2, Rel-RMSE(γ̂) =
RMSE(γ̂)

RMSE(γ̂Opt)
.

Note that a Rel-RMSE greater than one implies a worse performance of the estimator with respect
to γ̂Opt. Ê denotes the empirical expected value, that is, the mean over the Montecarlo experiments.
For each sample size n = 50, 100, 200, 300, 500, and 1000; 1000 Montecarlo replicates were generated.
Computations have been carried out with R version 3.5.1 and each experiment, that is, given a chosen
distribution and a chosen n, has been initialized using set.seed(3). Numerical results representative
for each distribution are reported in the tables. More tables with other choices of parameters can be
found in the on-line Supplementary Materials accompanying this paper.

Table 1. RMSE of the estimators for the Pareto(4) distribution; 1000 Montecarlo replications.

n γ̂Opt γ̂All γ̂0.7 γ̂0.5 γ̂0.3 Hill MP0.5 MP1 GH MM

50 0.051 0.040 0.047 0.054 0.066 0.294 0.258 0.228 2.660 0.893
100 0.038 0.031 0.036 0.042 0.052 0.245 0.198 0.171 0.925 4.882
300 0.026 0.018 0.021 0.025 0.032 0.284 0.253 0.227 5.657 0.734
500 0.023 0.014 0.017 0.020 0.025 0.250 0.226 0.205 2.852 0.631

1000 0.016 0.010 0.012 0.014 0.018 0.159 0.142 0.128 0.755 0.530

Table 2. Relative RMSE of the estimators for the Pareto(4) distribution; 1000 Montecarlo replications.

n γ̂Opt γ̂All γ̂0.7 γ̂0.5 γ̂0.3 Hill MP0.5 MP1 GH MM

50 1.000 0.788 0.914 1.054 1.282 5.716 5.012 4.426 51.761 17.372
100 1.000 0.812 0.947 1.106 1.389 6.481 5.241 4.519 24.468 129.156
300 1.000 0.668 0.792 0.936 1.215 10.713 9.532 8.574 213.453 27.687
500 1.000 0.627 0.737 0.864 1.105 10.956 9.912 8.982 125.105 27.689

1000 1.000 0.624 0.745 0.879 1.140 10.121 9.057 8.178 48.096 33.771
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Table 3. RMSE of the estimators for the Fréchet(1.5) distribution; 1000 Montecarlo replications.

n γ̂Opt γ̂All γ̂0.7 γ̂0.5 γ̂0.3 Hill MP0.5 MP 1 GH MM

50 0.114 0.098 0.095 0.116 0.153 0.186 0.185 0.174 0.183 16.691
100 0.091 0.099 0.081 0.092 0.119 0.141 0.142 0.136 0.138 518.904
300 0.079 0.098 0.067 0.068 0.084 0.095 0.097 0.100 0.094 15.324
500 0.073 0.098 0.060 0.057 0.068 0.075 0.077 0.082 0.075 18.848

1000 0.065 0.100 0.060 0.054 0.060 0.059 0.063 0.073 0.059 22.018

Table 4. Relative RMSE of the estimators for the Fréchet(1.5) distribution; 1000 Montecarlo replications.

n γ̂Opt γ̂All γ̂0.7 γ̂0.5 γ̂0.3 Hill MP0.5 MP1 GH MM

50 1.000 0.855 0.832 1.011 1.335 1.625 1.620 1.522 1.603 145.897
100 1.000 1.086 0.889 1.012 1.312 1.547 1.566 1.495 1.514 5702.241
300 1.000 1.238 0.841 0.859 1.059 1.195 1.228 1.262 1.187 193.238
500 1.000 1.344 0.828 0.784 0.930 1.033 1.058 1.136 1.030 259.609

1000 1.000 1.540 0.931 0.832 0.927 0.915 0.971 1.131 0.918 339.784

Table 5. RMSE of the estimators for the Burr(2) distribution; 1000 Montecarlo replications.

n γ̂Opt γ̂All γ̂0.7 γ̂0.5 γ̂0.3 Hill MP0.5 MP1 GH MM

50 0.111 0.228 0.130 0.106 0.112 0.125 0.124 0.119 0.105 7.446
100 0.100 0.229 0.126 0.097 0.096 0.114 0.113 0.110 0.104 6.218
300 0.073 0.228 0.120 0.084 0.071 0.084 0.084 0.087 0.080 1.778
500 0.066 0.227 0.118 0.080 0.063 0.071 0.071 0.076 0.068 1.266

1000 0.054 0.226 0.117 0.078 0.055 0.055 0.056 0.063 0.053 0.326

Table 6. Relative RMSE of the estimators for the Burr(2) distribution; 1000 Montecarlo replications.

n γ̂Opt γ̂All γ̂0.7 γ̂0.5 γ̂0.3 Hill MP0.5 MP1 GH MM

50 1.000 2.053 1.171 0.951 1.011 1.128 1.112 1.069 0.946 66.962
100 1.000 2.294 1.258 0.971 0.966 1.141 1.134 1.099 1.043 62.240
300 1.000 3.099 1.635 1.149 0.971 1.144 1.150 1.180 1.089 24.226
500 1.000 3.440 1.794 1.222 0.953 1.076 1.083 1.152 1.036 19.215

1000 1.000 4.150 2.154 1.431 1.015 1.009 1.028 1.158 0.980 5.982

Table 7. RMSE of the estimators for the Stable(1.1) distribution; 1000 Montecarlo replications.

n γ̂Opt γ̂All γ̂0.7 γ̂0.5 γ̂0.3 Hill MP0.5 MP1 GH MM

50 0.372 0.292 0.355 0.375 0.394 0.420 0.413 0.417 0.408 4.398
100 0.335 0.267 0.324 0.337 0.345 0.374 0.365 0.366 0.365 3.163
300 0.297 0.239 0.289 0.295 0.292 0.343 0.323 0.312 0.338 4.996
500 0.275 0.226 0.271 0.275 0.268 0.332 0.305 0.288 0.328 9.098

1000 0.251 0.211 0.252 0.252 0.241 0.325 0.292 0.263 0.321 3.132

Table 8. Relative RMSE of the estimators for the Stable(1.1) distribution; 1000 Montecarlo replications.

n γ̂Opt γ̂All γ̂0.7 γ̂0.5 γ̂0.3 Hill MP0.5 MP1 GH MM

50 1.000 0.785 0.954 1.007 1.058 1.128 1.110 1.120 1.095 11.814
100 1.000 0.795 0.966 1.005 1.030 1.117 1.089 1.092 1.089 9.431
300 1.000 0.807 0.972 0.993 0.984 1.157 1.088 1.052 1.139 16.827
500 1.000 0.821 0.985 0.999 0.976 1.207 1.111 1.048 1.191 33.097

1000 1.000 0.842 1.003 1.006 0.963 1.294 1.167 1.048 1.282 12.492

Trying to summarize the results we note the general good performance of the estimators based on
the curve λ defined in this paper for which the gain in efficiency can be substantial. We note also the
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actual usefulness of γ̂Opt for practical applications since it is able to individuate appropriate levels of
truncation for different distributions although an actual knowledge of the optimal level of truncation
would obtain higher efficiency.

Turning to the single cases, one can note that the γ̂Opt outperforms all the other estimators for the
Pareto distribution where relative efficiency (see Table 2), is always greater than 4. For the case of the
Pareto distribution, γ̂All would be the most efficient choice, as expected.

In the case of the Fréchet distribution γ̂Opt is always more efficient than all competitors test for
smaller sample sizes (see Table 4); as sample size increases the gain in efficiency decreases and maybe
slightly lower in some cases.

The performance of γ̂Opt in the case of the Burr distribution is comparable to that of the
competitors, with relative RMSE (see Table 6) slightly smaller or greater than one depending on
the case considered.

In the case of the Symmetric stable distribution, the performance of γ̂Opt is slightly better than all
alternative estimators in all cases (see Table 8). The MM estimator turns out to be quite efficient for the
stable distribution with α closer to 2 (see the on-line Supplementary Materials).

We note that the MM and GH estimators, computed with the package evt0, has shown some
illogical results in some instances with extremely high values of the RMSE, typically for some specific
sample sizes, after several checks, we could not figure out the reason of such results.

5. Examples

Here we concentrate on six real data examples that have been used in the literature to discuss
methods to detect a power-law in the tail of the underlying distribution. These data have all been
thoroughly analysed, for example, in Clauset et al. [1]. The following data sets are analysed here:

1. The frequency of occurrence of unique words in the novel Moby Dick by Herman Melville
(Newman [31]).

2. The severity of terrorist attacks worldwide from February 1968 to June 2006, measured as the
number of deaths directly resulting (Clauset et al. [32]).

3. The sizes in acres of wildfires occurring on U.S. federal land between 1986 and 1996 (Newman [31]).
4. The intensities of earthquakes occurring in California between 1910 and 1992, measured as the

maximum amplitude of motion during the quake (Newman [31]).
5. The frequencies of occurrence of U.S. family names in the 1990 U.S. Census (Clauset et al. [1]).
6. Peak gamma-ray intensity of solar flares between 1980 and 1989 (Newman [31]).

Figure 3 provides the estimated λ curves for the six examples, either considering the whole data
and selected percentages of the upper order statistics. The range of λ may vary in the graphs in order
to have a better detail of the path of the curves.

On each of the data-set we apply Algorithm 2 in order to select the optimal number of k in
computing γ̂Opt; with the given estimate we apply Algorithm 1 in order to compute a 95% confidence
interval for the estimate.

Next we apply a testing procedure to evaluate if the graphs in Figure 3, for the k chosen by
Algorithm 1, can be considered “enough flat” in order to support the hypothesis that the data come
from a distribution within the class (1). A bootstrap test setting H0 : β1 = 0 in model (24) has been
developed in Taufer et al. [33].

For comparison we apply also the testing procedure for the power-law hypothesis developed by
Clauset et al. [1].

Table 9 reports analytical results on estimated values, 95% confidence intervals, the fraction of
upper order statistics used and the p-values of the testing procedures.

Trying to summarize briefly the results we would say that the conclusions about the presence of
a Pareto-type tail in the distributions coincide fully with the conclusions of Clauset et al. [1], that is:
clear evidence of a power law distribution fitting the data is for the Moby Dick and Terrorism data-sets.
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For the others there is no convincing evidence. We point out that for the contrasting p-values for
the Solar Flares data, Clauset et al. [1] suggest a power tail with an exponential cut-off at a certain
point. Given the characteristics of the graphs based on the λ curve this feature cannot be noticed in
our analysis.

As far as the estimated values of γ, the values of the estimators obtained here are substantially
lower with respect to those obtained by Clauset et al. [1] (which uses the Hill estimator). Given the
good performance in the simulations of γ̂Opt in comparison to the Hill estimator, the values in Table 9,
at least for the Moby Dick and Terrorism data-set can be considered reliable.
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Figure 3. Plot of the estimated λ curves for the six dataset: all data and selected percentages of upper
order statistics.

For the other data-sets, since the null hypotheses of a power law has significant p-values, the
estimated γ should be discarded and it becomes of interest to select an alternative model by using,
for example a likelihood ratio test as discussed in Clauset et al. [1] to which the interested reader
is referred.

Table 9. Sample size, estimated γ and 95% confidence intervals for the six data-sets. Fraction of upper
order statistics used (1− p) and p-values of the testing procedures defined in Taufer et al. [33] (Sig1)
and Clauset et al. [1] (Sig2). Asterisk indicates significant p-values.

Dataset n γ̂ 0.95-CI 1− p Sig1 Sig2

Moby Dick 18,855 0.90 (0.80–0.95) 0.4 0.224 0.49

Terrorism 9101 0.80 (0.73–0.87) 1.0 0.184 0.68

Wildfires 203,785 0.99 (0.90–0.99) 1.0 0.012 * 0.05 *

Earthquakes 19,302 0.22 (0.21–0.23) 0.5 0.000 * 0.00 *

Surnames 2753 0.74 (0.67–0.84) 1.0 0.000 * 0.00 *

Solar flares 12,773 0.96 (0.81–0.97) 0.2 0.038 * 1.00
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6. Conclusions

An estimation strategy for the tail index of a distribution in class (1) has been defined starting from
a characterizing property of Zenga’s inequality curve λ. On the basis of the theoretical properties of the
estimator γ̂k two simple bootstrap procedures have been obtained: the first provides a general result
for the asymptotic distribution of γ̂k and the second gives a data-driven procedure to determine the
optimal value of k. Simulations show the good performance of γ̂k and the implementation algorithm.

The data-driven optimized estimator often outperforms optimized (with respect to bias)
competing estimation strategies. The gain in efficiency is substantial in the case of Pareto distributions.

The graph of the λ curve associated with the estimator provides a valid support in the analysis of
real data.

7. Proofs

Proof of Lemma 1. It is trivially verified that if F satisfies (7) then λ(p) = 1/α. Suppose now that
λ(p) = k, p ∈ (0, 1), where k is some constant. Then it must hold that 1 − L(p) = (1 − p)k or
equivalently, after some algebraic manipulation,∫ p

0
F−1(u)du = µ[1− (1− p)k] (32)

Taking derivatives on both sides we have that

d
dp

∫ p

0
F−1(u)du =

d
dp

µ[1− (1− p)k], (33)

which gets
F−1(p) = µk(1− p)k−1

from which, setting xp = F−1(p), which implies p = F(xp), it follows that, after some further
elementary manipulations, (

xp

µk

)1/(k−1)
= 1− F(xp).

Setting 1/(k− 1) = −α, properly normalized, the above F follows (7).

Proof of Lemma 2. Let G and g denote respectively the distribution function and the density of
Y = X|X > s and note that G(y) = P(Y ≤ y) = F(y)−F(s)

F(s)
and g(y) = f (y)/F(s). Setting G(y) = p

and inverting we have G−1(p) = F−1(F(s) + pF(s)). Note that

E(Y) = E(X|X > s) =
E(XI(X>s))

F(s)

also, setting s = F−1(p),

E(XI(X>s)) =
∫ ∞

s
x f (x)dx =

∫ 1

p
F−1(u)du

Consider the Lorenz curve for Y, L(p) and L(p) = 1− L(p), let t > 0 and s = G−1(p). Then

L(p) =
E(YI(Y>G−1(p)))

E(Y)
=

E(XI(X>F−1(F(s)+pF(s))))

E(X|X > s)
.
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Consider first the numerator of the above expression

E(YI(Y>G−1(p))) =
∫ 1

p
G−1(u)du

=
∫ 1

p
F−1(F(s) + uF(s))du

=
1

F(s)

∫ 1

F(s)+pF(s)
F−1(t)dt

after setting t = F(s) + uF(s). Next, to link to the function U(w) = F−1(1− 1/w), set t = 1− 1/w;
the above term, as s→ ∞, by Karamata’s theorem (see De Haan and Ferreira [34], p. 363), becomes

1
F(s)

∫ ∞

[(1−p)F(s)]−1
U(w)

1
w2 dw

= (1− γ)−1(1− p)1−γF(s)−γHU([(1− p)F(s)]−1), (34)

since as s→ ∞ , F(s)→ 0. HU is a slowly varying function. Next consider the denominator; similar
computations bring to

E(X|X > s) =
∫ 1

0
G−1(u)du

=
∫ 1

0
F−1(F(s) + uF(s))du

=
1

F(s)

∫ ∞

[F(s)]−1
U(w)

1
w2 dw

(35)

which, as s→ ∞, converges to
(1− γ)−1F(s)−γHU([F(s)]−1).

Finally, putting together the results one has

L(p) = (1− p)1−γ, s→ ∞ (36)

since LU([(1−p)F(s)]−1)

LU([F(s)]−1)
→ 1 as s→ ∞, by the properties of slowly varying functions.

Proof of Lemma 3. Note that limn→∞ supp∈(0,1) |Ln(p)− L(p)| = oP(1) and that p lies in a compact
interval. λn(p) is continuous transformation of Ln(p); it follows that for fixed p ∈ (0, 1),
limn→∞ |λn(p)− λ(p)| = oP(1).

To prove uniform consistency of λn(p) we need to show it is equicontinuous. For this note that
λn(p) depends on p stochastically only through Ln(p), which is uniformly continuous. Hence for any
δ > 0 such that |p1 − p2| < δ, it is possible to find an n0, not depending on p1, p2 such that for n > n0,
ε, η > 0, one has

P(|λn(p1)− λn(p2))| > ε) < η.
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Proof of Lemma 4. We have

lim
n→∞

|γn − γ| = lim
n→∞

∣∣∣∣∣1k k

∑
i=1

λ̂(pi)− γ

∣∣∣∣∣
lim

n→∞
≤
∣∣∣∣∣1k k

∑
i=1

(λn(pi)− λ(pi))

∣∣∣∣∣+
∣∣∣∣∣1k k

∑
i=1

λ(pi)− γ

∣∣∣∣∣
≤ lim

n→∞
sup

p∈(0,1)
|λ̂(p)− λ(p)|+

∣∣∣∣∣1k k

∑
i=1

log
[
LU([(1− p)F(s)]−1)/LU([F(s)]−1)

]
log(1− pi)

∣∣∣∣∣
= oP(1).

by using Lemma 3 and condition (17) with k = nδ, 0 < δ < − ρ
1−ρ .

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7390/8/10/1834/s1.
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