
mathematics

Article

Modeling and Solving a Latin American University
Course Timetabling Problem Instance

Oscar Chávez-Bosquez , José Hernández-Torruco * , Betania Hernández-Ocaña * ,
and Juana Canul-Reich

División Académica de Ciencias y Tecnologías de la Información, Universidad Juárez Autónoma de Tabasco,
Cunduacán, Tabasco 86690, Mexico; oscar.chavez@ujat.mx (O.C.-B.); juana.canul@ujat.mx (J.C.-R.)
* Correspondence: jose.hernandezt@ujat.mx (J.H.-T.); betania.hernandez@ujat.mx (B.H.-O.)

Received: 19 September 2020; Accepted: 13 October 2020; Published: 19 October 2020
����������
�������

Abstract: Timetabling problem is a complex task that is performed by a number of institutions
worldwide, which has been usually addressed as an optimization problem where every approach
considers the particular constraints of each institution under consideration. In this paper, we describe,
model, and propose a solution to the timetabling problem at the División Académica de Ciencias y
Tecnologías de la Información of the Universidad Juárez Autónoma de Tabasco (UJAT), México. We
modeled the specific constraints of this problem instance using the Object Constraint Language (OCL)
of the Unified Modeling Language (UML), and we validated the model while using the state-of-the-art
tool USE: UML-based Specification Environment. The solution strategy tackles the problem in two
stages: (1) ACA: academic assignments, i.e., assign lectures to professors and (2) TTP: the timetabling
process. We developed a Tabu Search customization named Tabu Search with Probabilistic Aspiration
Criterion (TS-PAC) in order to solve the timetabling problem, and we developed a software prototype
to test our proposal. Two feasible timetables for two different semesters were obtained according to
the modeled constraints.

Keywords: metaheuristics; optimization; software development; software modeling

1. Introduction

Resource allocation is a widespread problem that is faced day by day, from organizing cashiers per
shift in a supermarket to the tasking of air assets in an airport. In the academic context, a remarkable
problem is the timetabling process, since it is a procedure that a large number of education institutions
must perform at least once a year.

Timetabling is an NP-Complete problem [1], so there is no deterministic algorithm that finds an
optimal solution in a reasonable time. However, it is possible to use alternative strategies in order to
obtain acceptable solutions in a reasonable time. In general, these problems represent a challenge in
Computer science, so there is a significant interest in finding efficient methods to solve these problems
while using the least amount of resources, i.e., time and computational cost, while providing solutions
that are close to the global optimum.

There are different variants of the timetabling problem in the literature, generally differing on
the type of institution and its related constraints. Specifically, in this paper, we solve a representative
case of the University Course Timetabling problem (UCTP) at the División Académica deCiencias y
Tecnologías de la Información (DACyTI), one of 13 divisions of the Universidad Juárez Autónoma de
Tabasco (UJAT), México. This timetabling problem instance can be seen as a representative of Latin
American universities. However, our institution’s specific problem considers different constraints
than other cases [2–4], so there is no similar solution in the literature when considering the particular
constraints of the timetabling problem at the DACyTI.

Mathematics 2020, 8, 1833; doi:10.3390/math8101833 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-0324-9886
https://orcid.org/0000-0003-3146-9349
https://orcid.org/0000-0001-5700-7615
https://orcid.org/0000-0003-1893-1332
http://dx.doi.org/10.3390/math8101833
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/10/1833?type=check_update&version=3

Mathematics 2020, 8, 1833 2 of 29

2. Preliminaries

2.1. University Course Timetabling Problem

Timetabling is a common and recurring problem that has been extensively analyzed and
represented, from the first models presented [5] to the more recently proposed ones [6].
Solution approaches include a full spectrum of strategies, such as mathematical optimization and
heuristic algorithms. Either way, each strategy of a solution is raised from a different perspective,
particular to the institution at issue, but all agree that the problem modeling is a critical part of creating
any solution.

The general case of the timetabling problem, called school timetabling, can be defined as [7]:

• m classes c1, ..., cm.
• n teachers t1, ..., tn.
• p periods of time 1, ..., p.
• a non-negative integer matrix Rm∗n, called Requirements matrix, where rij is the number of lectures

given by teacher tj to class ci.

The problem consists of assigning lectures to periods of time, such that no teacher or class is
involved in more than one lecture at a time. The mathematical formulation is:

Find xijk(i = 1, ..., m; j = 1, ..., n; k = 1, ..., p) subject to:

p

∑
k=1

xijk = rij (i = 1, ..., m; j = 1, ..., n) (1)

n

∑
j=1

xijk ≤ 1 (i = 1, ..., m; k = 1, ..., p) (2)

m

∑
i=1

xijk ≤ 1 (j = 1, ..., n; k = 1, ..., p) (3)

where xijk = 1 if class ci and techer tj meet at period of time k, and xijk = 0 otherwise.
These constraints compose the basic search problem, and any valid timetable represents the

solution. However, this basic version of the problem does not consider courses sharing students or the
teachers’ course preferences, just to mention some examples of constraints found in most universities.

The university course timetabling problem (UCTP) consists of scheduling a set of lectures for
each course within a given number of classrooms and time periods [8] With the particularity that
courses might have students in common, unlike school timetabling [9]. Finding a manual solution to
the problem typically requires a considerable amount of time, in addition to the validation of an expert,
since there may be specific constraints to be considered. These constraints can be of two types [10]:

1. Hard constraints: mandatory conditions, the violation of any of them implies a non-feasible
timetable.

2. Soft constraints: desirable conditions denoting user preferences; the violation of any of them
affects the quality of a timetable.

The UCTP can be defined as [7]:

• q courses K1, ..., Kq.
• Each K course consists of ki lectures.
• There are r curricula S1, . . . , Sr, wich are groups of courses that have common students. Thus,

courses in Sl must be scheduled all at diferent times.
• A maximum number of lectures lk that can be scheduled at period k (that is, the number of rooms

available at period k).
• A p number of periods of time 1, ..., P.

Mathematics 2020, 8, 1833 3 of 29

In this case, we want to maximize the desirability of having a lecture of course Ki at period of
time k. The formal representation is:

Find yik(i = 1, ..., q; k = 1, ..., p) subject to:

p

∑
k=1

yik = ki (i = 1, ..., q) (4)

q

∑
i=1

yik ≤ lk (k = 1, ..., p) (5)

∑
i∈Si

yik ≤ 1 (l = 1, ..., r; k = 1, ..., p) (6)

yik ∈ {0, 1} (i = 1, ..., q; k = 1, ..., p) (7)

where yik = 1 if a lecture of course Ki is scheduled at period k, and yik = 0 otherwise.
Objective function (8) is included in the problem definition in order to denote dik, which is the

desirability of assign a lecture of course Ki at period k.

Max.
q

∑
i=1

p

∑
k=1

dikyik (8)

This model can be considered to be a general formulation for the university course timetabling
problem. Our institution has many other particular policies that must be considered when generating
the timetable. In the following section, we formulate these specific constraints.

Additionally, the typical approach for UCTP includes two stages: (1) to create a feasible solution
and (2) to minimize the number of soft constraints violations in the feasible solution [11]. In our specific
case, we will extend this approach by using these two stages twice in our proposal.

2.2. Object Constraint Language (OCL)

Modeling is a key part of software development. Models are essentially diagrams that
communicate the desired structure and behavior of a system. Through models, we can understand the
system we are developing, visualizing, and controlling the system’s architecture [12].

Nowadays, the Unified Modeling Language (UML) is the de facto software systems modeling
language. It consists of an integrated set of diagrams for the specifcation, visualization, construction,
and software systems documentation. UML represents a collection of best software engineering
practices that were used in the modeling of large and complex systems. It uses mostly graphical
notations in the form of diagrams to express different views of the system, for example [13]:

• Requirements: use case diagrams.
• System structure: class diagrams, component diagrams.
• System behavior: activity diagrams, sequence diagrams, state diagrams.

However, UML itself does not have ways for specifying detailed constraints for classes nor data
types. To increase the UML expressiveness, the Object Constraint Language (OCL) emerges as a formal
notation allowing for the description of additional restrictions on the elements in UML models and,
thus, expressing all of the relevant aspects of a specification [14].

OCL is a language with no collateral effects that do not alter the model objects, but completes
the different artifacts of the UML notation with formally expressed requirements. There are other
languages that increase the expressivity of the UML, but OCL is the only one that is standardized [15].

OCL has been used to model problems in different fields. For example, to validate the safety
properties of the San Francisco Metro system [16], to specify the smart card API Java Card [17],
to state financial messaging business rules [18], or even to model guidelines for correct nutrition
through healthy menus [19]. There are several tools for the validation and verification of OCL models,

Mathematics 2020, 8, 1833 4 of 29

highlighting USE: UML-based Specification Environment [20], used for systems specification using
UML models along with integrity constraints in OCL. It is one of the more robust free software tools to
support OCL.

2.3. Tabu Search with Probabilistic Aspiration Criterion (TS-PAC)

Tabu Search is a versatile and efficient metaheuristic that can operate both deterministically and
stochastically, which has been successfully used to solve different optimization problems [21]. It is
conceptually more straightforward than other metaheuristics, and it can reach better results in less
time than other algorithms [22]. Its versatility makes it a widely used technique to solve a wide variety
of different types of problems, such as the transfer of patients between care units [23], the planning
of electricity distribution systems [24], or even in the creation of fingerings for polyphonic piano
music [25].

The main characteristic of Tabu Search is a short-term memory, called tabu list, which contains
the list of moves recently applied. With this list, the algorithm disallows moves that can reverse the
effect of recent moves, marking them with a forbidden status for a period of time. However, from time
to time, a tabu move may reach a better solution. Thus, aspiration criteria are implemented in order to
revoke the tabu status of a particular move [26]. Many approaches have been proposed, but the most
widely used aspiration criterion consists in allowing a tabu move if it leads to a solution with a better
objective value than the current best-known solution.

Tabu search moves across the search space using the concept of neighborhood, formally defined
as [27]:

N(S) = {solutions obtained by applying a single local transformation to S}
where S denotes the current solution. In general, for any specific solution, there are many more
possible neighborhood structures than search space definitions. There may be simple neighborhood
structures, such as add or drop elements of the solution, to more complex features, such as swapping
two elements of the solution based on a guided criterion that allows for the algorithm to explore
different search space regions. Therefore, it is an essential component of the Tabu Search.

It has been demonstrated in the literature and real-life projects that Tabu Search finds good
approximations to the optimal solution for significant combinatorial problems [28]. Specifically for the
timetabling problem, Tabu Search has been used in order to generate timetables in several real-world
scenarios [29–33].

In this work, we employed the Tabu Search with Probabilistic Aspiration Criterion (TS-PAC) [34],
used to solve the problem that is described in the First International Timetabling Competition [35].
When solving the 20 instances of this problem, the obtained results showed that the TS-PAC yields
better solutions than the Tabu search with a common aspiration criterion.

The aspiration criterion, conveniently called "strategic oblivion", defines the way in which the tabu
status of a particular movement is replaced or eliminated. The assumption is that if all the movements
of the tabu list are forbidden, then cyclic solutions are avoided, but we can lose movements that may
reach better solutions. Therefore, in some situations, it is useful to use a movement that is classified as
tabu [21].

It is possible to design different aspiration criteria. Our proposal, The Probabilistic Aspiration
Criterion, allows for applying a tabu movement if it improves the current solution considering the
probability according to Equation (9).

p =

GOAL− f (si)

GOAL if GOAL > 0

f (si)

INIT when GOAL = 0 and INIT > 0

(9)

Mathematics 2020, 8, 1833 5 of 29

where:
GOAL is the best-expected value in the objective function.
f (si) equals the value of the objective function in the i-th iteration.
INIT is the initial value of the objective function, i.e., the value that the algorithm starts with.
Two probability criteria are used, because the problem can be modeled as maximization or

minimization. In the first case, when modeling a problem as a maximization function, it is expected to
reach in the objective function a value greater than 0. On the other hand, when it comes to minimizing,
the expected value to be obtained in the objective function is 0 (that is, all of the constraints satisfied)
and, therefore, the initial value of the objective function must be checked that is greater than 0
(otherwise we would already have the best solution).

The motivation of the TS-PAC arises from the concepts of diversification and intensification in the
search process. We aim at choosing a tabu move with a higher probability when the algorithm is far
from the feasible region, diversifying the search. This probability decreases when approaching the
expected solution, intensifying the search near the optimal solution. Algorithm 1 describes the general
process of the TS-PAC.

Algorithm 1: Tabu Search with Probabilistic Aspiration Criterion.

1 if maximization then
2 GOAL ← expected value in the objective function
3 else
4 GOAL ← 0
5 end
6 s0 ← initial solution
7 s∗ ← s0
8 INIT ← best value of the objective function f (s0)
9 if GOAL = 0 y INIT = 0 then

10 Go to (30);
11 end
12 while the stop criterion is not met do
13 N(si)← Neighborhood
14 T(si)← Tabu list
15 INIT ← best value in f (si)
16 m←movement in N(si) generating INIT
17 if m ∈ T(s) then
18 if maximization then

19 p← GOAL− f (si)

GOAL
20 else

21 p← f (si)

INIT
22 end
23 if probability p then
24 s∗ ← s
25 end
26 else
27 s∗ ← s
28 end
29 end
30 return s∗;

For example, the aspiration criterion in a maximization problem is with the probability p =
GOAL− f (si)
GOAL . In this case, the user must define, a priori, the best possible value to reach by the algorithm.

This value represents the best acceptable solution, denoted by GOAL. We need to check whether
GOAL > 0, otherwise it would be a minimization problem. When the search process is in its early
stages, the probability of using a tabu move is higher, as there will be a significant difference in

Mathematics 2020, 8, 1833 6 of 29

GOAL− f (si). Eventually, f (si) will get close to GOAL and the probability of using a tabu move, in
this case, will get lower.

The other case consists of a minimization problem, where the probability for the aspiration
criterion is p = f (si)

INIT as long as INIT > 0, otherwise we would have reached the optimal solution
(INIT = GOAL = 0). When INIT > 0 the search starts and at each iteration i the probability
to use a tabu move is high. However, as f (si) gets near to 0, the probability of using a tabu move
gets reduced.

We selected the Tabu Search algorithm, because it features characteristics that we consider
advantages over other metaheuristics. Fist, it has fewer parameters than most metaheuristics.
Additionally, it is among the fastest optimization algorithms. There are many open-source
implementations in frameworks providing a robust generic functionality of the base algorithm. Finally,
what we value the most is the possibility to program our own method of exploring the solution space
via custom neighborhoods, allowing for more control of the search process.

3. Modeling the Timetabling Problem

Each semester, the administrative staff at the UJAT-DACyTI builds a timetable that satisfies as
many constraints as possible. The timetabling process is currently done manually during a period
in the range of weeks with a considerable working hours cost. Specifically at our institution, the
timetabling process is carried out in four stages:

1. The number of students who potentially want to take any course is determined through an online
survey. This is known as the potential demand for each course.

2. Subsequently, the required courses are offered.
3. Next, each professor is asked for the list of courses they choose to teach in the following semester.
4. Using these data, the ACademic Assignments [ACA] (allocation of professors to courses) are

made considering each professor’s particular constraints, such as research projects, popularization
of science, and extension activities.

5. Finally, the TimeTabling Process [TTP] is performed.

Each stage involves a different amount of time and resources. In this research, we have modeled
the last two stages of the process, that is, the constraints that are related to the timetabling problem.
To describe these constraints, we designed OCL invariants from the domain model shown in Figure 1.
The domain model includes the most representative elements of the timetabling problem, as well as
specific attributes of the problem at UJAT:

• Professor: gives courses to groups of students. This entity has a predefined minimum and a
maximum number of hours to teach during the semester, depending on her/his classification
(visitor, emeritus, eventual, half-time, or full-time) and category (associate or titular).

• Course: includes a number of hours in a week and a level (Undergraduate or Postgraduate).
• Lecture: class given in a specific classroom during a certain period of time.
• Group: number of students who receive classes in common.
• Classroom: physical space with a specific capacity.

Mathematics 2020, 8, 1833 7 of 29

 Timetable

Professor

+category

+classification

+maxHours

+minHours

+numHours

+preferredHours[*]

+setMinHours(hours)

Course

+level

+numHours

likes*

*

Lecture

+start

+end Group

+numStudents

Classroom

+capacity

teaches1 1..*

favorites

1..*

1

*

1

Academic load

is taught in

is taught to

Figure 1. Unified Modeling Language (UML) domain model.

The Domain model of Figure 1 defines the following hard constraints that any valid timetable
must satisfy:

• A single teacher teaches a specific course.
• A teacher must only teach one lecture at a time.
• A lecture belongs to a particular course.
• Lectures are taught in only one classroom at a time.
• A lecture is given to a particular group.

These constraints are the typical hard constraints that are considered in the literature. However,
our institution has more constraints and those cannot be represented in this type of model. Accordingly,
the specific constraints of the timetabling problem at the DACyTI are detailed in the form of OCL
invariants in the next section.

3.1. ACA Model

It is common to found detailed examples on how to create timetables [36–40]. However, at our
institution there is a stage, called Academic assignments (ACA), which is usually not considered in the
literature. This stage is a particularity of some educational institutions, in which the availability of
teachers generally varies each semester, and there is no concept of professorship as in other institutions.

In this particular case, the Staff Regulation of the UJAT [41] establishes the relations between the
university and academic personnel (categories, classifications, functions, income, and promotions),
based on the terms that were established by Section VIII of Article 3 of the Mexican Constitution [42]
and by the Organic Law of the UJAT [43].

The Staff Regulation establishes the labor restrictions that are formally described below. A valid
ACA must meet the following hard constraints, subject to the model that is shown in Figure 1:

ACA-HC1. The courses taught at the DACyTI can be at the undergraduate or postgraduate level.

context Course
inv: level='Undergraduate' or level='Postgraduate'

Mathematics 2020, 8, 1833 8 of 29

ACA-HC2. Professors may have one of the following classifications: eventual, half-time, and full time,
and, in an extraordinary situation, visitor and emeritus.

context Professor
inv: classification='Eventual' or

classification='Half-Time' or
classification='Full-Time' or
classification='Visitor' or
classification ='Emeritus'

ACA-HC3. Professors may have one associate or titular category, each with levels A, B, or C.

context Professor
inv: category='Associate' or category='Titular'
inv: level='A' or level='B' or level='C'

ACA-HC4. The following attribute is defined for the correct validation of the total hours taught by a
professor:

context Professor
def: numHours:Integer = academicLoad.numHours->sum()

ACA-HC5. Constraints that are presented in the Staff Regulation regarding the minimum number of
class hours for each professor are not absolute, so a convenient method to assign this value is:

context Professor::setMinHours(hours:Integer)
inv: hours>0 and minHours<=maxHours
body: minHours=hours

ACA-HC6. Eventual professors can teach at most 19 hours of class.

context Professor
inv: classification='Eventual' implies maxHours=19

ACA-HC7. Associate Full-time professors who teach undergrad courses exclusively can teach no more
than 25 hours of class.

context Professor
inv: classification='Full-time' and category='Associate'

and academicLoad->forAll(c:Course | c.level='Undergraduate')
implies maxHours=25

ACA-HC8. Associate full-time professors who teach at least one postgraduate course can teach no
more than 20 hours of class.

context Professor
inv: classification='Full-time' and category='Associate'

and academicLoad->exists(c:Course | c.level='Postgraduate')
implies maxHours=20

ACA-HC9. Titular full-time professors who teach undergrad courses exclusively can teach no more
than 20 hours of class.

context Professor
inv: classification='Full-time' and category='Titular'

and academicLoad->forAll(c:Course | c.level='Undergraduate')
implies maxHours=20

Mathematics 2020, 8, 1833 9 of 29

ACA-HC10. Titular full-time professors who teach at least one postgraduate course can teach no more
than 10 hours of class.

context Professor
inv: classification='Full-time' and category='Titular'

and academicLoad->exists(c:Course | c.level='Postgraduate')
implies maxHours=10

ACA-HC11. Associate half-time professors teaching exclusively undergrad courses can teach no more
than 15 hours of class.

context Professor
inv: classification='Half-time' and category='Associate'

and academicLoad->forAll(c:Course | c.level='Undergraduate')
implies maxHours=15

ACA-HC12. Associate half-time professors who teach at least one postgraduate course can teach no
more than 10 h of class.

context Professor
inv: classification='Half-time' and category='Associate'

and academicLoad->exists(c:Course | c.level='Postgraduate')
implies maxHours=10

ACA-HC13. Titular half-time professors who teach undergrad courses exclusively can teach no more
than 10 h of class.

context Professor
inv: classification='Half-time' and category='Titular'

and academicLoad->forAll(c:Course | c.level='Undergraduate')
implies maxHours=10

ACA-HC14. Titular half-time professors who teach at least one postgraduate course can teach no more
than five hours of class.

context Professor
inv: classification='Half-time' and category='Titular'

and academicLoad->exists(c:Course | c.level='Postgraduate')
implies maxHours=5

ACA-HC15. The number of lecture hours by each professor must not exceed the maximum hours
established.

context Professor
inv: numHours<=maxHours

ACA-HC16. The number of lecture hours by each professor must be greater than or equal to the
minimum hours assigned.

context Professor
inv: numHours>=minHours

Regarding the desirable conditions (soft constraints) for a valid ACA, we have:

ACA-SC1. Professors choose the courses that they would like to teach in the next semester. It would
be desirable to satisfy the course preferences of each professor.

context Professor
inv: academicLoad->intersection(favorites)->notEmpty()

Mathematics 2020, 8, 1833 10 of 29

3.2. TTP Model

Once the ACA is defined, the timetable is created. We divide each course into one-hour length
lectures and then assign each lecture to a classroom during a period of time, satisfying the following
hard constraints:

TTP-HC1. The time period for a lecture corresponds to 1 hour. The number of hours of each course
must be assigned to the same number of time periods.

context Course
inv: numHours=lecture->size()

TTP-HC2. The period of time labeled as 0 corresponds to the start period of classes on Monday, and
the period labeled as TOTAL_PERIODS represents the final time of the last session on Friday. Both the
first and last hours are known as overflow areas, and this type of allocation is called a compact
schedule [44].

context Lecture
inv: start>=0 and start<TOTAL_PERIODS

TTP-HC3. When considering blocks of time of 1 hour, the initial time of a lecture must be less than the
final time by one hour.

context Lecture
inv: end=start+1

TTP-HC4. The capacity of the classroom must fit the number of students in the group that takes
a lecture.

context Lecture
inv: classroom.capacity >= academicLoad.group.numStudents

TTP-HC5. A group must not take more than one lecture at a time (for ease of definition, the invariant
is associated with courses, as each course is tied to one and only one group).

context Course
inv: lecture->forAll(

l1:Lecture,l2:Lecture | l1<>l2 implies l1.start<>l2.start)

TTP-HC6. A professor must not teach more than one lecture at a time.

context Professor
inv: lecture->forAll(

l1:Lecture,l2:Lecture | l1<>l2 implies l1.start<>l2.start)

Regarding the soft constraints for this stage, we have considered:

TTP-SC1. In the DACyTI, the concept of morning or evening shift does not properly exist due to the
flexible educational model [45]. In that sense, the professor’ shifts were modeled as preferences about
the period of time they wished to teach their courses.

context Professor
inv: preferredHours->includesAll(Lecture.start->asSet())

TTP-SC2. In our model, time periods are considered to be blocks of one-hour length, so lectures
of the same course scheduled during the same day must be in contiguous hours. The constant
PERIODS_A_DAY, equivalent to TOTAL_PERIODS/five days a week, is used in this invariant.

Mathematics 2020, 8, 1833 11 of 29

context Lecture
inv: let day= start div PERIODS_A_DAY in

let lecturesPerDay= Lecture.allInstances()->
select(academicLoad=self.academicLoad and

(start div PERIODS_A_DAY) = day)->
asSet()->sortedBy(start) in

lecturesPerDay->size() > 1 implies
lecturesPerDay->iterate(s; i:Integer=0 |

if i<lecturesPerDay->size()-1 and s.end=
lecturesPerDay->at(i+1).start

then i+1
else i
endif) = lecturesPerDay->size()

The complete specification along the model validation in the USE environment are publicly
available at the Open Science Framework: https://osf.io/zuh3s/.

4. Solution Proposal

According to the previous section’s constraints, the solution to the timetabling problem at the
DACyTI was divided into the ACA phase and the TTP phase. For both stages, the Tabu Search with
Probabilistic Aspiration Criterion (TS-PAC) algorithm was implemented in order to find a feasible
solution, i.e., feasible academic assignments and a feasible timetable, respectively.

4.1. ACA Solution

The Academic assignments (ACA) are generated in three stages: (1) the creation of an initial
solution, (2) satisfaction of the hard constraints, and (3) maximizing the course preferences for
each professor.

Before starting the optimization process, data preprocessing is performed in order to obtain useful
information to improve the performance of the Tabu Search algorithm, and the data structures to
facilitate satisfying the hard constraints are created:

• np = number of professors.
• nc = number of courses.
• C = {c1, . . . , cnc} corresponds to the set of instances of entity Course.
• P = {p1, . . . , pnp} corresponds to the set of instances of entity Professor.
• Fnp×nc is the preference matrix where true represents professor p wants to teach the course c and

false otherwise (Figure 2).
• ACAnc is a vector that corresponds to the solution (the academic assignments) where each cell c

contains the assigned professor (Figure 3).

https://osf.io/zuh3s/

Mathematics 2020, 8, 1833 12 of 29

p1

p2

p3

pn

c1 c1 cn

...

... c

p

true false ... true

false false ... true

true true ... false

...

false true ... false

Figure 2. Professors’ preferences matrix.

p3 pn p1

c1 c2 cn... c

p

Figure 3. The vector representing the Academic assignments.

4.1.1. Creating an Initial Solution

A greedy algorithm makes a fair distribution of all the courses among the available professors,
assigning to each of them at least one course within their preferences. In this way, the ACA starts
balanced and attempts to satisfy at least one course for each professor.

In this stage, the maximum and the minimum number of hours per teacher is not validated; we
only get ensured that each course has an assigned professor.

4.1.2. Satisfying Hard Constraints

This stage consists of satisfying the hard constraints that may exist in the solution generated in
the previous stage. The objective function to optimize during this stage is:

Min. z = acahc1 + acahc2 (10)

where:
acahc1 is the sum of unsatisfied constraints ACA-HC15.
acahc2 is the sum of unsatisfied constraints ACA-HC16.
In order to satisfy the hard constraints, the TS-PAC algorithm uses a neighborhood that consists

of random swaps between two professors; those with a higher academic load than the allowed against
those with a less academic load than the corresponding one:

ACA-Neighborhoodhc1
= 〈p, p′〉

p, p′ ∈ P
∣∣ p.numHours > p.maxHours, p′.numHours < p′.minHours, p 6= p′

An additional neighborhood ACA-Neighborhoodhc2
= 〈px, p†〉, helps the TS-PAC to escape from

local optimum, adding some perturbation to the current solution. It consists of random swaps of
courses between a professor causing constraint (px) and a professor with a valid academic load (p†).

Mathematics 2020, 8, 1833 13 of 29

The TS-PAC selects as the best element of neighborhood ACA-Neighborhoodhc1
the tuple that

minimizes the highest number of hard constraints, when considering tabu elements and the aspiration
criteria defined in Equation (9). The objective function of Equation (10) is minimization, so GOAL = 0.
If the search gets stuck in a local minimum, then an element from ACA-Neighborhoodhc2

is randomly
selected to add perturbation to the current solution.

This stage ends when all hard constraints are satisfied, although this may not always be possible,
as we will show in Section 5.

4.1.3. Soft Constraints: Maximizing Professors’ Course Preferences

The objective function of this stage is to maximize the preferences in the courses that are assigned
to professors, without violating any of the hard constraints satisfied in the previous stage:

Max. z = acasc (11)

subject to:

acahc1 = 0

acahc2 = 0

where:
acasc is the sum of the professors’ preferences, as defined in ACA-SC1.
acahc1 and acahc2 correspond to the hard constraints described in the objective function of

Equation (10).
The neighborhood designed for this stage consists of swaps of professors between a couple of

courses, selecting teachers who do not have any preferred course in their academic load, but do have
some favorite course:

ACA-Neighborhoodsc1
= 〈c, c′〉

c, c′ ∈ C
∣∣ |c.professor.favorites| > 0,

c.professor.favorites∩ c.professor.academicLoad = φ,
|c′.professor.favorites| > 0,
c′.professor.favorites∩ c′.professor.academicLoad = φ,
c.professor 6= c′.professor

An additional neighborhood ACA-Neighborhoodsc2
= 〈px, p†〉 adds some perturbation to the

current solution, randomly swapping courses between two professors (px and p†).
The TS-PAC selects as the best element of the neighborhoods the tuple that maximizes the

professor’s preferences, when considering tabu elements and the aspiration criterion defined in
Equation (9). The objective function of Equation (11) is maximization: all of the professors with a
favorite course in his/her Academic load, so we set GOAL to np.

4.2. TTP Solution

During this phase, the same three-stage strategy is used: (1) the creation of an initial solution, (2)
satisfaction of the hard constraints, and (3) maximizing professors’ shift preferences along with the
number of lectures taught on the same day in contiguous hours.

First, data preprocessing is performed in order to create the necessary data structures used during
the search process:

• nr = number of classrooms.
• ng = number of groups.
• nl = number of lectures.

Mathematics 2020, 8, 1833 14 of 29

• R = {r1, . . . , rnr} corresponds to the set of instances of entity Classroom.
• G = {g1, . . . , gng} corresponds to the set of instances of entity Group.
• L = {l1, . . . , lnl} corresponds to the set of instances of entity Lecture.
• Hnp×TOTAL_PERIODS is a matrix where true represents that professor p desires to teach during that

period of time, and false otherwise (Figure 4).
• TTPnr×TOTAL_PERIODS is a matrix corresponding to the solution (the timetable), where each cell

corresponds to a lecture or null otherwise. This data structure has the advantage of automatically
satisfying constraints of type TTP-HC2 and TTP-HC3, while facilitating the evaluation of the
remaining constraints (Figure 5).

4.2.1. Creating an Initial Solution

A greedy algorithm generates the initial solution, fully solving constraints of type TTP-HC1
assigning the most professors in their shift of preference (constraint TTP-SC1) and avoiding lectures
in non-contiguous time periods as much as possible during the same day (constraint TTP-SC2).

4.2.2. Satisfying Hard Constraints

During this stage, the remaining hard constraints in the initial solution are satisfied without
considering the soft constraints. The objective function to optimize is:

Min. z = ttphc4 + w · (ttphc5 + ttphc6) (12)

where:
ttphc4 is the sum of unsatisfied constraints TTP-HC4.
ttphc5 is the sum of unsatisfied constraints TTP-HC5.
ttphc6 is the sum of unsatisfied constraints TTP-HC6.
w is a positive constant that is sufficiently large to give more weight to constraints of type

TTP-HC5 and TTP-HC6.

p1

p2

p3

pn

0 1 TOTAL_PERIODS

...

...

p

true true ... true

true true ... false

true true ... true

...

false false ... true

Figure 4. Professors’ shift preferences matrix.

Mathematics 2020, 8, 1833 15 of 29

r1

r2

r3

rn

0 1 TOTAL_PERIODS

...

...

r

l256 l41 ... l45

l82 l78 ... null

l47 l732 ... l53

...

l102 l837 ... l635

Figure 5. The matrix representing the timetable.

In Equation (12) we want to minimize the total number of hard constraints; however, priority
is given to constraints of type TTP-HC5 and TTP-HC6 (a group and a professor must not take more
than one lecture at a time), since most of the classrooms are big enough to fit groups (TTP-HC4).

Three neighborhoods are used at this stage, corresponding to random swaps of lectures.
The following neighborhood scheme aims to minimize constraints of type TTP-HC4 (classroom
capacity fits the number of students of a group):

TTP-Neighborhoodhc1
= 〈l, l′〉

l, l′ ∈ L
∣∣ l.classroom.capacity < l.course.group.numStudents,

l′.classroom.capacity > l′.course.group.numStudents

Another neighborhood scheme that aims to minimize the constraints of type TTP-HC5 is (a group
must not take more than one lecture at a time):

TTP-Neighborhoodhc2
= 〈l, l′〉

l, l′ ∈ L
∣∣ l.course = l′.course, l.start = l′.start, l 6= l′

The last neighborhood scheme helps to minimize constraints of type TTP-HC6 (a professor must
not teach more than one lecture at a time):

TTP-Neighborhoodhc3
= 〈l, lr〉

l, l′ ∈ L
∣∣ l.professor = l′.professor, l.start = l′.start, l 6= l′

An additional neighborhood TTP-Neighborhoodhc4
= 〈lx, l†〉, helps the TS-PAC to escape from

local optimum adding some perturbation to the current solution. It consists of random swaps of time
periods between a lecture causing constraint (lx) and a lecture correctly scheduled (l†).

The algorithm selects the best element among the four neighborhoods that minimize the highest
number of hard constraints, when considering tabu elements and the aspiration criterion. The objective
function of Equation (12) for this stage is minimization (GOAL = 0), so the probability p of selecting a
tabu movement depends on the value of INIT and f (si) according to Equation (9).

For example, consider the following scenario where four lectures are scheduled:

Mathematics 2020, 8, 1833 16 of 29

Lecture A: Lecture B: Lecture C: Lecture D:
professor⇒ p1 professor⇒ p1 professor⇒ p27 professor⇒ p54
course⇒ c35 course⇒ c87 course⇒ c1 course⇒ c1
start⇒ 1 start⇒ 1 start⇒ 19 start⇒ 19
end⇒ 2 end⇒ 2 end⇒ 20 end⇒ 20

In Figure 6, we can notice how Lecture A and Lecture B violate constraint TTP-HC6, since both
lectures have Professor p1 in common. Similarly, Lectures C and D violate constraint TTP-HC5, since
both lectures belong to the same Course c1 and, hence, belong to the same Group.

r1

r2

r3

rn

0 1 TOTAL_PERIODS

...

...

r

TTP-HC6 violation TTP-HC5 violation

19 ...

l256 A ... l45 ... l45

l82 l78 ... null ... null

l47 l732 ... C ... l53

...

l102 B ... D ... l635

Figure 6. Example of hard constraints in a timetable.

4.2.3. Soft Constraints: Maximizing Professors’ Shift Preferences and Contiguous Lectures

During this stage, we seek to maximize the shift preferences for each professor and, at the same
time, maximize the number of lectures that are taught on the same day to be scheduled in contiguous
hours. The objective function is:

Max. z = ttpsc1 + (w · ttpsc2) (13)

subject to:

ttphc4 = 0

ttphc5 = 0

ttphc6 = 0

where:
ttpsc1 is the sum of professors preferences, as defined in TTP-SC1.
ttpsc2 is the sum of courses with contiguous sessions in a day defined in TTP-SC2.
w is a positive constant that is sufficiently large to give more weight to constraints of type

TTP-SC2.
ttphc4 , ttphc5 and ttphc6 correspond to the hard constraints described in the objective function of

Equation (12).
In Equation (13), the goal is to maximize the professors’ shift preferences (constraint TTP-SC1)

while reducing the number of lectures that are scheduled in non-contiguous hours of the same day
(constraint TTP-SC2). It is desired to satisfy this last constraint to a larger extend; for this reason, we
assigned a higher priority while using a weight constant.

For this stage, a couple of neighborhoods were designed to reduce the number of soft constraints.
The first neighborhood consists of swaps of lectures, where the assigned professor has no hour
preference satisfied (TTP-SC1):

Mathematics 2020, 8, 1833 17 of 29

TTP-Neighborhoodsc1
= 〈l, l′〉

l, l′ ∈ L
∣∣ l.start /∈ l.professor.preferredHours,

l′.start /∈ l′.profesor.preferredHours,
l 6= l′

The second neighborhood consists of swaps of lectures that are scheduled on the same day, but in
non-contiguous hours (TTP-SC2):

TTP-Neighborhoodsc2
= 〈l, l′〉

l, l′ ∈ L
∣∣ l.course = l′.course,

l.start÷ PERIODS_A_DAY = l′.start÷ PERIODS_A_DAY,
|l.start− l′.end| > 0

An additional neighborhood TTP-Neighborhoodsc3
= 〈lx, l†〉 adds some perturbation to the current

solution, randomly swapping periods between two lectures (px and p†).
The TS-PAC selects the best element among the three neighborhoods that maximizes the

professor’s preferences and contiguous lectures of the same course, when considering the tabu elements
and the aspiration criterion. The objective function of Equation (13) for this stage is maximization, so
the probability p of selecting a tabu movement depends on the value of GOAL and f (si) according to
Equation (9). In most of the experiments, we set GOAL = nl + nc.

For example, consider the following scenario where three lectures are scheduled:

Lecture X: Lecture Y: Lecture Z: Professor 77:
professor⇒ p51 professor⇒ p51 professor⇒ p77 category⇒ Associate
course⇒ c23 course⇒ c23 course⇒ c96 classification⇒ Full-Time
start⇒ 0 start⇒ 2 start⇒ TOTAL_PERIODS-1 preferredHours⇒
end⇒ 1 end⇒ 3 end⇒ TOTAL_PERIODS {0, 1, 2, 3, 4, . . . , 33}

In Figure 7, we can notice how Lecture X and Lecture Y violate constraint TTP-SC2, since the two
lectures are scheduled in non-contiguous hours on the same day. Alongside, Lecture Z is violating
constraint TTP-SC1, because it has been scheduled in a period of time not desired by the professor.

TTP-SC2 violation TTP-SC1 violation

r1

r2

r3

rn

0 1 TOTAL_PERIODS

...

2

r

l256 l41 l37 ... l45

X l78 Y ... null

l47 l732 l9 ... l53

...

l102 l837 l16 ... Z

...

Figure 7. Example of soft constraints in a timetable.

Mathematics 2020, 8, 1833 18 of 29

5. Tests and Results

We developed a software prototype to generate the timetable for the DACyTI, with one module
for each of the two phases. We use the Open Java Development Kit, OpenJDK 8 [46] as a development
platform, MariaDB [47] as the database management system, and our Tabu Search with Probabilistic
Aspiration Criterion algorithm implementation over the OpenTS framework [48]. We made extensive
use of the object-oriented programming (OOP) paradigm, organizing the prototype around objects,
benefiting code reusability, scalability, and efficiency.

5.1. Software Prototype

Figure 8 shows the high-level design of our proposal, corresponding to the component diagram.
It shows the static view of our prototype. The typical software layers (data, business, and presentation)
are naturally separated into components with independent functionality.

<<component>>
Business Logic

<<component>>

Persistence module

<<component>>

TTP module

<<component>>

ACA module

<<component>>

User interface

Prototype

User

Database

<<component>>
Hard

constraints

<<component>>
Soft

constraints

<<component>>
Hard

constraints

<<component>>
Soft

constraints

Figure 8. High-level diagram.

Figure 9 shows the process diagram, where the components of the Bussiness logic are the central
elements. This diagram shows the dynamic view of the prototype. The overall process starts when
the event Request Timetable is fired. The ACA module inputs are the list of available professors and
the list of courses. First, it minimizes the hard constraints and then maximizes the soft constraints.
The resulting Academic assignments (ACA) are the inputs for the TTP module, along with the list of
classrooms and periods of time. This module starts minimizing the hard constraints to continue with
maximizing the soft constraints. The final output is the desired timetable.

Mathematics 2020, 8, 1833 19 of 29

User

Professors Courses

<<input>><<input>>

Academic assignments
<<output>>

<<input>>

Timetable
<<output>>

Classrooms

<<input>>

<<goal>>

<<goal>>

ACA module

TTP module

Request
Timetable

Periods of time

<<input>>

Minimized hard constraints
Maximized soft constraints

<<goal>>

Minimized hard constraints
Maximized soft constraints

<<goal>>

Figure 9. Process diagram.

Figures 10 and 11 show the start window, used to configure the parameters of the algorithm:
random seed, stop criterion (number of iterations, expected value in the objective function [GOAL],
total seconds, or number of iterations with no improvement), and maximization or minimization
option. Both of the figures show a sample parameter setting used in the soft and hard constraints for
the ACA phase, respectively.

Figure 10. A configuration of the Tabu Search with Probabilistic Aspiration Criterion (TS-PAC)
parameters for the Academic assignments (ACA) phase (hard constraints).

Figure 11. A configuration of the TS-PAC parameters for the ACA phase (soft constraints).

Mathematics 2020, 8, 1833 20 of 29

Figure 12 shows the search process for the ACA phase. It displays the academic assignments at
each iteration, showing the courses for each professor and the information relative to each teacher’s
lecture hours. Additionally, it shows the current value of the objective function. When the algorithm
ends, the hard constraints stage, it displays a dialogue box with the resulting ACA, which can be a
feasible solution or a solution with a set of assignments that violate some hard constraints. The user
must manually select to continue with the soft constraints stage or return to the configuration window
to start the search again. At any time, it is possible to pause the search process and save the obtained
ACA so far. At the end of the soft constraints stage, the resulting ACA is displayed.

Figure 12. Academic assignments: list of professors with assigned courses.

Once the Academic assignments (ACA) are generated, the timetable phase starts. Figures 13
and 14 serve to configure the algorithm’s parameters in the TTP phase (same parameters as in the ACA
phase). Both figures show a sample configuration used in the soft and hard constraints for the TTP
phase, respectively.

Figure 15 shows the search process for the TTP phase. It displays the timetable details: course,
professor, classroom, day, and time, as well as the current value of the objective function. The user
can pause the search process and see the number of constraints left and the elapsed time. Once the
hard constraints stage has been completed, the resulting timetable is displayed, which can be a feasible
solution or a timetable that violates some hard constraints. As in the ACA phase, the user must decide
to continue to the soft constraints stage or return to the configuration window in order to start the
search again. At any time, it is possible to pause the process and save the obtained timetable so far.
At the end of the soft constraints stage, the resulting timetable is displayed.

Mathematics 2020, 8, 1833 21 of 29

Figure 13. Sample configuration of the TS-PAC parameters for the timetable process (TTP) phase
(hard constraints).

Figure 14. Sample configuration of the TS-PAC parameters for the TTP phase (soft constraints).

Figure 15. Timetable process.

Mathematics 2020, 8, 1833 22 of 29

5.2. Experiments

The tests include two real semesters at the DACyTI with different characteristics. We conducted
the experiments on an Alienware M17x laptop with Intel Core i7@2GHz processor, 16GB in RAM,
and Ubuntu 18.04 64-bit operating system. The Tabu Search with Probabilistic Aspiration Criterion
(TS-PAC) parameter configuration for both school periods is:

• Start solution: through of a greedy algorithm. Different approaches to build an initial solution
were used for the ACA phase hard constraints, ACA phase soft constraints, TTP hard constraints,
and TTP soft constraints.

• Random seed: a set of random numbers were generated using the random.org platform. The best
seed value was 10,769,230.

• Tabu list size: t =
√

number of courses .
• Neighborhood: different neighborhood structures were designed for each phase.
• Aspiration criterion: the probabilistic aspiration criterion described in Section 2.3.
• Stop criterion: variable, since different objective functions were defined for each phase.

Additionally, we had to relax hard constraints in order to obtain a feasible solution.

5.3. Results for the ACA Phase

Table 1 shows the data related to the ACA for the two test semesters. Creating the Academic
assignments (ACA) requires the number of available professors, the number of courses to be offered,
and the list of courses that each professor would like to teach. Satisfying the hard constraints involves
the correct assignment of courses within the limits of each professor’s number of hours. The soft
constraint stage seeks to maximize the professors’s course preferences as a whole, i.e., assign each
professor at least one course in his preferences.

Table 1. Data of the two test semesters for the ACA stage.

Data Semester 1 Semester 2

Teaching staff (np) 107 106
Number of courses (nc) 369 362
Number of professors with course preferences 107 91
Average of selected courses per professor 5 5

It is important to mention that each semester may vary the number of professors (some might
temporarily leave pursuing postgraduate studies, or ask for a temporary unpaid leave holding
government positions). Similarly, the number of courses is the most variable data, because each
semester may vary the number of students who graduated and admitted to the university.

The associated constraints to this phase are distributed among entities as follows. We can notice
that most of the restrictions in this phase are related to professors:

Course: hard constraint ACA-HC1.
Professor: hard constraints ACA-HC2 to ACA-HC16 and soft constraint ACA-SC1.

The results detailed in Table 2 show the violated constraints by the best solution found by the
TS-PAC. In both semesters, most of the hard constraints were satisfied, but we could not reach a solution
with zero hard constraints violation. Constraint ACA-HC16 was, in all tests, violated, meaning that
some professors had fewer hours assignment than the permissible minimum. Thus, we needed to
relax this hard constraint in order to continue to the soft constraint stage.

https://www.random.org

Mathematics 2020, 8, 1833 23 of 29

Table 2. Results obtained in the ACA stage for both semesters.

Result Semester 1 Semester 2

Unassigned courses 0 0
Professors with more hours than allowed 0 0
Professors with less hours than allowed 2 * 31
Professors with no satisfied preferences 2 * 9
Percentage of course preferences satisfied 98.13% 91.50%

* Professors with no academic load assigned.

There are two professors with no academic load for the first test semester, i.e., no assigned
coursesm, since the ACA was completed without requiring the total number of available professors.
This may give a hint that there may be more professors than the required in the Faculty. All of the
professors had a favorite course assigned (except for the two professors with no academic load),
meaning that all of the soft constraints (constraint ACA-SC1) were satisfied.

In the second test semester, the number of teachers with fewer hours than the limit rises to 31, but
there were no professors with unassigned courses. The percentage of satisfying preferences decreases
this semester, since the number of professors with course preferences also decreased.

The logarithmic scale graph presented in Figure 16 displays the TS-PAC performance when
evaluating the hard constraints for both semesters. In both cases, we set the stop criterion to a
maximum number of iterations. The aggressive approach of the algorithm is remarkable. BT-PAC fast
convergence is particularly due to the neighborhoods selected and the probabilistic aspiration
criterion’s intensification strategy. Overall, the BT-PAC behavior is similar in both tests. However,
convergence in semester 1 leads to most of the constraints being satisfied.

 0

 10

 20

 30

 40

 50

 60

 70

 1 10 100 1000

H
a

rd
 c

o
n

s
tr

a
in

ts
 v

io
la

ti
o

n
s

Iterations

Semester 1

Semester 2

Figure 16. Solving the hard constraints in the ACA phase (logarithmic scale).

Figure 17 shows the performance of the algorithm when solving the soft constraints stage. Again,
the behavior of the algorithm is similar in both semesters. Given that the objective function for
this stage is maximization (Equation (11)), it is desired to satisfy, as far as possible, the professors’
course preferences. In this case, the stop criterion is GOAL = np (number of professors). From the
plot, we can read that both curves, representing each of the test semesters, are progressive and
continuous. The expected maximum value in the objective function represents all of the professors
satisfied with a favorite course assigned, so the TS-PAC converges to an acceptable solution with a low
computational cost.

Mathematics 2020, 8, 1833 24 of 29

 40

50

60

70

80

90

100

110

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
o

ft
 c

o
n

s
tr

a
in

ts
 s

o
lv

e
d

Iterations

Semester 1

Semester 2

Figure 17. the satisfaction of soft constraints in the ACA phase.

5.4. Results for the TTP Phase

Table 3 shows the data that were related to the TTP for the two test semesters. Creating a timetable
requires the Academic assignments (ACA), i.e., each 〈professor, course〉 tuple, the number of groups,
the available classrooms, and the number of periods of time. There is a main difference in both
semesters: a reduction in the number of available time periods due to administrative issues. In the
first semester, there were 12 periods of time per day (from 8 a.m. to 8 p.m.), but the second semester
contains 10 periods per day (from 8 a.m. to 6 p.m.), both from Monday to Friday.

The associated constraints to this phase are distributed among entities, as follows. In this phase,
we notice that more constraints are related to lectures:

Course: hard constraint TTP-HC1 and TTP-HC5.
Lecture: hard constraints TTP-HC2, TTP-HC3, and TTP-HC4. Soft constraint TTP-SC2.
Professor: hard constraint TTP-HC6 and soft constraint TTP-SC1.

Table 3. Data of the two test semesters for the TTP stage.

Data Semester 1 Semester 2

〈professor,course〉 tuples 369 362
Total lectures 1777 1716
Periods of time 60 50
Classrooms 43 43

The results for this stage are shown in Table 4. It is worth mentioning that none of the hard
constraints considered are violated. All of the lectures were scheduled in a single period of time in a
proper classroom, avoiding clashes. Regarding hard constraint TTP-HC4, it was easy to satisfy the
constraint, because most of the classrooms are large enough to hold most of the courses.

Concerning soft constraints, the number of non-contiguous lectures on the same day were
eliminated for both semesters (soft constraint TTP-SC2); this was our priority constraint. We also
wanted to maximize the scheduling of lectures within each professor’s hour preferences, which was
achieved in most cases (soft constraint TTP-SC1).

Table 4. Results obtained in the TTP stage for both semesters.

Result Semester 1 Semester 2

Professor clashes 0 0
Group clashes 0 0
Non-contiguous lectures 0 0
Percentage of shift preferences satisfied 88.87% 87.50%

Mathematics 2020, 8, 1833 25 of 29

Figures 18 and 19 show the performance of the TS-PAC when solving the hard constraints stage
(minimization) and the soft constraints stage (maximization). We can notice that the behavior of
the algorithm is very similar for both semesters. In the minimization stage (hard constraints), we
set the stop criterion to GOAL = 0, as achieved in both semesters. For the maximization stage
(soft constraints), the stop criterion was set to a maximum number of iterations.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

H
a

rd
 c

o
n

s
tr

a
in

ts
 v

io
la

ti
o

n
s

Iterations

Semester 1

Semester 2

Figure 18. Solving the hard constraints in the TTP phase.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

1000 2000 3000 4000 5000 6000 7000

S
o
ft
 c

o
n
s
tr

a
in

ts
 s

o
lv

e
d

Iterations

Semester 1

Semester 2

8000

Figure 19. The satisfaction of soft constraints in the TTP stage.

According to the results that were obtained in the two test cases, we can claim that the Tabu
Search with Aspiration Criterion algorithm effectively solves the timetabling problem at the DACyTI.

6. Conclusions

The timetabling process is a complex problem, because it is not usually possible to find an optimal
solution in a reasonable time, mainly due to the constraints of the problem and the many possible
combinations of its intrinsic elements.

In that sense, the proposal of a formal model representing the specific constraints of the University
Course Timetabling Problem (UCTP) at a Latin American university is the first contribution of this
research. The inherent hard and soft constraints of the problem were described using the UML and the
OCL, both software specification languages considered as standard. More importantly, the proposed
model is not tied to any particular solution strategy. We consider that our model is sufficiently flexible
to allow for new constraints over the same domain, removing or modifying the existing ones. Even
new entities, like substitute teachers or the concept of university chair, can be straightforwardly added.

In the literature, there are few cases in which the UCTP is described in two phases that we have
called Academic assignments (ACA) and Timetable process (TTP). Separating our problem at the
DACyTI into the ACA and TTP phases allows for us to tackle the problem by: (1) modeling specific

Mathematics 2020, 8, 1833 26 of 29

constraints for each phase, (2) divide each phase into hard and soft constraints stages, specifying
two objective functions for each phase, and (3) the design of specific neighborhoods for the Tabu
Search algorithm in each phase. Besides, this two-phases technique represents a similar paradigm to
the know-how of the personnel responsible for the timetabling process at our university, so it may
optimize the manual work, so our prototype may help to optimize the manual work currently done.

We relied on the Tabu Searchm because it is a fast algorithm, easy to tune, and it allows a
semi-deterministic search via the designed neighborhoods. In that sense, feasible timetables were
generated in the order of minutes. We made a customization of the Tabu Search algorithm, the so-called
Tabu Search with Probabilistic Aspiration Criterion (BT-PAC). The aspiration criterion is regularly not
taken into account in the various variants of the Tabu Search algorithm presented in the literature.
In this case, the proposed aspiration criterion allows for intensifying and diversifying the search in
crucial situations, which improves the algorithm’s overall performance. Besides, Tabu Search can be
easily implemented in an object-oriented programming language.

A multiplatform software prototype was developed to implement our proposal. This prototype
was tested with two semesters of different characteristics in terms of the number of elements to
be considered: professors, courses, and periods of time. In both semesters, quality solutions were
obtained, satisfying most of the constraints. It is possible to adapt the prototype in order to solve the
timetabling problem at other academic divisions of our university, or even in other universities with
similar constraints. We exclusively used free software for the development of the prototype.

Among the future works, we have considered implementing a hybrid algorithm while using
another metaheuristic in order to explore different areas of the solution space. It is also possible to
design various neighborhood schemes to provide further diversity to the solutions generated by the
algorithm. Regarding the software prototype, it is suggested to apply quality metrics and usability
tests to enrich its functionality.

It is expected that the present model and proposed solution serve as a basis for modeling and
solving other instances of the timetabling problem.

Author Contributions: O.C.-B.: Conceptualization, Methodology, Software, Writing- Original draft preparation.
J.H.-T.: Data curation, Software. B.H.-O.: Validation, Investigation. J.C.-R.: Writing-Reviewing and Editing. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: To CONACYT (Ministry of Science in México) for supporting the National System of
Researchers (SNI) program.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ACA Academic assignments
DACyTI División Académica de Ciencias y Tecnologías de la Información
OCL Object Constraint Language
TS-PAC Tabu Search with Probabilistic Aspiration Criterion
TTP Timetabling problem
UJAT Universidad Juárez Autónoma de Tabasco
UCTP University Course Timetabling Problem
UML Unified Modeling Language

Mathematics 2020, 8, 1833 27 of 29

References

1. Cooper, T.B.; Kingston, J.H. The complexity of timetable construction problems. In Practice and Theory of
Automated Timetabling; Burke, E., Ross, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 281–295.

2. Cruz-Chávez, M.; Flores-Pichardo, M.; Martínez-Oropeza, A.; Moreno-Bernal, P.; Cruz-Rosales, M. Solving
a Real Constraint Satisfaction Model for the University Course Timetabling Problem: A Case Study.
Math. Probl. Eng. 2016, 2016, 14. [CrossRef]

3. Mejía Caballero, J.; Paternina Arboleda, C. Asignación de Horarios de Clases universitarias mediante
Algoritmos Evolutivos (Allocation of class schedules using evolutionary algorithms). Rev. Educ. Ing. 2010,
5, 140–149. [CrossRef]

4. Pereira, V.; Gomes Costa, H. Linear Integer Model for the Course Timetabling Problem of a Faculty in Rio de
Janeiro. Adv. Oper. Res. 2016, 2016. [CrossRef]

5. Gotlieb, H. The construction of class-teacher timetables. In Proceedings of IFIP Congress 62; Popplewell, C., Ed.;
Information Processing 62: Munich, Germany, 1963; pp. 73–77.

6. Saviniec, L.; Santos, M.O.; Costa, A.M. Parallel local search algorithms for high school timetabling problems.
Eur. J. Oper. Res. 2018, 265, 81–98. [CrossRef]

7. De Werra, D. An introduction to timetabling. Eur. J. Oper. Res. 1985, 19, 151–162.
doi:10.1016/0377-2217(85)90167-5. [CrossRef]

8. Rudová, H.; Müller, T.; Murray, K. Complex university course timetabling. J. Sched. 2011, 14, 187–207.
[CrossRef]

9. Schaerf, A. A Survey of Automated Timetabling. Artif. Intell. Rev. 1999, 13, 87–127. [CrossRef]
10. Burke, E.K.; Mareček, J.; Parkes, A.J.; Rudová, H. Decomposition, reformulation, and diving in university

course timetabling. Comput. Oper. Res. 2010, 37, 582–597. [CrossRef]
11. Chen, M.; Tang, X.; Song, T.; Wu, C.; Liu, S.; Peng, X. A Tabu search algorithm with controlled randomization

for constructing feasible university course timetables. Comput. Oper. Res. 2020, 123, 105007. [CrossRef]
12. Chiorean, D.; Petraşcu, V.; Ober, I. Using Constraints in Teaching Software Modeling. In Models in Software

Engineering; Kienzle, J., Ed.; Springer: Berlin, Germany, 2012; pp. 25–39.
13. Booch, G.; Rumbaugh, J.; Jacobson, I. The Unified Modeling Language User Guide; Addison-Wesley:

Boston, MA, USA, 2005.
14. Hofrichter, O.; Hamann, L.; Gogolla, M.; Steimke, F. The secret life of OCL constraints. In Proceedings of the

12th Workshop on OCL and Textual Modelling-OCL ‘12; ACM Press: New York, NY, USA, 2012. [CrossRef]
15. Cabot, J.; Gogolla, M., Object Constraint Language (OCL): A Definitive Guide. In Formal Methods for

Model-Driven Engineering: 12th International School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM 2012, Bertinoro, Italy, 18–23 June 2012; Advanced Lectures; Springer: Berlin,
Germany, 2012; pp. 58–90. [CrossRef]

16. Ziemann, P.; Gogolla, M. Validating OCL Specifications with the USE Tool: An Example Based on the BART
Case Study. Electron. Notes Theor. Comput. Sci. 2003, 80, 157–169. [CrossRef]

17. Larsson, D.; Mostowski, W. Specifying Java Card API in OCL. Electron. Notes Theor. Comput. Sci. 2004,
102, 3–19. [CrossRef]

18. Garry, D.; Balfe, T. Experiences using OCL for business rules on financial messaging. In Proceedings of the
12th Workshop on OCL and Textual Modelling (OCL’12); ACM Press: New York, NY, USA, 2004; pp. 65–66.
[CrossRef]

19. Chávez-Bosquez, O.; Pozos-Parra, P. The Latin American laws of correct nutrition: Review, unified
interpretation, model and tools. Comput. Biol. Med. 2016, 70, 67–79. [CrossRef]

20. Gogolla, M.; Büttner, F.; Richters, M. USE: A UML-based specification environment for validating UML and
OCL. Sci. Comput. Program. 2007, 69, 27–34. [CrossRef]

21. Glover, F.; Laguna, M. Tabu Search, 1st ed.; Kluwer Academic Publishers: Norwell, MA, USA, 1997.
22. Pirim, H.; Bayraktar, E.; Eksioglu, B. Tabu Search: A Comparative Study. In Tabu Search; InTechOpen:

London, UK, 2008. [CrossRef]
23. Kergosien, Y.; Lenté, C.; Piton, D.; Billaut, J.C. A tabu search heuristic for the dynamic transportation of

patients between care units. Eur. J. Oper. Res. 2011, 214, 442–452. [CrossRef]
24. Cunha, V.; Mantovani, J. Planning And Project Of Medium Voltage Electric Power Distribution Systems.

IEEE Latin Am. Trans. 2016, 15, 2298–2308. [CrossRef]

http://dx.doi.org/10.1155/2016/7194864
http://dx.doi.org/10.26507/rei.v5n9.15
http://dx.doi.org/10.1155/2016/7597062
http://dx.doi.org/10.1016/j.ejor.2017.07.029
https://doi.org/https://doi.org/10.1016/0377-2217(85)90167-5
http://dx.doi.org/10.1016/0377-2217(85)90167-5
http://dx.doi.org/10.1007/s10951-010-0171-3
http://dx.doi.org/10.1023/A:1006576209967
http://dx.doi.org/10.1016/j.cor.2009.02.023
http://dx.doi.org/10.1016/j.cor.2020.105007
http://dx.doi.org/10.1145/2428516.2428528
http://dx.doi.org/10.1007/978-3-642-30982-3_3
http://dx.doi.org/10.1016/S1571-0661(04)80816-8
http://dx.doi.org/10.1016/j.entcs.2003.09.001
http://dx.doi.org/10.1145/2428516.2428529
http://dx.doi.org/10.1016/j.compbiomed.2015.12.019
http://dx.doi.org/10.1016/j.scico.2007.01.013
http://dx.doi.org/10.5772/5637
http://dx.doi.org/10.1016/j.ejor.2011.04.033
http://dx.doi.org/10.1109/TLA.2016.7530426

Mathematics 2020, 8, 1833 28 of 29

25. Balliauw, M.; Herremans, D.; Palhazi Cuervo, D.; Sörensen, K. Mathematics and Computation in Music:
5th International Conference, MCM 2015, London, UK, 22–25 June 2015; Chapter Generating Fingerings for
Polyphonic Piano Music with a Tabu Search Algorithm; Springer International Publishing: Berlin, Germany,
2015; pp. 149–160. [CrossRef]

26. Glover, F. Tabu Search: A Tutorial. Interfaces 1990, 20, 74–94. [CrossRef]
27. Gendreau, M. An Introduction to Tabu Search. In Handbook of Metaheuristics; Glover, F., Kochenberger, G.A.,

Eds.; Springer: Boston, MA, USA, 2003; pp. 37–54. [CrossRef]
28. Xing, L.; Liu, Y.; Li, H.; Wu, C.C.; Lin, W.C.; Chen, X. A Novel Tabu Search Algorithm for Multi-AGV

Routing Problem. Mathematics 2020, 8, 279. [CrossRef]
29. Al-Tarawneh, H.; Ayob, M. Using Tabu search with multi-neighborhood structures to solve University

Course Timetable UKM case study (faculty of engineering). In Proceedings of the 3rd Conference on Data
Mining and Optimization, Putrajaya, Malaysia, 28–29 June 2011; pp. 208–212. [CrossRef]

30. Hertz, A. Tabu search for large scale timetabling problems. Eur. J. Oper. Res. 1991, 54, 39–47. [CrossRef]
31. Minh, K.N.T.T.; Thanh, N.D.T.; Trang, K.T.; Hue, N.T.T. Using Tabu Search for Solving a High School

Timetabling Problem. In Advances in Intelligent Information and Database Systems; Springer: Berlin, Germany,
2010; pp. 305–313. [CrossRef]

32. Oliva, C.; Ramírez, G. Algoritmo de tipo búsqueda tabú para un problema de programación de horarios
universitarios vespertinos. INGE CUC 2013, 9, 58–65.

33. Schaerf, A. Tabu Search Techniques for Large High-School Timetabling Problems. In Proceedings of the 13th
National Conference on Artificial Intelligence (AAAI-96); AAAI Press/MIT Press: Portland, OR, USA, 1996;
pp. 363–368.

34. Chávez-Bosquez, O.; Pozos-Parra, P.; Gómez-Ramos, J. Búsqueda Tabú con Criterio de Aspiración
Probabilístico aplicada a la Generación de Horarios Escolares (Tabu Search with Probabilistic Aspiration
Criterion solving the timetabling problem). Rev. Mat. Teor. Apl. 2015, 22, 153–177. [CrossRef]

35. Network, M. International Timetabling Competition. 2003. Available online: http://sferics.idsia.ch/Files/
ttcomp2002/ (accessed on 16 September 2018).

36. Müller, T.; Rudová, H.; Müllerová, Z. University course timetabling and International Timetabling
Competition 2019. In Proceedings of the PATAT 2018: 12th International Conference of the Practice and Theory of
Automated Timetabling; Burke, E., Di Gaspero, L., McCollum, B., Musliu, N., Özcan, E., Eds.; Online: Vienna,
Austria, 2018; pp. 5–31.

37. Kingston, J.H. Educational Timetabling. In Automated Scheduling and Planning: From Theory to Practice; Uyar,
A.S., Ozcan, E., Urquhart, N., Eds.; Springer: Berlin, Germany, 2013; pp. 91–108. [CrossRef]

38. Chen, R.M.; Shih, H.F. Solving University Course Timetabling Problems Using Constriction Particle Swarm
Optimization with Local Search. Algorithms 2013, 6, 227–244. [CrossRef]

39. Mockus, J.; Pupeikienė, L. On Multi-Start Algorithms for Optimization of High School Timetables. Informatica
2012, 23, 405–425. [CrossRef]

40. Piechowiak, S.; Kolski, C. Towards a generic object oriented decision support system for university
timetabling: An interactive approach. Int. J. Inf. Technol. Decis. Mak. 2004, 3, 179–208. [CrossRef]

41. H. Consejo Universitario (University Council). Estatuto del Personal Académico (Academic Staff Regulations);
Universidad Juárez Autónoma de Tabasco: Tabasco, Mexico, 1985.

42. Secretaría de Gobernación (Ministry of the Interior). Constitución Política de los Estados Unidos Mexicanos
(Mexican Constitution), 23rd ed.; Dirección General Adjunta del Diario Oficial de la Federación: Ciudad de
México, Mexico, 2017.

43. H. Congreso del Estado de Tabasco (Tabasco State Congress). Ley Orgánica de la Universidad Juárez Autónoma
de Tabasco (UJAT Organic Law); Universidad Juárez Autónoma de Tabasco: Tabasco, Mexico, 1987.

44. Müller, T.; Rudová, H. Real-life curriculum-based timetabling with elective courses and course sections.
Ann. Oper. Res. 2016, 239, 153–170. [CrossRef]

45. H. Consejo Universitario (University Council). Reglamento Escolar del Modelo Educativo Flexible (School Regulations
of the Flexible Educational Model); Universidad Juárez Autónoma de Tabasco: Tabasco, Mexico, 2011.

46. AdoptOpenJDK.net. AdoptOpenJDK - Prebuilt OpenJDK Binaries. 2019. Available online: https://
adoptopenjdk.net (accessed on 16 April 2019).

http://dx.doi.org/10.1007/978-3-319-20603-5_15
http://dx.doi.org/10.1287/inte.20.4.74
http://dx.doi.org/10.1007/0-306-48056-5_2
http://dx.doi.org/10.3390/math8020279
http://dx.doi.org/10.1109/DMO.2011.5976529
http://dx.doi.org/10.1016/0377-2217(91)90321-L
http://dx.doi.org/10.1007/978-3-642-12090-9_26
http://dx.doi.org/10.15517/rmta.v22i1.17560
http://sferics.idsia.ch/Files/ttcomp2002/
http://sferics.idsia.ch/Files/ttcomp2002/
http://dx.doi.org/10.1007/978-3-642-39304-4_4
http://dx.doi.org/10.3390/a6020227
http://dx.doi.org/10.15388/Informatica.2012.367
http://dx.doi.org/10.1142/S0219622004000982
http://dx.doi.org/10.1007/s10479-014-1643-1
https://adoptopenjdk.net
https://adoptopenjdk.net

Mathematics 2020, 8, 1833 29 of 29

47. MariaDB Foundation. MariaDB Server. 2019. Available online: https://mariadb.org (accessed on
12 December 2019).

48. Harder, R. OpenTS - Java Tabu Search. 2001. Available online: https://www.coin-or.org/Ots/ (accessed on
20 November 2018).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://mariadb.org
https://www.coin-or.org/Ots/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	University Course Timetabling Problem
	Object Constraint Language (OCL)
	Tabu Search with Probabilistic Aspiration Criterion (TS-PAC)

	Modeling the Timetabling Problem
	ACA Model
	TTP Model

	Solution Proposal
	ACA Solution
	Creating an Initial Solution
	Satisfying Hard Constraints
	Soft Constraints: Maximizing Professors' Course Preferences

	TTP Solution
	Creating an Initial Solution
	Satisfying Hard Constraints
	Soft Constraints: Maximizing Professors' Shift Preferences and Contiguous Lectures

	Tests and Results
	Software Prototype
	Experiments
	Results for the ACA Phase
	Results for the TTP Phase

	Conclusions
	References

